BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dietze G, Bartlett DT, Cool DA, Cucinotta FA, Jia X, McAulay IR, Pelliccioni M, Petrov V, Reitz G, Sato T; Task Group on Radiation Protection in Space, ICRP Committee 2. ICRP, 123. Assessment of radiation exposure of astronauts in space. ICRP Publication 123. Ann ICRP 2013;42:1-339. [PMID: 23958389 DOI: 10.1016/j.icrp.2013.05.004] [Cited by in Crossref: 43] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014;9:e104819. [PMID: 25126721 DOI: 10.1371/journal.pone.0104819] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 6.6] [Reference Citation Analysis]
2 Sato T. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLoS One 2015;10:e0144679. [PMID: 26674183 DOI: 10.1371/journal.pone.0144679] [Cited by in Crossref: 69] [Cited by in F6Publishing: 12] [Article Influence: 9.9] [Reference Citation Analysis]
3 Mishra B, Luderer U. Reproductive hazards of space travel in women and men. Nat Rev Endocrinol 2019;15:713-30. [PMID: 31611649 DOI: 10.1038/s41574-019-0267-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
4 Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat Res 2017;188:191-203. [PMID: 28613990 DOI: 10.1667/RR14667.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
5 Hu S, Cucinotta FA. Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework. Integr Biol (Camb) 2014;6:76-89. [PMID: 24270511 DOI: 10.1039/c3ib40141c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
6 Pavlakou P, Dounousi E, Roumeliotis S, Eleftheriadis T, Liakopoulos V. Oxidative Stress and the Kidney in the Space Environment. Int J Mol Sci 2018;19:E3176. [PMID: 30326648 DOI: 10.3390/ijms19103176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
7 Luo P, Zhang X, Fu S, Li Y, Li C, Cao J. First measurements of low-energy cosmic rays on the surface of the lunar farside from Chang'E-4 mission. Sci Adv 2022;8:eabk1760. [PMID: 35030015 DOI: 10.1126/sciadv.abk1760] [Reference Citation Analysis]
8 Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". Biomed Res Int 2020;2020:4703286. [PMID: 32337251 DOI: 10.1155/2020/4703286] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
9 Puchalska M, Bilski P, Berger T, Hajek M, Horwacik T, Körner C, Olko P, Shurshakov V, Reitz G. NUNDO: a numerical model of a human torso phantom and its application to effective dose equivalent calculations for astronauts at the ISS. Radiat Environ Biophys 2014;53:719-27. [PMID: 25119442 DOI: 10.1007/s00411-014-0560-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
10 Laurenzi S, de Zanet G, Santonicola MG. Numerical investigation of radiation shielding properties of polyethylene-based nanocomposite materials in different space environments. Acta Astronautica 2020;170:530-8. [DOI: 10.1016/j.actaastro.2020.02.027] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
11 El Basha D, Furuta T, Iyer SSR, Bolch WE. A scalable and deformable stylized model of the adult human eye for radiation dose assessment. Phys Med Biol 2018;63:105017. [PMID: 29570457 DOI: 10.1088/1361-6560/aab955] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
12 Potiriadis C, Kazas I, Papadimitropoulos C, Lambropoulos C. Miniature neutron spectrometer for space. J Inst 2019;14:C11029-C11029. [DOI: 10.1088/1748-0221/14/11/c11029] [Reference Citation Analysis]
13 George KA, Hada M, Cucinotta FA. Biological Effectiveness of Accelerated Protons for Chromosome Exchanges. Front Oncol 2015;5:226. [PMID: 26539409 DOI: 10.3389/fonc.2015.00226] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
14 Norbury JW, Schimmerling W, Slaba TC, Azzam EI, Badavi FF, Baiocco G, Benton E, Bindi V, Blakely EA, Blattnig SR, Boothman DA, Borak TB, Britten RA, Curtis S, Dingfelder M, Durante M, Dynan WS, Eisch AJ, Robin Elgart S, Goodhead DT, Guida PM, Heilbronn LH, Hellweg CE, Huff JL, Kronenberg A, La Tessa C, Lowenstein DI, Miller J, Morita T, Narici L, Nelson GA, Norman RB, Ottolenghi A, Patel ZS, Reitz G, Rusek A, Schreurs AS, Scott-Carnell LA, Semones E, Shay JW, Shurshakov VA, Sihver L, Simonsen LC, Story MD, Turker MS, Uchihori Y, Williams J, Zeitlin CJ. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sci Space Res (Amst) 2016;8:38-51. [PMID: 26948012 DOI: 10.1016/j.lssr.2016.02.001] [Cited by in Crossref: 63] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
15 Spence HE, Golightly MJ, Joyce CJ, Looper MD, Schwadron NA, Smith SS, Townsend LW, Wilson J, Zeitlin C. Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the Moon: GCR DOSE AND DOSE RATES NEAR THE MOON. Space Weather 2013;11:643-50. [DOI: 10.1002/2013sw000995] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
16 Zhang S, Wimmer-Schweingruber RF, Yu J, Wang C, Fu Q, Zou Y, Sun Y, Wang C, Hou D, Böttcher SI, Burmeister S, Seimetz L, Schuster B, Knierim V, Shen G, Yuan B, Lohf H, Guo J, Xu Z, Freiherr von Forstner JL, Kulkarni SR, Xu H, Xue C, Li J, Zhang Z, Zhang H, Berger T, Matthiä D, Hellweg CE, Hou X, Cao J, Chang Z, Zhang B, Chen Y, Geng H, Quan Z. First measurements of the radiation dose on the lunar surface. Sci Adv 2020;6:eaaz1334. [PMID: 32978156 DOI: 10.1126/sciadv.aaz1334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
17 Christofidou-Solomidou M, Pietrofesa RA, Arguiri E, Schweitzer KS, Berdyshev EV, McCarthy M, Corbitt A, Alwood JS, Yu Y, Globus RK, Solomides CC, Ullrich RL, Petrache I. Space radiation-associated lung injury in a murine model. Am J Physiol Lung Cell Mol Physiol 2015;308:L416-28. [PMID: 25526737 DOI: 10.1152/ajplung.00260.2014] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
18 Alwood JS, Tran LH, Schreurs AS, Shirazi-Fard Y, Kumar A, Hilton D, Tahimic CGT, Globus RK. Dose- and Ion-Dependent Effects in the Oxidative Stress Response to Space-Like Radiation Exposure in the Skeletal System. Int J Mol Sci 2017;18:E2117. [PMID: 28994728 DOI: 10.3390/ijms18102117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
19 Boscolo D, Durante M. Dose Limits and Countermeasures for Mitigating Radiation Risk in Moon and Mars Exploration. Physics 2022;4:172-84. [DOI: 10.3390/physics4010013] [Reference Citation Analysis]
20 Kudo S, Sugihara T. Basic concept of safety evaluation method for decommissioning of nuclear power plants by applying a graded approach. Nuclear Engineering and Design 2021;379:111212. [DOI: 10.1016/j.nucengdes.2021.111212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Matthiä D, Berger T. The radiation environment on the surface of Mars – Numerical calculations of the galactic component with GEANT4/PLANETOCOSMICS. Life Sciences in Space Research 2017;14:57-63. [DOI: 10.1016/j.lssr.2017.03.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.2] [Reference Citation Analysis]
22 Sato T. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure. Sci Rep 2016;6:33932. [PMID: 27650664 DOI: 10.1038/srep33932] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Zhao L, Wu D, Mi D, Sun Y. Radiosensitivity and relative biological effectiveness based on a generalized target model. J Radiat Res 2017;58:8-16. [PMID: 27422933 DOI: 10.1093/jrr/rrw062] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
24 Matthiä D, Meier MM, Berger T. The Solar Particle Event on 10-13 September 2017: Spectral Reconstruction and Calculation of the Radiation Exposure in Aviation and Space. Space Weather 2018;16:977-86. [DOI: 10.1029/2018sw001921] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
25 Lu T, Zhang Y, Wong M, Feiveson A, Gaza R, Stoffle N, Wang H, Wilson B, Rohde L, Stodieck L, Karouia F, Wu H. Detection of DNA damage by space radiation in human fibroblasts flown on the International Space Station. Life Sci Space Res (Amst) 2017;12:24-31. [PMID: 28212705 DOI: 10.1016/j.lssr.2016.12.004] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
26 Durante M. New challenges in high-energy particle radiobiology. Br J Radiol 2014;87:20130626. [PMID: 24198199 DOI: 10.1259/bjr.20130626] [Cited by in Crossref: 85] [Cited by in F6Publishing: 72] [Article Influence: 10.6] [Reference Citation Analysis]
27 Cucinotta FA, Cacao E, Kim MY, Saganti PB. Cancer and circulatory disease risks for a human mission to Mars: Private mission considerations. Acta Astronautica 2020;166:529-36. [DOI: 10.1016/j.actaastro.2018.08.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
28 Liew SV. Can active proton interrogation find shielded nuclear threats at human-safe radiation levels? Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2017;855:47-54. [DOI: 10.1016/j.nima.2017.01.049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
29 Matthiä D, Hassler DM, de Wet W, Ehresmann B, Firan A, Flores-mclaughlin J, Guo J, Heilbronn LH, Lee K, Ratliff H, Rios RR, Slaba TC, Smith M, Stoffle NN, Townsend LW, Berger T, Reitz G, Wimmer-schweingruber RF, Zeitlin C. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data. Life Sciences in Space Research 2017;14:18-28. [DOI: 10.1016/j.lssr.2017.06.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 6.2] [Reference Citation Analysis]
30 Ambroglini F, Battiston R, Burger WJ. Evaluation of Superconducting Magnet Shield Configurations for Long Duration Manned Space Missions. Front Oncol 2016;6:97. [PMID: 27376023 DOI: 10.3389/fonc.2016.00097] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kamsali N, Chakravarty SC, Basuvaraj PK. Investigation of HZE particle fluxes as a space radiation hazard for future Mars missions. Heliyon 2019;5:e02972. [PMID: 31867459 DOI: 10.1016/j.heliyon.2019.e02972] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Norbury JW, Battistoni G, Besuglow J, Bocchini L, Boscolo D, Botvina A, Clowdsley M, de Wet W, Durante M, Giraudo M, Haberer T, Heilbronn L, Horst F, Krämer M, La Tessa C, Luoni F, Mairani A, Muraro S, Norman RB, Patera V, Santin G, Schuy C, Sihver L, Slaba TC, Sobolevsky N, Topi A, Weber U, Werneth CM, Zeitlin C. Are Further Cross Section Measurements Necessary for Space Radiation Protection or Ion Therapy Applications? Helium Projectiles. Front Phys 2020;8:565954. [DOI: 10.3389/fphy.2020.565954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Guo X, Zhang M, Gao Y, Lu D, Li W, Zhou L. Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: a comparison with X-ray irradiation. Appl Microbiol Biotechnol 2020;104:4043-57. [PMID: 32144474 DOI: 10.1007/s00253-020-10464-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
34 Seth I, Schwartz JL, Stewart RD, Emery R, Joiner MC, Tucker JD. Neutron exposures in human cells: bystander effect and relative biological effectiveness. PLoS One 2014;9:e98947. [PMID: 24896095 DOI: 10.1371/journal.pone.0098947] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
35 Guo J, Zeitlin C, Wimmer-schweingruber RF, Hassler DM, Ehresmann B, Rafkin S, Freiherr von Forstner JL, Khaksarighiri S, Liu W, Wang Y. Radiation environment for future human exploration on the surface of Mars: the current understanding based on MSL/RAD dose measurements. Astron Astrophys Rev 2021;29. [DOI: 10.1007/s00159-021-00136-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Nakajima T, Vares G, Ninomiya Y, Wang B, Katsube T, Tanaka K, Maruyama K, Nenoi M. Diallyl Disulfide Mitigates DNA Damage and Spleen Tissue Effects After Irradiation. Med Sci Monit 2019;25:8920-7. [PMID: 31760404 DOI: 10.12659/MSM.917207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Strigari L, Strolin S, Morganti AG, Bartoloni A. Dose-Effects Models for Space Radiobiology: An Overview on Dose-Effect Relationships. Front Public Health 2021;9:733337. [PMID: 34820349 DOI: 10.3389/fpubh.2021.733337] [Reference Citation Analysis]
38 Sato T, Manabe K, Hamada N. Microdosimetric analysis confirms similar biological effectiveness of external exposure to gamma-rays and internal exposure to 137Cs, 134Cs, and 131I. PLoS One 2014;9:e99831. [PMID: 24919099 DOI: 10.1371/journal.pone.0099831] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
39 Li X, Chen L, Zhou H, Gu S, Wu Y, Wang B, Zhang M, Ding N, Sun J, Pang X, Lu D. LsrB, the hub of ABC transporters involved in the membrane damage mechanisms of heavy ion irradiation in Escherichia coli. Int J Radiat Biol 2021;97:1731-40. [PMID: 34597255 DOI: 10.1080/09553002.2021.1987565] [Reference Citation Analysis]
40 Walsh L, Hafner L, Straube U, Ulanowski A, Fogtman A, Durante M, Weerts G, Schneider U. A bespoke health risk assessment methodology for the radiation protection of astronauts. Radiat Environ Biophys 2021;60:213-31. [PMID: 33929575 DOI: 10.1007/s00411-021-00910-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Sangwan N, Kumar A. An extensive study of depth dose distribution and projectile fragmentation cross-section for shielding materials using Geant4. Appl Radiat Isot 2022;180:110068. [PMID: 34923291 DOI: 10.1016/j.apradiso.2021.110068] [Reference Citation Analysis]
42 Banjac S, Berger L, Burmeister S, Guo J, Heber B, Herbst K, Wimmer-schweingruber R. Galactic Cosmic Ray induced absorbed dose rate in deep space – Accounting for detector size, shape, material, as well as for the solar modulation. J Space Weather Space Clim 2019;9:A14. [DOI: 10.1051/swsc/2019014] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]