BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cavanaugh SE, Bathrick AS. Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Science International: Genetics 2018;32:40-9. [DOI: 10.1016/j.fsigen.2017.10.005] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Huang HJ, Wu JC, Chiang H, Chou Chau Y, Lin Y, Wang YH, Chen P. Review of Experimental Setups for Plasmonic Photocatalytic Reactions. Catalysts 2020;10:46. [DOI: 10.3390/catal10010046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 4.7] [Reference Citation Analysis]
2 Prasad E, Hitchcock C, Raymond J, Cole A, Barash M, Gunn P, McNevin D, van Oorschot RAH. DNA recovery from unfired and fired cartridge cases: A comparison of swabbing, tape lifting, vacuum filtration, and direct PCR. Forensic Sci Int 2020;317:110507. [PMID: 32977300 DOI: 10.1016/j.forsciint.2020.110507] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Tang J, Ostrander J, Wickenheiser R, Hall A. Touch DNA in forensic science: The use of laboratory-created eccrine fingerprints to quantify DNA loss. Forensic Sci Int Synerg 2020;2:1-16. [PMID: 32411992 DOI: 10.1016/j.fsisyn.2019.10.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
4 Wu H, Qian S, Peng C, Wang X, Wang T, Zhong X, Chen Y, Yang Q, Xu J, Wu J. Rotary Valve-Assisted Fluidic System Coupling with CRISPR/Cas12a for Fully Integrated Nucleic Acid Detection. ACS Sens 2021;6:4048-56. [PMID: 34665590 DOI: 10.1021/acssensors.1c01468] [Reference Citation Analysis]
5 Zhang H, Yu F, Lu X, Li Y, Peng D, Wang Z, Liu Y. Rapid Detection of MCR-Mediated Colistin Resistance in Escherichia coli. Microbiol Spectr 2022;:e0092022. [PMID: 35616398 DOI: 10.1128/spectrum.00920-22] [Reference Citation Analysis]
6 Reid KM, Heathfield LJ. Evaluation of direct PCR for routine DNA profiling of non-decomposed deceased individuals. Sci Justice 2020;60:567-72. [PMID: 33077040 DOI: 10.1016/j.scijus.2020.08.004] [Reference Citation Analysis]
7 Abid HA, Lin ES, Ong JW, Minifie T, Song Z, Liew OW, Ng TW. Polymerase chain reaction thermal cycling using the programmed tilt displacements of capillary tubes. Rev Sci Instrum 2020;91:104105. [PMID: 33138589 DOI: 10.1063/5.0007879] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 McCord BR, Gauthier Q, Cho S, Roig MN, Gibson-Daw GC, Young B, Taglia F, Zapico SC, Mariot RF, Lee SB, Duncan G. Forensic DNA Analysis. Anal Chem 2019;91:673-88. [PMID: 30485738 DOI: 10.1021/acs.analchem.8b05318] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
9 Kanokwongnuwut P, Kirkbride KP, Linacre A. Detection of latent DNA. Forensic Science International: Genetics 2018;37:95-101. [DOI: 10.1016/j.fsigen.2018.08.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 7.5] [Reference Citation Analysis]
10 Bonsu DOM, Higgins D, Austin JJ. Forensic touch DNA recovery from metal surfaces – A review. Science & Justice 2020;60:206-15. [DOI: 10.1016/j.scijus.2020.01.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
11 Tonkrongjun P, Phetpeng S, Asawutmangkul W, Sotthibandhu S, Kitpipit T, Thanakiatkrai P. Improved STR profiles from improvised explosive device (IED): fluorescence latent DNA detection and direct PCR. Forensic Science International: Genetics 2019;41:168-76. [DOI: 10.1016/j.fsigen.2019.05.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
12 Janik P, Ronikier M, Ronikier A. New protocol for successful isolation and amplification of DNA from exiguous fractions of specimens: a tool to overcome the basic obstacle in molecular analyses of myxomycetes. PeerJ 2020;8:e8406. [PMID: 32002333 DOI: 10.7717/peerj.8406] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Martin B, Taylor D, Linacre A. Exploring tapelifts as a method for dual workflow STR amplification. Forensic Sci Int Genet 2021;57:102653. [PMID: 34920191 DOI: 10.1016/j.fsigen.2021.102653] [Reference Citation Analysis]
14 Gosch A, Courts C. On DNA transfer: The lack and difficulty of systematic research and how to do it better. Forensic Sci Int Genet 2019;40:24-36. [PMID: 30731249 DOI: 10.1016/j.fsigen.2019.01.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
15 Jiang E, Zhang S, Pang H. Genotyping genetic markers from LCN and degraded DNA by HRM and their application in hair shaft. Int J Legal Med 2020;134:31-7. [PMID: 31062081 DOI: 10.1007/s00414-019-02045-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Lynch C, Fleming R. A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. WIREs Forensic Sci 2019;1. [DOI: 10.1002/wfs2.1335] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
17 Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021;93:3325-30. [PMID: 33570399 DOI: 10.1021/acs.analchem.0c05059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
18 Dierig L, Schmidt M, Wiegand P. Looking for the pinpoint: Optimizing identification, recovery and DNA extraction of micro traces in forensic casework. Forensic Science International: Genetics 2020;44:102191. [DOI: 10.1016/j.fsigen.2019.102191] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
19 Cui ZH, Zheng ZJ, Tang T, Zhong ZX, Cui CY, Lian XL, Fang LX, He Q, Wang XR, Chen C, He B, Wang MG, Liu YH, Liao XP, Sun J. Rapid Detection of High-Level Tigecycline Resistance in Tet(X)-Producing Escherichia coli and Acinetobacter spp. Based on MALDI-TOF MS. Front Cell Infect Microbiol 2020;10:583341. [PMID: 33102258 DOI: 10.3389/fcimb.2020.583341] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
20 Hakim HM, Khan HO, Ismail SA, Lazim NHM, Lalung J, Kofi AE, Chambers GK, Edinur HA. Assessment of QIAGEN™ Investigator® 24plex GO! kit workflow for autosomal STR profiling of forensic reference samples. Egypt J Forensic Sci 2020;10. [DOI: 10.1186/s41935-020-00203-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Jung JY, Ryu GH, Kim DH, Kim JY, Hwang IK, Kang PW, Chun BW, Yoo SY. Simplified Direct PCR Method for Reference Buccal Samples Using a Non-FTA Card by Omitting the Pretreatment Step. J Forensic Sci 2020;65:209-13. [PMID: 31433497 DOI: 10.1111/1556-4029.14147] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Prachugsorn A, Thanakiatkrai P, Phooplub K, Ouiganon S, Sriaead Y, Thavarungkul P, Kanatharana P, Buranachai C, Kitpipit T. Detection of porcine DNA in food using direct asymmetric PCR and catalyzed hairpin assembly fluorescent biosensor: A novel assay for halal food analysis. Food Control 2022;139:108989. [DOI: 10.1016/j.foodcont.2022.108989] [Reference Citation Analysis]
23 Sun RJ, Huang HJ, Hsiao CN, Lin YW, Liao BH, Chou Chau YF, Chiang HP. Reusable TiN Substrate for Surface Plasmon Resonance Heterodyne Phase Interrogation Sensor. Nanomaterials (Basel) 2020;10:E1325. [PMID: 32640696 DOI: 10.3390/nano10071325] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Huang HJ, Chiang YC, Hsu CH, Chen JJ, Shiao MH, Yeh CC, Huang SL, Lin YS. Light Energy Conversion Surface with Gold Dendritic Nanoforests/Si Chip for Plasmonic Polymerase Chain Reaction. Sensors (Basel) 2020;20:E1293. [PMID: 32120942 DOI: 10.3390/s20051293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Park JH, Han JH, Park G. Rapid and Reliable One-Step ABO Genotyping Using Direct Real-Time Allele-Specific PCR and Melting Curve Analysis Without DNA Preparation. Indian J Hematol Blood Transfus 2019;35:531-7. [PMID: 31388269 DOI: 10.1007/s12288-018-1053-7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Parker GJ, McKiernan HE, Legg KM, Goecker ZC. Forensic proteomics. Forensic Sci Int Genet 2021;54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Young JM, Martin B, Linacre A. Evaluation of the QIAGEN 140-SNP forensic identification multiplex from latent DNA using massively parallel sequencing. Australian Journal of Forensic Sciences 2019;51:S72-5. [DOI: 10.1080/00450618.2019.1573923] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
28 Burrill J, Daniel B, Frascione N. A review of trace “Touch DNA” deposits: Variability factors and an exploration of cellular composition. Forensic Science International: Genetics 2019;39:8-18. [DOI: 10.1016/j.fsigen.2018.11.019] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 16.0] [Reference Citation Analysis]
29 Giovanelli A, Grazinoli Garrido R, Rocha A, Hessab T. Touch DNA recovery from vehicle surfaces using different swabs. J Forensic Sci 2021. [PMID: 34725823 DOI: 10.1111/1556-4029.14932] [Reference Citation Analysis]
30 Harrel M, Mayes C, Houston R, Holmes AS, Gutierrez R, Hughes S. The performance of quality controls in the Investigator® Quantiplex® Pro RGQ and Investigator® 24plex STR kits with a variety of forensic samples. Forensic Sci Int Genet 2021;55:102586. [PMID: 34530399 DOI: 10.1016/j.fsigen.2021.102586] [Reference Citation Analysis]
31 Quintin DM, Scheinman JE, Adamowicz MS, San Pietro D. Assessment of PowerPlex® Fusion 5C's ability to type degraded DNA. Sci Justice 2020;60:423-31. [PMID: 32873382 DOI: 10.1016/j.scijus.2020.05.004] [Reference Citation Analysis]
32 Lv X, Gu X, Wang L, He X, He C, Zhang J, Zhao L. Rapid and absolute quantification of VBNC Cronobacter sakazakii by PMAxx combined with single intact cell droplet digital PCR in infant foods. LWT 2021;145:111388. [DOI: 10.1016/j.lwt.2021.111388] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Lin H, Yen S, Tsai S, Shen F, Lin JH, Lin H. Combining Direct PCR Technology and Capillary Electrophoresis for an Easy-to-Operate and Highly Sensitive Infectious Disease Detection System for Shrimp. Life 2022;12:276. [DOI: 10.3390/life12020276] [Reference Citation Analysis]
34 Chen P, Deng C, Li Z, Pu Y, Yang J, Yu Y, Li K, Li D, Liang W, Zhang L, Chen F. A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Science International: Genetics 2019;40:140-9. [DOI: 10.1016/j.fsigen.2019.02.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
35 Machado MC, Vimbela GV, Nilsson M, Dallaire S, Wu R, Tripathi A. Rapid electrophoretic recovery of DNA from dried blood spots. Electrophoresis 2019;40:1812-9. [PMID: 31095765 DOI: 10.1002/elps.201800363] [Reference Citation Analysis]
36 van Oorschot RA, Szkuta B, Meakin GE, Kokshoorn B, Goray M. DNA transfer in forensic science: A review. Forensic Science International: Genetics 2019;38:140-66. [DOI: 10.1016/j.fsigen.2018.10.014] [Cited by in Crossref: 86] [Cited by in F6Publishing: 57] [Article Influence: 28.7] [Reference Citation Analysis]
37 Bradbury C, Köttgen A, Staubach F. Off-target phenotypes in forensic DNA phenotyping and biogeographic ancestry inference: A resource. Forensic Sci Int Genet 2019;38:93-104. [PMID: 30391626 DOI: 10.1016/j.fsigen.2018.10.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
38 Bodulev OL, Sakharov IY. Isothermal Nucleic Acid Amplification Techniques and Their Use in Bioanalysis. Biochemistry (Mosc) 2020;85:147-66. [PMID: 32093592 DOI: 10.1134/S0006297920020030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
39 Martin B, Blackie R, Taylor D, Linacre A. DNA profiles generated from a range of touched sample types. Forensic Science International: Genetics 2018;36:13-9. [DOI: 10.1016/j.fsigen.2018.06.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
40 Young JM, Linacre A. Use of a Spray Device to Locate Touch DNA on Casework Samples. J Forensic Sci 2020;65:1280-8. [DOI: 10.1111/1556-4029.14304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, von Stetten F. Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection. Anal Methods 2020;12:717-46. [DOI: 10.1039/c9ay02246e] [Cited by in Crossref: 66] [Cited by in F6Publishing: 1] [Article Influence: 33.0] [Reference Citation Analysis]
42 Tasker E, Mayes C, LaRue B, Hughes-Stamm S. Collection and direct amplification methods using the GlobalFiler™ kit for DNA recovered from common pipe bomb substrates. Sci Justice 2019;59:580-4. [PMID: 31472804 DOI: 10.1016/j.scijus.2019.06.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021;6:2497-522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
44 Haddrill PR. Developments in forensic DNA analysis. Emerg Top Life Sci 2021;5:381-93. [PMID: 33792660 DOI: 10.1042/ETLS20200304] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Kwak BJ, Kim H, Park N, Hahn JH. Microchip for continuous DNA analysis based on gel electrophoresis coupled with co-injection of size markers and in-channel staining. Anal Bioanal Chem 2021. [PMID: 34345950 DOI: 10.1007/s00216-021-03560-9] [Reference Citation Analysis]
46 Machida M, Kibayashi K. Effectiveness of whole genome amplification prior to short tandem repeat analysis for degraded DNA. Forensic Sci Int Genet 2020;49:102373. [PMID: 32871489 DOI: 10.1016/j.fsigen.2020.102373] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Gu Y, Zhuang B, Han J, Li Y, Song X, Zhou X, Wang L, Liu P. Modular-Based Integrated Microsystem with Multiple Sample Preparation Modules for Automated Forensic DNA Typing from Reference to Challenging Samples. Anal Chem 2019;91:7435-43. [PMID: 31050401 DOI: 10.1021/acs.analchem.9b01560] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zheng ZJ, Cui ZH, Diao QY, Ye XQ, Zhong ZX, Tang T, Wu SB, He HL, Lian XL, Fang LX, Wang XR, Liang LJ, Liu YH, Liao XP, Sun J. MALDI-TOF MS for rapid detection and differentiation between Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant Gram-negative bacteria. Virulence 2022;13:77-88. [PMID: 34951562 DOI: 10.1080/21505594.2021.2018768] [Reference Citation Analysis]
49 Martin B, Linacre A. Direct PCR: A review of use and limitations. Sci Justice 2020;60:303-10. [PMID: 32650932 DOI: 10.1016/j.scijus.2020.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Dilley K, Pagan F, Chapman B. Methods for ensuring the highest DNA concentration and yield in future and retrospective trace DNA extracts. Sci Justice 2021;61:193-7. [PMID: 33736853 DOI: 10.1016/j.scijus.2020.11.005] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Koprinarova M. Methods To Improve Molecular Detection of Salmonella in Complex Herbal Matrices Containing Inhibitors. J Food Prot 2021;84:1309-14. [PMID: 33561204 DOI: 10.4315/JFP-20-262] [Reference Citation Analysis]
52 Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 2020;412:2009-23. [PMID: 32052066 DOI: 10.1007/s00216-020-02490-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
53 Urtiaga GO, Domingues WB, Komninou ER, Martins AWS, Blödorn EB, Dellagostin EN, Woloski RDS, Pinto LS, Brum CB, Tovo-Rodrigues L, Campos VF. DNA microarray for forensic intelligence purposes: High-density SNP profiles obtained directly from casework-like samples with and without a DNA purification step. Forensic Sci Int 2022;332:111181. [PMID: 35042181 DOI: 10.1016/j.forsciint.2022.111181] [Reference Citation Analysis]
54 Cheung SL, Short SM, Allen DG. The influence of wastewater pretreatment, attachment material, and inoculation strategy on the growth of target algal species in cultivated biofilms. J Appl Phycol. [DOI: 10.1007/s10811-021-02637-3] [Reference Citation Analysis]
55 Yoon T, Kim S, Kim JH, Park KS. A Syringe-Based and Centrifugation-Free DNA Extraction Procedure for the Rapid Detection of Bacteria. Chemosensors 2021;9:167. [DOI: 10.3390/chemosensors9070167] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Schellhammer SK, Hudson BC, Cox JO, Dawson Green T. Alternative direct‐to‐amplification sperm cell lysis techniques for sexual assault sample processing. Journal of Forensic Sciences. [DOI: 10.1111/1556-4029.15027] [Reference Citation Analysis]
57 Martin B, Kaesler T, Kirkbride KP, Linacre A. The influences of dusty environments on the STR typing success of post-detonation touch DNA samples. Forensic Sci Int Genet 2021;57:102651. [PMID: 34896974 DOI: 10.1016/j.fsigen.2021.102651] [Reference Citation Analysis]
58 Ben-Amar A, Mliki A. Timely gene detection assay and reliable screening of genetically engineered plants using an improved direct PCR-based technology. Transgenic Res 2021;30:263-74. [PMID: 33880718 DOI: 10.1007/s11248-021-00250-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Burrill J, Daniel B, Frascione N. Illuminating touch deposits through cellular characterization of hand rinses and body fluids with nucleic acid fluorescence. Forensic Sci Int Genet 2020;46:102269. [PMID: 32155589 DOI: 10.1016/j.fsigen.2020.102269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zhang H, Li Y, Jiang Y, Lu X, Li R, Peng D, Wang Z, Liu Y. Rapid and Accurate Antibiotic Susceptibility Determination of tet(X)-Positive E. coli Using RNA Biomarkers. Microbiol Spectr 2021;9:e0064821. [PMID: 34704829 DOI: 10.1128/Spectrum.00648-21] [Reference Citation Analysis]
61 Harrel M, Holmes AS. Review of direct PCR and Rapid DNA approaches to streamline sexual assault kit testing. J Forensic Sci 2022. [PMID: 35442526 DOI: 10.1111/1556-4029.15044] [Reference Citation Analysis]
62 McLaughlin P, Hopkins C, Springer E, Prinz M. Non-destructive DNA recovery from handwritten documents using a dry vacuum technique. J Forensic Sci 2021;66:1443-51. [PMID: 33656180 DOI: 10.1111/1556-4029.14696] [Reference Citation Analysis]
63 Martin B, Taylor D, Linacre A. Comparison of six commercially available STR kits for their application to touch DNA using direct PCR. Forensic Science International: Reports 2021;4:100243. [DOI: 10.1016/j.fsir.2021.100243] [Reference Citation Analysis]
64 Zhang C, Liu X, Yao Y, Liu K, Hui W, Zhu J, Dou Y, Hua K, Peng M, Wang Z, Vermorken AJM, Cui Y. Genotyping of Multiple Clinical Samples with a Combined Direct PCR and Magnetic Lateral Flow Assay. iScience 2018;7:170-9. [PMID: 30245369 DOI: 10.1016/j.isci.2018.09.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
65 Schmidt M, Kunz SN, Wiegand P, Bamberg M. Persistence of blood (DNA/RNA) on shoe soles under varying casework related conditions. Forensic Sci Int Genet 2021;57:102648. [PMID: 34896976 DOI: 10.1016/j.fsigen.2021.102648] [Reference Citation Analysis]
66 Zhu YS, Shao N, Chen JW, Qi WB, Li Y, Liu P, Chen YJ, Bian SY, Zhang Y, Tao SC. Multiplex and visual detection of African Swine Fever Virus (ASFV) based on Hive-Chip and direct loop-mediated isothermal amplification. Anal Chim Acta 2020;1140:30-40. [PMID: 33218487 DOI: 10.1016/j.aca.2020.10.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
67 Finaughty C, Reid KM, Alli IH, Heathfield LJ. A first for forensic genetics in Africa: successful identification of skeletal remains from the marine environment using massively parallel sequencing. Forensic Sci Int Genet 2020;49:102370. [PMID: 32829148 DOI: 10.1016/j.fsigen.2020.102370] [Reference Citation Analysis]
68 Chong KWY, Wong Y, Ng BK, Lim WSH, Rosli AR, Syn CKC. A practical study on direct PCR amplification using the GlobalFiler™ PCR Amplification Kit on human bloodstains collected with microFLOQ™ Direct swabs. Forensic Sci Int 2019;300:43-50. [PMID: 31075566 DOI: 10.1016/j.forsciint.2019.04.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
69 Chong MD, Wallin J. A single direct amplification method for forensic casework references on a variety of substrates. Forensic Science International: Reports 2022. [DOI: 10.1016/j.fsir.2022.100260] [Reference Citation Analysis]
70 Zhou Y, Lan Q, Fang Y, Guo Y, Xie T, Du W, Zhu B. Detection and analysis of the cause of false-tetra-allelic patterns of locus D10S1435 at the sequence level. Int J Legal Med 2020;134:833-43. [PMID: 31520173 DOI: 10.1007/s00414-019-02153-7] [Reference Citation Analysis]
71 Govindarajan N, Lemalu A, Patel J. Forensic casework methodology for direct PCR amplification of blood swabs. Forensic Sci Int Genet 2019;42:125-34. [PMID: 31306933 DOI: 10.1016/j.fsigen.2019.06.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]