BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Weyand CM, Shen Y, Goronzy JJ. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic Biol Med 2018;125:36-43. [PMID: 29524605 DOI: 10.1016/j.freeradbiomed.2018.03.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Pérez S, Rius-pérez S. Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants 2022;11:1394. [DOI: 10.3390/antiox11071394] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Harshan S, Dey P, Raghunathan S. Altered Transcriptional Regulation of Glycolysis in Circulating CD8+ T Cells of Rheumatoid Arthritis Patients. Genes 2022;13:1216. [DOI: 10.3390/genes13071216] [Reference Citation Analysis]
3 Lee EK, Koh EM, Kim YN, Song J, Song CH, Jung KJ. Immunomodulatory Effect of Hispolon on LPS-Induced RAW264.7 Cells and Mitogen/Alloantigen-Stimulated Spleen Lymphocytes of Mice. Pharmaceutics 2022;14:1423. [DOI: 10.3390/pharmaceutics14071423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022;11:1153. [PMID: 35740050 DOI: 10.3390/antiox11061153] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Jiang N, Zhang Y, Yao C, Huang H, Wang Q, Huang S, He Q, Liu X. Ginsenosides Rb1 Attenuates Chronic Social Defeat Stress-Induced Depressive Behavior via Regulation of SIRT1-NLRP3/Nrf2 Pathways. Front Nutr 2022;9:868833. [DOI: 10.3389/fnut.2022.868833] [Reference Citation Analysis]
6 Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021;12:779787. [PMID: 34899740 DOI: 10.3389/fimmu.2021.779787] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
7 Lee HR, Yoo SJ, Kim J, Park CK, Kang SW. Reduction of Oxidative Stress in Peripheral Blood Mononuclear Cells Attenuates the Inflammatory Response of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. Int J Mol Sci 2021;22:12411. [PMID: 34830290 DOI: 10.3390/ijms222212411] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
8 Iwata S, Tanaka Y. Therapeutic perspectives on the metabolism of lymphocytes in patients with rheumatoid arthritis and systemic lupus erythematosus. Expert Rev Clin Immunol 2021;:1-10. [PMID: 34351835 DOI: 10.1080/1744666X.2021.1964957] [Reference Citation Analysis]
9 Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2021. [PMID: 33906423 DOI: 10.1089/ars.2021.0064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sliwiak P, Folwarczny E, Didona D, Fink S, Wiegand C, Hanschmann EM, Hertl M, Hudemann C. Redox Enzymes of the Thioredoxin Family as Potential and Novel Markers in Pemphigus. Oxid Med Cell Longev 2021;2021:6672693. [PMID: 33868574 DOI: 10.1155/2021/6672693] [Reference Citation Analysis]
11 Xu C, Wang S, Wang H, Liu K, Zhang S, Chen B, Liu H, Tong F, Peng F, Tu Y, Li Y. Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. Nano Lett 2021;21:1982-91. [DOI: 10.1021/acs.nanolett.0c04438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
12 Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021;34:364-82. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol 2021;21:363-81. [PMID: 33340021 DOI: 10.1038/s41577-020-00478-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 83] [Article Influence: 11.5] [Reference Citation Analysis]
14 Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat Immunol 2021;22:10-8. [PMID: 33257900 DOI: 10.1038/s41590-020-00816-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 98] [Article Influence: 9.5] [Reference Citation Analysis]
15 Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021;92:10-24. [PMID: 33181270 DOI: 10.1016/j.bbi.2020.11.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
16 Cheng Q, Wu H, Du Y. The roles of small-molecule inflammatory mediators in rheumatoid arthritis. Scand J Immunol 2021;93:e12982. [PMID: 33025632 DOI: 10.1111/sji.12982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
17 Weyand CM, Wu B, Goronzy JJ. The metabolic signature of T cells in rheumatoid arthritis. Curr Opin Rheumatol 2020;32:159-67. [PMID: 31895885 DOI: 10.1097/BOR.0000000000000683] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
18 Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S. Melatonin Act as an Antidepressant via Attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 Signaling. Front Mol Neurosci 2020;13:96. [PMID: 32595452 DOI: 10.3389/fnmol.2020.00096] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
19 Liang J, Ziegler JD, Jahraus B, Orlik C, Blatnik R, Blank N, Niesler B, Wabnitz G, Ruppert T, Hübner K, Balta E, Samstag Y. Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished TH17 but Enhanced Treg Differentiation. Front Immunol 2020;11:1172. [PMID: 32595640 DOI: 10.3389/fimmu.2020.01172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Mehta M, Gohil D, Khattry N, Kumar R, Sandur S, Sharma D, Checker R, Agarwal B, Jha D, Majumdar A, Gota V. Prevention of acute graft-versus-host-disease by Withaferin a via suppression of AKT/mTOR pathway. Int Immunopharmacol 2020;84:106575. [PMID: 32416453 DOI: 10.1016/j.intimp.2020.106575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Wu B, Goronzy JJ, Weyand CM. Metabolic Fitness of T Cells in Autoimmune Disease. Immunometabolism 2020;2:e200017. [PMID: 32477606 DOI: 10.20900/immunometab20200017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
22 Nadeem A, Ahmad SF, Al-Harbi NO, Alasmari AF, Al-Ayadhi LY, Alasmari F, Ibrahim KE, Attia SM, Bakheet SA. Upregulation of enzymatic antioxidants in CD4+ T cells of autistic children. Biochimie 2020;171-172:205-12. [PMID: 32173487 DOI: 10.1016/j.biochi.2020.03.009] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev 2020;294:177-87. [PMID: 31984519 DOI: 10.1111/imr.12838] [Cited by in Crossref: 20] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
24 Liu K, Fang J, Jin J, Zhu S, Xu X, Xu Y, Ye B, Lin SH, Xu X. Serum Metabolomics Reveals Personalized Metabolic Patterns for Macular Neovascular Disease Patient Stratification. J Proteome Res 2020;19:699-707. [PMID: 31755721 DOI: 10.1021/acs.jproteome.9b00574] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
25 Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P. How the redox state regulates immunity. Free Radic Biol Med 2020;157:3-14. [PMID: 31899344 DOI: 10.1016/j.freeradbiomed.2019.12.022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
26 Alcaraz MJ, Ferrándiz ML. Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radic Biol Med 2020;157:83-93. [PMID: 31830562 DOI: 10.1016/j.freeradbiomed.2019.12.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 32] [Article Influence: 6.0] [Reference Citation Analysis]
27 Pearson JD, Mason JC. Reactive oxygen species as drivers of autoimmune pathology: an Introduction to Special Issue "Oxidative stress and altered redox signalling in autoimmune and connective tissue diseases". Free Radic Biol Med 2018;125:1-2. [PMID: 30217269 DOI: 10.1016/j.freeradbiomed.2018.08.018] [Reference Citation Analysis]
28 Weyand CM, Goronzy JJ. A Mitochondrial Checkpoint in Autoimmune Disease. Cell Metab 2018;28:185-6. [PMID: 30089238 DOI: 10.1016/j.cmet.2018.07.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
29 Singla B, Holmdahl R, Csanyi G. Editorial: Oxidants and Redox Signaling in Inflammation. Front Immunol 2019;10:545. [PMID: 30984168 DOI: 10.3389/fimmu.2019.00545] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
30 Lu F, Yang S, Song Y, Zhai C, Wang Q, Ding G, Kang Z. Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Mater Res Express 2019;6:065030. [DOI: 10.1088/2053-1591/ab0c55] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
31 Wen Z, Jin K, Shen Y, Yang Z, Li Y, Wu B, Tian L, Shoor S, Roche NE, Goronzy JJ, Weyand CM. N-myristoyltransferase deficiency impairs activation of kinase AMPK and promotes synovial tissue inflammation. Nat Immunol 2019;20:313-25. [PMID: 30718913 DOI: 10.1038/s41590-018-0296-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 60] [Article Influence: 13.3] [Reference Citation Analysis]
32 Liang J, Hänsch GM, Hübner K, Samstag Y. Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Adv Biol Regul 2019;71:79-87. [PMID: 30528536 DOI: 10.1016/j.jbior.2018.11.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
33 Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH, Samstag Y. Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front Immunol 2018;9:2584. [PMID: 30487791 DOI: 10.3389/fimmu.2018.02584] [Cited by in Crossref: 27] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
34 Kuhn H, Humeniuk L, Kozlov N, Roigas S, Adel S, Heydeck D. The evolutionary hypothesis of reaction specificity of mammalian ALOX15 orthologs. Prog Lipid Res 2018;72:55-74. [PMID: 30237084 DOI: 10.1016/j.plipres.2018.09.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
35 Gaber T, Chen Y, Krauß PL, Buttgereit F. Metabolism of T Lymphocytes in Health and Disease. Int Rev Cell Mol Biol 2019;342:95-148. [PMID: 30635095 DOI: 10.1016/bs.ircmb.2018.06.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]