BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abdelhamid FM, Elshopakey GE, Aziza AE. Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020;96:213-22. [PMID: 31821844 DOI: 10.1016/j.fsi.2019.12.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu C, Suo Y, Wang X, Qin JG, Chen L, Li E. Recovery from Hypersaline-Stress-Induced Immunity Damage and Intestinal-Microbiota Changes through Dietary β-glucan Supplementation in Nile tilapia (Oreochromis niloticus). Animals (Basel) 2020;10:E2243. [PMID: 33265935 DOI: 10.3390/ani10122243] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Ibrahim IA, Shalaby AA, Abd Elaziz RT, Bahr HI. Chlorella vulgaris or Spirulina platensis mitigate lead acetate-induced testicular oxidative stress and apoptosis with regard to androgen receptor expression in rats. Environ Sci Pollut Res Int 2021;28:39126-38. [PMID: 33754266 DOI: 10.1007/s11356-021-13411-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Hamed M, Soliman HAM, Eid Z, Al Naggar Y, Sayed AEH. Dietary Feeding Lycopene, Citric Acid, and Chlorella Alleviated the Neurotoxicity of Polyethylene Microplastics in African Catfish (Clarias gariepinus). Front Environ Sci 2022;10:869727. [DOI: 10.3389/fenvs.2022.869727] [Reference Citation Analysis]
4 Pogue R, Murphy EJ, Fehrenbach GW, Rezoagli E, Rowan NJ. Exploiting immunomodulatory properties of β-glucans derived from natural products for improving health and sustainability in aquaculture-farmed organisms: Concise review of existing knowledge, innovation and future opportunities. Current Opinion in Environmental Science & Health 2021;21:100248. [DOI: 10.1016/j.coesh.2021.100248] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 Abd El-Hamid MI, Ibrahim SM, Eldemery F, El-Mandrawy SAM, Metwally AS, Khalifa E, Elnahriry SS, Ibrahim D. Dietary cinnamaldehyde nanoemulsion boosts growth and transcriptomes of antioxidant and immune related genes to fight Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2021;113:96-105. [PMID: 33826939 DOI: 10.1016/j.fsi.2021.03.021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Mahboub HH, Elsheshtawy HM, Sheraiba NI, Fahmy E, masoud SR, Mohamed EA, Abdelnaeim NS, Mohamed DI, Ismail TA, Ahmed SA. Dietary black cumin (Nigella sativa) improved hemato-biochemical, oxidative stress, gene expression, and immunological response of Nile tilapia (Oreochromis niloticus) infected by Burkholderia cepacia. Aquaculture Reports 2022;22:100943. [DOI: 10.1016/j.aqrep.2021.100943] [Reference Citation Analysis]
7 Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol 2021;12:717286. [PMID: 34790174 DOI: 10.3389/fmicb.2021.717286] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Mahmoud EA, El-Sayed BM, Mahsoub YH, El-Murr AEI, Neamat-Allah ANF. Effect of Chlorella vulgaris enriched diet on growth performance, hemato-immunological responses, antioxidant and transcriptomics profile disorders caused by deltamethrin toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 2020;102:422-9. [PMID: 32376299 DOI: 10.1016/j.fsi.2020.04.061] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
9 Khalafalla MM, Ibrahim SA, Zayed MM, Awad MN, Mohamed RA. Effect of a Dietary Mixture of Beneficial Bacteria on Growth Performance, Health Condition, Chemical Composition, and Water Quality of Nile Tilapia, Oreochromis niloticus Fingerlings. Journal of Aquatic Food Product Technology 2020;29:823-35. [DOI: 10.1080/10498850.2020.1764685] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Abdel-tawwab M, Mousa MA, Mamoon A, Abdelghany MF, Abdel-hamid EA, Abdel-razek N, Ali FS, Shady SH, Gewida AG. Dietary Chlorella vulgaris modulates the performance, antioxidant capacity, innate immunity, and disease resistance capability of Nile tilapia fingerlings fed on plant-based diets. Animal Feed Science and Technology 2022;283:115181. [DOI: 10.1016/j.anifeedsci.2021.115181] [Reference Citation Analysis]
11 Abdel-latif HM, El-ashram S, Sayed AEH, Alagawany M, Shukry M, Dawood MA, Kucharczyk D. Elucidating the ameliorative effects of the cyanobacterium Spirulina (Arthrospira platensis) and several microalgal species against the negative impacts of the aquatic contaminants in freshwater fish: A review. Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.738155] [Reference Citation Analysis]
12 Ciji A, Akhtar MS. Stress management in aquaculture: a review of dietary interventions. Rev Aquacult 2021;13:2190-247. [DOI: 10.1111/raq.12565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Khanjani MH, Sharifinia M, Ghaedi G. β-glucan as a promising food additive and immunostimulant in aquaculture industry. Annals of Animal Science 2021;0. [DOI: 10.2478/aoas-2021-0083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Sayed AEH, Hamed M, Badrey AEA, Soliman HAM. Bioremediation of hemotoxic and oxidative stress induced by polyethylene microplastic in Clarias gariepinus using lycopene, citric acid, and chlorella. Comp Biochem Physiol C Toxicol Pharmacol 2021;250:109189. [PMID: 34517132 DOI: 10.1016/j.cbpc.2021.109189] [Reference Citation Analysis]
15 Elbahnaswy S, Elshopakey GE, Ibrahim I, Habotta OA. Potential role of dietary chitosan nanoparticles against immunosuppression, inflammation, oxidative stress, and histopathological alterations induced by pendimethalin toxicity in Nile tilapia. Fish Shellfish Immunol 2021;118:270-82. [PMID: 34537335 DOI: 10.1016/j.fsi.2021.09.015] [Reference Citation Analysis]
16 Negm SS, Ismael NEM, Ahmed AI, Asely AME, Naiel MAE. The efficiency of dietary Sargassum aquifolium on the performance, innate immune responses, antioxidant activity, and intestinal microbiota of Nile Tilapia (Oreochromis niloticus) raised at high stocking density. J Appl Phycol 2021;33:4067-82. [DOI: 10.1007/s10811-021-02572-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mamdouh AZ, Zahran E, Mohamed F, Zaki V. Nannochloropsis oculata feed additive alleviates mercuric chloride-induced toxicity in Nile tilapia (Oreochromis niloticus). Aquat Toxicol 2021;238:105936. [PMID: 34388370 DOI: 10.1016/j.aquatox.2021.105936] [Reference Citation Analysis]
18 Abdel-Tawwab M, El-Saadawy HA, El-Belbasi HI, Abd El-Hameed SAA, Attia AA. Dietary spirulina (Arthrospira platenesis) mitigated the adverse effects of imidacloprid insecticide on the growth performance, haemato-biochemical, antioxidant, and immune responses of Nile tilapia. Comp Biochem Physiol C Toxicol Pharmacol 2021;247:109067. [PMID: 33915278 DOI: 10.1016/j.cbpc.2021.109067] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 El-Nahhal Y, El-Nahhal I. Cardiotoxicity of some pesticides and their amelioration. Environ Sci Pollut Res Int 2021;28:44726-54. [PMID: 34231153 DOI: 10.1007/s11356-021-14999-9] [Reference Citation Analysis]
20 Yang C, Lim W, Song G. Immunotoxicological effects of insecticides in exposed fishes. Comp Biochem Physiol C Toxicol Pharmacol 2021;247:109064. [PMID: 33905824 DOI: 10.1016/j.cbpc.2021.109064] [Reference Citation Analysis]