BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mcgivern T, Afsharpour S, Marmion C. Copper complexes as artificial DNA metallonucleases: From Sigman’s reagent to next generation anti-cancer agent? Inorganica Chimica Acta 2018;472:12-39. [DOI: 10.1016/j.ica.2017.08.043] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Shahraki S. Schiff base compounds as artificial metalloenzymes. Colloids Surf B Biointerfaces 2022;218:112727. [PMID: 35921691 DOI: 10.1016/j.colsurfb.2022.112727] [Reference Citation Analysis]
2 Dantas KCF, Rosário JDS, Silva-caldeira PP. Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022;14:1506. [DOI: 10.3390/pharmaceutics14071506] [Reference Citation Analysis]
3 Liu QY, Qi YY, Cai DH, Liu YJ, He L, Le XY. Sparfloxacin - Cu(II) - aromatic heterocyclic complexes: synthesis, characterization and in vitro anticancer evaluation. Dalton Trans 2022;51:9878-87. [PMID: 35713093 DOI: 10.1039/d2dt00077f] [Reference Citation Analysis]
4 Bergamini FR, Nunes JH, Manzano CM, de Carvalho MA, Ribeiro MA, Ruiz ALTG, de Carvalho JE, Lustri WR, de Paiva REF, Portes MC, da Costa Ferreira AM, Corbi PP. Investigating the antiproliferative activities of new CuII complexes with pyridine hydrazone derivatives of nalidixic acid. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111881] [Reference Citation Analysis]
5 Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coordination Chemistry Reviews 2022;458:214417. [DOI: 10.1016/j.ccr.2022.214417] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Demirci S, Sahiner N. Polyethyleneimine based Cerium(III) and Ce(NO3)3 metal-organic frameworks with blood compatible, antioxidant and antimicrobial properties. Inorganica Chimica Acta 2022;534:120814. [DOI: 10.1016/j.ica.2022.120814] [Reference Citation Analysis]
7 Ünver H, Berber B, Kanat B, Arafat M, Tansu Koparal A, Doluca O. DNA Binding Effects of 2,2'-bipyridine and 1,10-phenanthroline ligands synthesized with benzimidazole copper (II) complexes :Crystal Structure, Molecular Docking, DNA Binding and Anti-Cancer Studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115834] [Reference Citation Analysis]
8 Gao Z, Zhang E, Zhao H, Xia S, Bai H, Huang Y, Lv F, Liu L, Wang S. Bacteria-Mediated Intracellular Click Reaction for Drug Enrichment and Selective Apoptosis of Drug-Resistant Tumor Cells. ACS Appl Mater Interfaces 2022;14:12106-15. [PMID: 35257582 DOI: 10.1021/acsami.2c01493] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Feng J, Wang R, Wang Y, Lei Y. Cu(II) and Zn(II) complexes incorporated with active analogue fragments molecule of the aristolochic acid: Crystal structure and biological activity. Journal of Molecular Structure 2022;1252:132172. [DOI: 10.1016/j.molstruc.2021.132172] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Khursheed S, Tabassum S, Arjmand F. Comprehensive biological {DNA/RNA binding profile, cleavage &cytotoxicity activity} of structurally well-characterized chromone-appended Cu(II)(L1-3)(phen) potential anticancer drug candidates. Polyhedron 2022;214:115638. [DOI: 10.1016/j.poly.2021.115638] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Patel PN, Desai DH, Patel NC. Novel Terpyridine Derivatives of Benzothiazole and Copper(II) Complex: Synthesis and Spectral Studies. Russ J Org Chem 2022;58:114-8. [DOI: 10.1134/s107042802201016x] [Reference Citation Analysis]
12 Ngoepe MP, Clayton HS. Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents. Pharmaceutical Fronts 2021;03:e164-82. [DOI: 10.1055/s-0041-1741035] [Reference Citation Analysis]
13 Ude Z, Flothkötter N, Sheehan G, Brennan M, Kavanagh K, Marmion CJ. Multi-targeted metallo-ciprofloxacin derivatives rationally designed and developed to overcome antimicrobial resistance. Int J Antimicrob Agents 2021;58:106449. [PMID: 34644603 DOI: 10.1016/j.ijantimicag.2021.106449] [Reference Citation Analysis]
14 Ismail Z, Dam J, Penny C, de Koning CB, Harmse L. Copper-imidazo[1,2-a]pyridines differentially modulate pro- and anti-apoptotic protein and gene expression in HL-60 and K562 leukaemic cells to cause apoptotic cell death. Biochim Biophys Acta Mol Cell Res 2022;1869:119160. [PMID: 34634376 DOI: 10.1016/j.bbamcr.2021.119160] [Reference Citation Analysis]
15 Corona-motolinia ND, Martínez-valencia B, Noriega L, Sánchez-gaytán BL, Mendoza A, Meléndez-bustamante FJ, Castro ME, González-vergara E. Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. Metals 2021;11:1541. [DOI: 10.3390/met11101541] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Shen Q, Huang Y, Zeng Y, Zhang E, Lv F, Liu L, Wang S. Intracellular Radical Polymerization of Paclitaxel-Bearing Acrylamide for Self-Inflicted Apoptosis of Cancer Cells. ACS Materials Lett 2021;3:1307-14. [DOI: 10.1021/acsmaterialslett.1c00357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Rigamonti L, Reginato F, Ferrari E, Pigani L, Gigli L, Demitri N, Kopel P, Tesarova B, Heger Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans 2020;49:14626-39. [PMID: 33057512 DOI: 10.1039/d0dt03038d] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Homrich AM, Farias G, Amorim SM, Xavier FR, Gariani RA, Neves A, Terenzi H, Peralta RA. Effect of Chelate Ring Size of Binuclear Copper(II) Complexes on Catecholase Activity and DNA Cleavage. Eur J Inorg Chem 2021;2021:1710-21. [DOI: 10.1002/ejic.202001170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Choroba K, Machura B, Szlapa-Kula A, Malecki JG, Raposo L, Roma-Rodrigues C, Cordeiro S, Baptista PV, Fernandes AR. Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2':6',2″-terpyridine ligands: From in vitro to in vivo biological properties. Eur J Med Chem 2021;218:113404. [PMID: 33823390 DOI: 10.1016/j.ejmech.2021.113404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Xuan Z, Zhan Y, Song G, Liu B. Two Cu(II) co-ordination polymers: anti-cancer activity on melanoma by reducing cancer cell proliferation, migration, and invasion ability. Inorganic and Nano-Metal Chemistry 2021;51:239-45. [DOI: 10.1080/24701556.2020.1783314] [Reference Citation Analysis]
21 Karges J, Xiong K, Blacque O, Chao H, Gasser G. Highly cytotoxic copper(II) terpyridine complexes as anticancer drug candidates. Inorganica Chimica Acta 2021;516:120137. [DOI: 10.1016/j.ica.2020.120137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
22 Bhattacharjee A, Das S, Das B, Roy P. Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chimica Acta 2021;514:119961. [DOI: 10.1016/j.ica.2020.119961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
23 Levín P, Ruiz MC, Romo AIB, Nascimento OR, Di Virgilio AL, Oliver AG, Ayala AP, Diógenes ICN, León IE, Lemus L. Water-mediated reduction of [Cu(dmp) 2 (CH 3 CN)] 2+ : implications of the structure of a classical complex on its activity as an anticancer drug. Inorg Chem Front 2021;8:3238-52. [DOI: 10.1039/d1qi00233c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang Q, Liu J, Feng X, Liu J. Nitrile-containing copper( ii ) porphyrin coordination complexes for efficient anticancer activity and mechanism research. New J Chem 2021;45:5221-7. [DOI: 10.1039/d1nj00326g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Liu J, Zhuo N, Chen Q, Han J, Wang H, Hou B. Zero-/two-dimensional coordination complexes based on the substituted imidazo[1,2-a]pyridine ligands: structural diversity and antitumor activity on human myocardial aneurysm cells. Inorganic and Nano-Metal Chemistry 2020;50:977-82. [DOI: 10.1080/24701556.2020.1731538] [Reference Citation Analysis]
26 Schwarzbich S, Horstmann Née Gruschka C, Simon J, Siebe L, Moreth A, Wiegand C, Lavrentieva A, Scheper T, Stammler A, Bögge H, Fischer von Mollard G, Glaser T. Stronger Cytotoxicity for Cancer Cells Than for Fast Proliferating Human Stem Cells by Rationally Designed Dinuclear Complexes. Inorg Chem 2020;59:14464-77. [PMID: 32951424 DOI: 10.1021/acs.inorgchem.0c02255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Jain S, Bhar K, Bandyopadhayaya S, Singh VK, Mandal CC, Tapryal S, Sharma AK. Development, evaluation and effect of anionic co-ligand on the biological activity of benzothiazole derived copper(II) complexes. J Inorg Biochem 2020;210:111174. [PMID: 32652261 DOI: 10.1016/j.jinorgbio.2020.111174] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Nunes P, Correia I, Marques F, Matos AP, Dos Santos MMC, Azevedo CG, Capelo JL, Santos HM, Gama S, Pinheiro T, Cavaco I, Pessoa JC. Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their Cytotoxicity. Inorg Chem 2020;59:9116-34. [PMID: 32578983 DOI: 10.1021/acs.inorgchem.0c00925] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
29 Hager S, Pape VFS, Pósa V, Montsch B, Uhlik L, Szakács G, Tóth S, Jabronka N, Keppler BK, Kowol CR, Enyedy ÉA, Heffeter P. High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones. Antioxid Redox Signal 2020;33:395-414. [PMID: 32336116 DOI: 10.1089/ars.2019.7854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
30 Martínez-valencia B, Corona-motolinia ND, Sánchez-lara E, Sánchez-gaytán BL, Cerro-lópez M, Mendoza A, Castro ME, Meléndez-bustamante FJ, González-vergara E. Synthesis and Experimental-Computational Characterization of a Copper/Vanadium Compound with Potential Anticancer Activity. Crystals 2020;10:492. [DOI: 10.3390/cryst10060492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
31 Harmse L, Gangat N, Martins-Furness C, Dam J, de Koning CB. Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2019;24:623-43. [PMID: 31073781 DOI: 10.1007/s10495-019-01547-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Shinde RG, Khan AA, Barik A. Exploring the interaction of copper-esculetin complex with ct-DNA: Insight from spectroscopic and docking studies. Journal of Molecular Structure 2020;1208:127901. [DOI: 10.1016/j.molstruc.2020.127901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Grau J, Caubet A, Roubeau O, Montpeyó D, Lorenzo J, Gamez P. Time‐Dependent Cytotoxic Properties of Terpyridine‐Based Copper Complexes. ChemBioChem 2020;21:2348-55. [DOI: 10.1002/cbic.202000154] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
34 Martínez-Valencia B, Corona-Motolinia ND, Sánchez-Lara E, Noriega L, Sánchez-Gaytán BL, Castro ME, Meléndez-Bustamante F, González-Vergara E. Cyclo-tetravanadate bridged copper complexes as potential double bullet pro-metallodrugs for cancer treatment. J Inorg Biochem 2020;208:111081. [PMID: 32531543 DOI: 10.1016/j.jinorgbio.2020.111081] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
35 Alvarez N, Viña D, Leite CM, Mendes LF, Batista AA, Ellena J, Costa-filho AJ, Facchin G. Synthesis and structural characterization of a series of ternary copper(II)-L-dipeptide-neocuproine complexes. Study of their cytotoxicity against cancer cells including MDA-MB-231, triple negative breast cancer cells. Journal of Inorganic Biochemistry 2020;203:110930. [DOI: 10.1016/j.jinorgbio.2019.110930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
36 Carreira-Barral I, Riopedre-Fernández M, de Blas A, Mosquera J, Vázquez ME, Platas-Iglesias C, Esteban-Gómez D. Ditopic binuclear copper(II) complexes for DNA cleavage. J Inorg Biochem 2020;205:110995. [PMID: 31955057 DOI: 10.1016/j.jinorgbio.2020.110995] [Reference Citation Analysis]
37 al-Badri MA, Linscott E, Georges A, Cole DJ, Weber C. Superexchange mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge. Commun Phys 2020;3. [DOI: 10.1038/s42005-019-0270-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Nakahata DH, de Paiva REF, Lustri WR, Corbi PP. Sulfonamide-containing copper( ii ) complexes: new insights on biophysical interactions and antibacterial activities. New J Chem 2020;44:17236-44. [DOI: 10.1039/d0nj01889a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Yousuf I, Zeeshan M, Arjmand F, Rizvi MA, Tabassum S. Synthesis, structural investigations and DNA cleavage properties of a new water soluble Cu(II)–iminodiacetate complex. Inorganic Chemistry Communications 2019;106:48-53. [DOI: 10.1016/j.inoche.2019.05.027] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
40 Guillou A, Lima LMP, Esteban-Gómez D, Delgado R, Platas-Iglesias C, Patinec V, Tripier R. endo- versus exo-Cyclic coordination in copper complexes with methylthiazolylcarboxylate tacn derivatives. Dalton Trans 2019;48:8740-55. [PMID: 31143891 DOI: 10.1039/c9dt01366k] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
41 Matos CP, Addis Y, Nunes P, Barroso S, Alho I, Martins M, Matos APA, Marques F, Cavaco I, Costa Pessoa J, Correia I. Exploring the cytotoxic activity of new phenanthroline salicylaldimine Zn(II) complexes. J Inorg Biochem 2019;198:110727. [PMID: 31195153 DOI: 10.1016/j.jinorgbio.2019.110727] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
42 Kodera M, Kadoya Y, Aso K, Fukui K, Nomura A, Hitomi Y, Kitagishi H. Acceleration of Hydrolytic DNA Cleavage by Dicopper(II) Complexes with p -Cresol-Derived Dinucleating Ligands at Slightly Acidic pH and Mechanistic Insights. BCSJ 2019;92:739-47. [DOI: 10.1246/bcsj.20180353] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
43 Cao S, Cheng R, Wang D, Zhao Y, Tang R, Yang X, Chen J. Dinuclear copper(II) complexes of “end-off” bicompartmental ligands: Alteration of the chelating arms on ligands to regulate the reactivity of the complexes towards DNA. Journal of Inorganic Biochemistry 2019;192:126-39. [DOI: 10.1016/j.jinorgbio.2018.12.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
44 Alonso-de Castro S, Terenzi A, Gurruchaga-Pereda J, Salassa L. Catalysis Concepts in Medicinal Inorganic Chemistry. Chemistry 2019;25:6651-60. [PMID: 30681213 DOI: 10.1002/chem.201806341] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
45 de Souza ÍP, Machado BDP, de Carvalho AB, Binatti I, Krambrock K, Molphy Z, Kellett A, Pereira-maia EC, Silva-caldeira PP. Exploring the DNA binding, oxidative cleavage, and cytotoxic properties of new ternary copper(II) compounds containing 4-aminoantipyrine and N,N-heterocyclic co-ligands. Journal of Molecular Structure 2019;1178:18-28. [DOI: 10.1016/j.molstruc.2018.10.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
46 Cavicchioli M, Zaballa A, Paula Q, Prieto M, Oliveira C, Civitareale P, Ciriolo M, Da Costa Ferreira A. Oxidative Assets Toward Biomolecules and Cytotoxicity of New Oxindolimine-Copper(II) and Zinc(II) Complexes. Inorganics 2019;7:12. [DOI: 10.3390/inorganics7020012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019;119:1058-137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Cited by in Crossref: 220] [Cited by in F6Publishing: 172] [Article Influence: 73.3] [Reference Citation Analysis]
48 Ude Z, Kavanagh K, Twamley B, Pour M, Gathergood N, Kellett A, Marmion CJ. A new class of prophylactic metallo-antibiotic possessing potent anti-cancer and anti-microbial properties. Dalton Trans 2019;48:8578-93. [DOI: 10.1039/c9dt00250b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Choroba K, Machura B, Kula S, Raposo LR, Fernandes AR, Kruszynski R, Erfurt K, Shul'pina LS, Kozlov YN, Shul'pin GB. Copper( ii ) complexes with 2,2′:6′,2′′-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Trans 2019;48:12656-73. [DOI: 10.1039/c9dt01922g] [Cited by in Crossref: 19] [Article Influence: 6.3] [Reference Citation Analysis]
50 Wang H, Sorolla M, Wang X, Jacobson AJ, Wang H, Pillai AK. Synthesis, crystal structures and in vitro anticancer activities of two copper(II) coordination compounds. Transit Met Chem 2019;44:237-45. [DOI: 10.1007/s11243-018-0288-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
51 Hangan AC, Borodi G, Stan RL, Páll E, Cenariu M, Oprean LS, Sevastre B. Synthesis, crystal structure, DNA cleavage and antitumor activity of two copper(II) complexes with N-sulfonamide ligand. Inorganica Chimica Acta 2018;482:884-93. [DOI: 10.1016/j.ica.2018.07.045] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 6.3] [Reference Citation Analysis]
52 Nakahata DH, de Paiva REF, Lustri WR, Ribeiro CM, Pavan FR, da Silva GG, Ruiz ALTG, de Carvalho JE, Corbi PP. Sulfonamide-containing copper(II) metallonucleases: Correlations with in vitro antimycobacterial and antiproliferative activities. J Inorg Biochem 2018;187:85-96. [PMID: 30081333 DOI: 10.1016/j.jinorgbio.2018.07.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
53 Warad I, Awwadi FF, Abd Al-Ghani B, Sawafta A, Shivalingegowda N, Lokanath NK, Mubarak MS, Ben Hadda T, Zarrouk A, Al-Rimawi F, Odeh AB, Barghouthi SA. Ultrasound-assisted synthesis of two novel [CuBr(diamine)2·H2O]Br complexes: Solvatochromism, crystal structure, physicochemical, Hirshfeld surface thermal, DNA/binding, antitumor and antibacterial activities. Ultrason Sonochem 2018;48:1-10. [PMID: 30080530 DOI: 10.1016/j.ultsonch.2018.05.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
54 Zehra S, Shavez Khan M, Ahmad I, Arjmand F. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. Journal of Biomolecular Structure and Dynamics 2019;37:1863-79. [DOI: 10.1080/07391102.2018.1467794] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
55 Grau J, Renau C, Caballero AB, Caubet A, Pockaj M, Lorenzo J, Gamez P. Evaluation of the metal-dependent cytotoxic behaviour of coordination compounds. Dalton Trans 2018;47:4902-8. [DOI: 10.1039/c7dt04604a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]