BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med. 2020;157:63-74. [PMID: 32234331 DOI: 10.1016/j.freeradbiomed.2020.03.023] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Med Res Rev 2022. [PMID: 36086898 DOI: 10.1002/med.21925] [Reference Citation Analysis]
2 Zhu X, He L, Gao W, Zhao Z. Neuroprotective investigation of tanshinone in the cerebral infarction model in the Keap1-Nrf2/ARE pathway. Cell Cycle 2022;:1-13. [PMID: 36066030 DOI: 10.1080/15384101.2022.2119687] [Reference Citation Analysis]
3 Schaue D, Micewicz ED, Ratikan JA, Iwamoto KS, Vlashi E, Mcdonald JT, Mcbride WH. NRF2 Mediates Cellular Resistance to Transformation, Radiation, and Inflammation in Mice. Antioxidants 2022;11:1649. [DOI: 10.3390/antiox11091649] [Reference Citation Analysis]
4 Aparici M, Bravo M, Calama E, García-González V, Domènech T, Córdoba M, Roger I, Cortijo J, Góngora-Benítez M, Paradís-Bas M, Collins B, Davis AM, Albericio F, Puig C. Pharmacological characterization of a novel peptide inhibitor of the Keap1-Nrf2 protein-protein interaction. Biochem Pharmacol 2022;204:115226. [PMID: 36027928 DOI: 10.1016/j.bcp.2022.115226] [Reference Citation Analysis]
5 Yao H, He Q, Huang C, Wei S, Gong Y, Li X, Liu W, Xu Z, Wu H, Zheng C, Gao Y. Panaxatriol saponin ameliorates myocardial infarction-induced cardiac fibrosis by targeting Keap1/Nrf2 to regulate oxidative stress and inhibit cardiac-fibroblast activation and proliferation. Free Radic Biol Med 2022;190:264-75. [PMID: 35977659 DOI: 10.1016/j.freeradbiomed.2022.08.016] [Reference Citation Analysis]
6 Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022;11:1564. [PMID: 36009283 DOI: 10.3390/antiox11081564] [Reference Citation Analysis]
7 Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022:S0891-5849(22)00497-X. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Reference Citation Analysis]
8 Li N, Wen L, Li T, Yang H, Qiao M, Wang T, Song L, Huang X, Li M, Bukyei E, Wang F. Alleviating Effects of Black Soybean Peptide on Oxidative Stress Injury Induced by Lead in PC12 Cells via Keap1/Nrf2/TXNIP Signaling Pathway. Nutrients 2022;14:3102. [DOI: 10.3390/nu14153102] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Uribe-carretero E, Martinez-chacón G, Yakhine-diop SMS, Duque-gonzález G, Rodríguez-arribas M, Alegre-cortés E, Paredes-barquero M, Canales-cortés S, Pizarro-estrella E, Cuadrado A, González-polo RA, Fuentes JM, Niso-santano M. Loss of KEAP1 Causes an Accumulation of Nondegradative Organelles. Antioxidants 2022;11:1398. [DOI: 10.3390/antiox11071398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Chang LC, Fan CW, Tseng WK, Chen JR, Hua CC. The tumor/normal tissue ratio of Keap1 protein is a predictor for lymphovascular invasion in colorectal cancer: A correlation study between the Nrf2 and KRas pathways. Biomarkers 2022;:1-12. [PMID: 35830714 DOI: 10.1080/1354750X.2022.2102211] [Reference Citation Analysis]
11 Liu S, Pi J, Zhang Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol 2022;54:102389. [PMID: 35792437 DOI: 10.1016/j.redox.2022.102389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li X, Zheng L, Zhang B, Deng Z, Luo T. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Front Nutr 2022;9:913883. [DOI: 10.3389/fnut.2022.913883] [Reference Citation Analysis]
13 Salehabadi A, Farkhondeh T, Harifi-Mood MS, Aschner M, Samarghandian S. Role of Nrf2 in bisphenol effects: a review study. Environ Sci Pollut Res Int 2022. [PMID: 35680748 DOI: 10.1007/s11356-022-20996-3] [Reference Citation Analysis]
14 Zhang R, Zhao C, Gong X, Yang J, Zhang G, Zhang W, Nocella C. Ginkgolide C Alleviates Acute Lung Injury Caused by Paraquat Poisoning via Regulating the Nrf2 and NF-κB Signaling Pathways. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/7832983] [Reference Citation Analysis]
15 Ahn GR, Park HJ, Koh YG, Shin SH, Kim YJ, Song MG, Lee JO, Hong HK, Lee KB, Kim BJ. Low-intensity cold atmospheric plasma reduces wrinkles on photoaged skin through hormetic induction of extracellular matrix protein expression in dermal fibroblasts. Lasers Surg Med 2022. [PMID: 35662062 DOI: 10.1002/lsm.23559] [Reference Citation Analysis]
16 Kopacz A, Kloska D, Klimczyk D, Kopec M, Jozkowicz A, Piechota-polanczyk A. Nrf2 Transcriptional Activity Governs Intestine Development. IJMS 2022;23:6175. [DOI: 10.3390/ijms23116175] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yao H, Xie Q, He Q, Zeng L, Long J, Gong Y, Li X, Li X, Liu W, Xu Z, Wu H, Zheng C, Gao Y, Li T. Pretreatment with Panaxatriol Saponin Attenuates Mitochondrial Apoptosis and Oxidative Stress to Facilitate Treatment of Myocardial Ischemia-Reperfusion Injury via the Regulation of Keap1/Nrf2 Activity. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/9626703] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hu X, Li C, Wang Q, Wei Z, Chen T, Wang Y, Li Y. Dimethyl Fumarate Ameliorates Doxorubicin-Induced Cardiotoxicity By Activating the Nrf2 Pathway. Front Pharmacol 2022;13:872057. [PMID: 35559248 DOI: 10.3389/fphar.2022.872057] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Qi W, Hu C, Zhao D, Li X. SIRT1–SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol 2022;13:801303. [DOI: 10.3389/fendo.2022.801303] [Reference Citation Analysis]
20 Qu L, Guo M, Zhang H, Chen X, Wei H, Jiang L, Li J, Chen Z, Dai S, Chen Y. Characterization of the modification of Kelch-like ECH-associated protein 1 by different fumarates. Biochemical and Biophysical Research Communications 2022;605:9-15. [DOI: 10.1016/j.bbrc.2022.03.059] [Reference Citation Analysis]
21 Liu X, Wang Q, Zheng J, Chai Z, Dai F, Jin X, Zhou B. Developing dietary curcumin mono-carbonyl piperidinone analogs as Nrf2-dependent cytoprotectors against oxidative damage: Structure-activity relationship and mechanisms. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.05.009] [Reference Citation Analysis]
22 Thomas SD, Jha NK, Sadek B, Ojha S. Repurposing Dimethyl Fumarate for Cardiovascular Diseases: Pharmacological Effects, Molecular Mechanisms, and Therapeutic Promise. Pharmaceuticals 2022;15:497. [DOI: 10.3390/ph15050497] [Reference Citation Analysis]
23 Fan C, Zhan Z, Zhang X, Lou Q, Guo N, Su M, Gao Y, Qin M, Wu L, Huang W, Zhang M, Yin F, Wu Y, Pi J, Xu Y, Yang Y, Gao Y. Research for type 2 diabetes mellitus in endemic arsenism areas in central China: role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism. Arch Toxicol 2022. [PMID: 35420349 DOI: 10.1007/s00204-022-03279-1] [Reference Citation Analysis]
24 Bonura A, Giacomarra M, Montana G. The Keap1 signaling in the regulation of HSP90 pathway. Cell Stress Chaperones 2022. [PMID: 35362892 DOI: 10.1007/s12192-022-01253-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang P, Long F, Lin H, Wang S, Wang T, Rupasinghe HPV. Dietary Phytochemicals Targeting Nrf2 to Enhance the Radiosensitivity of Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/7848811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kim M, Jeon J. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. IJMS 2022;23:2846. [DOI: 10.3390/ijms23052846] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Guan D, Zhou W, Wei H, Wang T, Zheng K, Yang C, Feng R, Xu R, Fu Y, Li C, Li Y, Li C, Georgieva M. Ferritinophagy-Mediated Ferroptosis and Activation of Keap1/Nrf2/HO-1 Pathway Were Conducive to EMT Inhibition of Gastric Cancer Cells in Action of 2,2 -Di-pyridineketone Hydrazone Dithiocarbamate Butyric Acid Ester. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/3920664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Reference Citation Analysis]
29 Lu Y, Zhang J, Cao J, Liu P, Li J, Meng X. Long-Term Ammonia Toxicity in the Hepatopancreas of Swimming Crab Portunus trituberculatus: Cellular Stress Response and Tissue Damage. Front Mar Sci 2022;8:757602. [DOI: 10.3389/fmars.2021.757602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ji R, Jia FY, Chen X, Wang ZH, Jin WY, Yang J. Salidroside alleviates oxidative stress and apoptosis via AMPK/Nrf2 pathway in DHT-induced human granulosa cell line KGN. Arch Biochem Biophys 2022;715:109094. [PMID: 34813774 DOI: 10.1016/j.abb.2021.109094] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
31 Ostrowski RP, Pucko EB. Harnessing oxidative stress for anti-glioma therapy. Neurochem Int 2022;:105281. [PMID: 35038460 DOI: 10.1016/j.neuint.2022.105281] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
32 Satoh T, Trudler D, Oh C, Lipton SA. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants 2022;11:124. [DOI: 10.3390/antiox11010124] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
33 Ghareghomi S, Rahban M, Moosavi-Movahedi Z, Habibi-Rezaei M, Saso L, Moosavi-Movahedi AA. The Potential Role of Curcumin in Modulating the Master Antioxidant Pathway in Diabetic Hypoxia-Induced Complications. Molecules 2021;26:7658. [PMID: 34946740 DOI: 10.3390/molecules26247658] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Yang R, Zhang J, Li J, Qin R, Chen J, Wang R, Goltzman D, Miao D. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic Biol Med 2022;178:246-61. [PMID: 34890768 DOI: 10.1016/j.freeradbiomed.2021.12.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
35 Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021;22:11939. [PMID: 34769371 DOI: 10.3390/ijms222111939] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
36 Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2021;:120111. [PMID: 34732330 DOI: 10.1016/j.lfs.2021.120111] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 23.0] [Reference Citation Analysis]
37 Likszo P, Skarzynski DJ, Moza Jalali B. Changes in Porcine Corpus Luteum Proteome Associated with Development, Maintenance, Regression, and Rescue during Estrous Cycle and Early Pregnancy. Int J Mol Sci 2021;22:11740. [PMID: 34769171 DOI: 10.3390/ijms222111740] [Reference Citation Analysis]
38 Knatko EV, Castro C, Higgins M, Zhang Y, Honda T, Henderson CJ, Wolf CR, Griffin JL, Dinkova-Kostova AT. Nrf2 activation does not affect adenoma development in a mouse model of colorectal cancer. Commun Biol 2021;4:1081. [PMID: 34526660 DOI: 10.1038/s42003-021-02552-w] [Reference Citation Analysis]
39 Jurga M, Abugable AA, Goldman ASH, El-Khamisy SF. USP11 controls R-loops by regulating senataxin proteostasis. Nat Commun 2021;12:5156. [PMID: 34526504 DOI: 10.1038/s41467-021-25459-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. Cells 2021;10:1879. [PMID: 34440648 DOI: 10.3390/cells10081879] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
41 Dempke WCM, Reck M. KEAP1/NRF2 (NFE2L2) mutations in NSCLC - Fuel for a superresistant phenotype? Lung Cancer 2021;159:10-7. [PMID: 34303275 DOI: 10.1016/j.lungcan.2021.07.006] [Reference Citation Analysis]
42 Liu C, Hua H, Zhu H, Cheng Y, Guo Y, Yao W, Qian H. Aloe polysaccharides ameliorate acute colitis in mice via Nrf2/HO-1 signaling pathway and short-chain fatty acids metabolism. Int J Biol Macromol 2021;185:804-12. [PMID: 34229016 DOI: 10.1016/j.ijbiomac.2021.07.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Zhu DD, Tan XM, Lu LQ, Yu SJ, Jian RL, Liang XF, Liao YX, Fan W, Barbier-Torres L, Yang A, Yang HP, Liu T. Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World J Gastroenterol 2021; 27(22): 2944-2962 [PMID: 34168400 DOI: 10.3748/wjg.v27.i22.2944] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
44 Zhang WJ, Chen SJ, Zhou SC, Wu SZ, Wang H. Inflammasomes and Fibrosis. Front Immunol 2021;12:643149. [PMID: 34177893 DOI: 10.3389/fimmu.2021.643149] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
45 Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol 2021;12:651444. [PMID: 34113251 DOI: 10.3389/fphar.2021.651444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
46 Giurdanella G, Longo A, Salerno L, Romeo G, Intagliata S, Lupo G, Distefano A, Platania CBM, Bucolo C, Li Volti G, Anfuso CD, Pittalà V. Glucose-impaired Corneal Re-epithelialization Is Promoted by a Novel Derivate of Dimethyl Fumarate. Antioxidants (Basel) 2021;10:831. [PMID: 34067436 DOI: 10.3390/antiox10060831] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Deng Y, Ma J, Weng X, Wang Y, Li M, Yang T, Dou Z, Yin Z, Shang J. Kaempferol-3-O-Glucuronide Ameliorates Non-Alcoholic Steatohepatitis in High-Cholesterol-Diet-Induced Larval Zebrafish and HepG2 Cell Models via Regulating Oxidation Stress. Life (Basel) 2021;11:445. [PMID: 34069176 DOI: 10.3390/life11050445] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
48 Hushpulian DM, Ammal Kaidery N, Ahuja M, Poloznikov AA, Sharma SM, Gazaryan IG, Thomas B. Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Front Aging Neurosci 2021;13:673205. [PMID: 33897412 DOI: 10.3389/fnagi.2021.673205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
49 Wang W, Zhai D, Bai Y, Xue K, Deng L, Ma L, Du T, Ye Z, Qu D, Xiang A, Chen G, Zhao Y, Wang L, Lu Z. Loss of QKI in macrophage aggravates inflammatory bowel disease through amplified ROS signaling and microbiota disproportion. Cell Death Discov 2021;7:58. [PMID: 33758177 DOI: 10.1038/s41420-021-00444-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
50 Liang X, Wang R. The Nrf2 inhibitor brusatol has a protective role in a rat model of oxygen-induced retinopathy of prematurity. Vis Neurosci 2021;38:E002. [PMID: 33729121 DOI: 10.1017/S095252382100002X] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Lin H, Zhang X, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Jing S, Li H. Schisantherin A improves learning and memory abilities partly through regulating the Nrf2/Keap1/ARE signaling pathway in chronic fatigue mice. Exp Ther Med 2021;21:385. [PMID: 33680107 DOI: 10.3892/etm.2021.9816] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
52 Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2020;8:634849. [PMID: 33634110 DOI: 10.3389/fcell.2020.634849] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Shen K, Jia Y, Wang X, Zhang J, Liu K, Wang J, Cai W, Li J, Li S, Zhao M, Wang Y, Hu D. Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radic Biol Med 2021;165:54-66. [PMID: 33476797 DOI: 10.1016/j.freeradbiomed.2021.01.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
54 Xu B, Xu J, Cai N, Li M, Liu L, Qin Y, Li X, Wang H. Roflumilast prevents ischemic stroke-induced neuronal damage by restricting GSK3β-mediated oxidative stress and IRE1α/TRAF2/JNK pathway. Free Radic Biol Med 2021;163:281-96. [PMID: 33359910 DOI: 10.1016/j.freeradbiomed.2020.12.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Bityutsky VS, Tsekhmistrenko SI, Tsekhmistrenko ОS, Tymoshok NO, Spivak MY. Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. Regul Mech Biosyst 2021;11:483-93. [DOI: 10.15421/022074] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
56 Lovatt M, Kocaba V, Hui Neo DJ, Soh YQ, Mehta JS. Nrf2: A unifying transcription factor in the pathogenesis of Fuchs' endothelial corneal dystrophy. Redox Biol 2020;37:101763. [PMID: 33099215 DOI: 10.1016/j.redox.2020.101763] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Jia W, Sun M. CPCGI Reduces Gray and White Matter Injury by Upregulating Nrf2 Signaling and Suppressing Calpain Overactivation in a Rat Model of Controlled Cortical Impact. Neuropsychiatr Dis Treat 2020;16:1929-41. [PMID: 32904488 DOI: 10.2147/NDT.S266136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Zang H, Mathew RO, Cui T. The Dark Side of Nrf2 in the Heart. Front Physiol 2020;11:722. [PMID: 32733266 DOI: 10.3389/fphys.2020.00722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
59 Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020;202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
60 Kopacz A, Werner E, Grochot-Przęczek A, Klóska D, Hajduk K, Neumayer C, Józkowicz A, Piechota-Polanczyk A. Simvastatin Attenuates Abdominal Aortic Aneurysm Formation Favoured by Lack of Nrf2 Transcriptional Activity. Oxid Med Cell Longev 2020;2020:6340190. [PMID: 32617140 DOI: 10.1155/2020/6340190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
61 Kopacz A, Werner E, Kloska D, Hajduk K, Fichna J, Jozkowicz A, Piechota-Polanczyk A. Nrf2 transcriptional activity in the mouse affects the physiological response to tribromoethanol. Biomed Pharmacother 2020;128:110317. [PMID: 32485566 DOI: 10.1016/j.biopha.2020.110317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Kopacz A, Kloska D, Targosz-Korecka M, Zapotoczny B, Cysewski D, Personnic N, Werner E, Hajduk K, Jozkowicz A, Grochot-Przeczek A. Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biol 2020;34:101572. [PMID: 32487458 DOI: 10.1016/j.redox.2020.101572] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
63 Lu M, Zhang X, Zhao J, You Q, Jiang Z. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 2020;34:101565. [PMID: 32422540 DOI: 10.1016/j.redox.2020.101565] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
64 Sanz MJ, Alcaraz MJ. Pharmacological modulation of redox signaling pathways in disease. Free Radic Biol Med 2020;157:1-2. [PMID: 32272159 DOI: 10.1016/j.freeradbiomed.2020.04.003] [Reference Citation Analysis]