BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ivannikov MV, Van Remmen H. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice. Free Radic Biol Med 2015;84:254-62. [PMID: 25841780 DOI: 10.1016/j.freeradbiomed.2015.03.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021;71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Willadt S, Nash M, Slater C. Age-related changes in the structure and function of mammalian neuromuscular junctions. Ann N Y Acad Sci 2018;1412:41-53. [PMID: 29291259 DOI: 10.1111/nyas.13521] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
3 Brown JL, Lawrence MM, Ahn B, Kneis P, Piekarz KM, Qaisar R, Ranjit R, Bian J, Pharaoh G, Brown C, Peelor FF 3rd, Kinter MT, Miller BF, Richardson A, Van Remmen H. Cancer cachexia in a mouse model of oxidative stress. J Cachexia Sarcopenia Muscle 2020;11:1688-704. [PMID: 32918528 DOI: 10.1002/jcsm.12615] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
4 Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? Int J Mol Sci 2019;20:E3815. [PMID: 31387214 DOI: 10.3390/ijms20153815] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 11.3] [Reference Citation Analysis]
5 Spiers JG, Breda C, Robinson S, Giorgini F, Steinert JR. Drosophila Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity. Front Mol Neurosci 2019;12:86. [PMID: 31040766 DOI: 10.3389/fnmol.2019.00086] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
6 Deschenes MR, Patek LG, Trebelhorn AM, High MC, Flannery RE. Juvenile Neuromuscular Systems Show Amplified Disturbance to Muscle Unloading. Front Physiol 2021;12:754052. [PMID: 34759841 DOI: 10.3389/fphys.2021.754052] [Reference Citation Analysis]
7 Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017;8:881-906. [PMID: 28744984 DOI: 10.1002/jcsm.12223] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 5.6] [Reference Citation Analysis]
8 Kreko-Pierce T, Eaton BA. Rejuvenation of the aged neuromuscular junction by exercise. Cell Stress 2018;2:25-33. [PMID: 31225463 DOI: 10.15698/cst2018.02.123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Ivannikov MV, Sugimori M, Llinás RR. Neuromuscular transmission and muscle fatigue changes by nanostructured oxygen. Muscle Nerve 2017;55:555-63. [PMID: 27422738 DOI: 10.1002/mus.25248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
10 Liochev SI. Which Is the Most Significant Cause of Aging? Antioxidants (Basel) 2015;4:793-810. [PMID: 26783959 DOI: 10.3390/antiox4040793] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
11 Diot A, Morten K, Poulton J. Mitophagy plays a central role in mitochondrial ageing. Mamm Genome 2016;27:381-95. [PMID: 27352213 DOI: 10.1007/s00335-016-9651-x] [Cited by in Crossref: 72] [Cited by in F6Publishing: 64] [Article Influence: 12.0] [Reference Citation Analysis]
12 Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020;108:822-42. [PMID: 32931756 DOI: 10.1016/j.neuron.2020.08.022] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 20.0] [Reference Citation Analysis]
13 Kim JW, Kim R, Choi H, Lee SJ, Bae GU. Understanding of sarcopenia: from definition to therapeutic strategies. Arch Pharm Res 2021. [PMID: 34537916 DOI: 10.1007/s12272-021-01349-z] [Reference Citation Analysis]
14 Zullo A, Frisso G, Carsana A. Influence of physical activity on structure and function of the RyR1 calcium channel: a systematic review. Gazz Med Ital - Arch Sci Med 2020;179. [DOI: 10.23736/s0393-3660.19.04238-4] [Reference Citation Analysis]
15 DuVal MG, Hinge VK, Snyder N, Kanyo R, Bratvold J, Pokrishevsky E, Cashman NR, Blinov N, Kovalenko A, Allison WT. Tryptophan 32 mediates SOD1 toxicity in a in vivo motor neuron model of ALS and is a promising target for small molecule therapeutics. Neurobiol Dis 2019;124:297-310. [PMID: 30528257 DOI: 10.1016/j.nbd.2018.11.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
16 Sataranatarajan K, Pharaoh G, Brown JL, Ranjit R, Piekarz KM, Street K, Wren JD, Georgescu C, Kinter C, Kinter M, Freeman WM, Richardson A, Van Remmen H. Molecular changes in transcription and metabolic pathways underlying muscle atrophy in the CuZnSOD null mouse model of sarcopenia. Geroscience 2020;42:1101-18. [PMID: 32394347 DOI: 10.1007/s11357-020-00189-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ahn B, Ranjit R, Kneis P, Xu H, Piekarz KM, Freeman WM, Kinter M, Richardson A, Ran Q, Brooks SV, Van Remmen H. Scavenging mitochondrial hydrogen peroxide by peroxiredoxin 3 overexpression attenuates contractile dysfunction and muscle atrophy in a murine model of accelerated sarcopenia. Aging Cell 2022;21:e13569. [PMID: 35199907 DOI: 10.1111/acel.13569] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Baumann CW, Kwak D, Liu HM, Thompson LV. Age-induced oxidative stress: how does it influence skeletal muscle quantity and quality? J Appl Physiol (1985) 2016;121:1047-52. [PMID: 27197856 DOI: 10.1152/japplphysiol.00321.2016] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
19 Qaisar R, Bhaskaran S, Premkumar P, Ranjit R, Natarajan KS, Ahn B, Riddle K, Claflin DR, Richardson A, Brooks SV, Van Remmen H. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J Cachexia Sarcopenia Muscle 2018;9:1003-17. [PMID: 30073804 DOI: 10.1002/jcsm.12339] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
20 Sakellariou GK, McDonagh B. Redox Homeostasis in Age-Related Muscle Atrophy. Adv Exp Med Biol 2018;1088:281-306. [PMID: 30390257 DOI: 10.1007/978-981-13-1435-3_13] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Allison WT, DuVal MG, Nguyen-Phuoc K, Leighton PLA. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology. Int J Mol Sci 2017;18:E2223. [PMID: 29064456 DOI: 10.3390/ijms18102223] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
22 Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. Geroscience 2020;42:765-84. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]