BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang XJ. Luteolin inhibits Nrf2 Leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med. 2011;50:1599-1609. [PMID: 21402146 DOI: 10.1016/j.freeradbiomed.2011.03.008] [Cited by in Crossref: 191] [Cited by in F6Publishing: 186] [Article Influence: 17.4] [Reference Citation Analysis]
Number Citing Articles
1 Smith RE, Tran K, Smith CC, McDonald M, Shejwalkar P, Hara K. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases 2016;4:E34. [PMID: 28933413 DOI: 10.3390/diseases4040034] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 7.8] [Reference Citation Analysis]
2 Hedrich WD, Wang H. Friend or Foe: Xenobiotic Activation of Nrf2 in Disease Control and Cardioprotection. Pharm Res 2021;38:213-41. [PMID: 33619640 DOI: 10.1007/s11095-021-02997-y] [Reference Citation Analysis]
3 Zhang J, Su L, Ye Q, Zhang S, Kung H, Jiang F, Jiang G, Miao J, Zhao B. Discovery of a novel Nrf2 inhibitor that induces apoptosis of human acute myeloid leukemia cells. Oncotarget 2017;8:7625-36. [PMID: 28032588 DOI: 10.18632/oncotarget.13825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
4 Harder B, Tian W, La Clair JJ, Tan AC, Ooi A, Chapman E, Zhang DD. Brusatol overcomes chemoresistance through inhibition of protein translation. Mol Carcinog 2017;56:1493-500. [PMID: 28019675 DOI: 10.1002/mc.22609] [Cited by in F6Publishing: 58] [Reference Citation Analysis]
5 Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017;8:15996-6016. [PMID: 27911871 DOI: 10.18632/oncotarget.13723] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 17.6] [Reference Citation Analysis]
6 Liu T, Xu J, Yan HL, Cheng FC, Liu XJ. Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2. Oncol Res 2019;27:773-8. [PMID: 29540256 DOI: 10.3727/096504018X15208986577685] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Keum YS, Choi BY. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 2014;19:10074-89. [PMID: 25014534 DOI: 10.3390/molecules190710074] [Cited by in Crossref: 104] [Cited by in F6Publishing: 99] [Article Influence: 13.0] [Reference Citation Analysis]
8 Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 2012;32:687-726. [PMID: 22549716 DOI: 10.1002/med.21257] [Cited by in Crossref: 450] [Cited by in F6Publishing: 439] [Article Influence: 45.0] [Reference Citation Analysis]
9 Kalbolandi SM, Gorji AV, Babaahmadi-Rezaei H, Mansouri E. Luteolin confers renoprotection against ischemia-reperfusion injury via involving Nrf2 pathway and regulating miR320. Mol Biol Rep 2019;46:4039-47. [PMID: 31089916 DOI: 10.1007/s11033-019-04853-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
10 Xu X, Zhang X, Zhang Y, Yang L, Liu Y, Huang S, Lu L, Kong L, Li Z, Guo Q, Zhao L. Wogonin reversed resistant human myelogenous leukemia cells via inhibiting Nrf2 signaling by Stat3/NF-κB inactivation. Sci Rep 2017;7:39950. [PMID: 28150717 DOI: 10.1038/srep39950] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
11 Liu-Smith F, Meyskens FL. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol Nutr Food Res 2016;60:1264-74. [PMID: 26865001 DOI: 10.1002/mnfr.201500822] [Cited by in Crossref: 66] [Cited by in F6Publishing: 53] [Article Influence: 11.0] [Reference Citation Analysis]
12 Cogoi S, Ferino A, Miglietta G, Pedersen EB, Xodo LE. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res 2018;46:661-76. [PMID: 29165690 DOI: 10.1093/nar/gkx1142] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 17.0] [Reference Citation Analysis]
13 Carrera AN, Grant MKO, Zordoky BN. CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2020;134:2897-927. [PMID: 33185690 DOI: 10.1042/CS20200310] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
14 Zhou Y, Zhou Y, Wang K, Li T, Yang M, Wang R, Chen Y, Cao M, Hu R. Flumethasone enhances the efficacy of chemotherapeutic drugs in lung cancer by inhibiting Nrf2 signaling pathway. Cancer Lett 2020;474:94-105. [PMID: 31954771 DOI: 10.1016/j.canlet.2020.01.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Wang C, Huang W, Lin J, Fang F, Wang X, Wang H. Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCα/Nrf2/p53 signaling pathways. Chemosphere 2020;241:125086. [DOI: 10.1016/j.chemosphere.2019.125086] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Simov V, Altman MD, Bianchi E, DelRizzo S, DiNunzio EN, Feng G, Goldenblatt P, Ingenito R, Johnson SA, Mansueto MS, Mayhood T, Mortison JD, Serebrov V, Sondey C, Sriraman V, Tucker TJ, Walji A, Wan H, Yue Y, Stoeck A, DiMauro EF. Discovery and characterization of novel peptide inhibitors of the NRF2/MAFG/DNA ternary complex for the treatment of cancer. Eur J Med Chem 2021;224:113686. [PMID: 34303079 DOI: 10.1016/j.ejmech.2021.113686] [Reference Citation Analysis]
17 Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, Jeong HG. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 2013;271:229-38. [PMID: 23707609 DOI: 10.1016/j.taap.2013.05.010] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 8.7] [Reference Citation Analysis]
18 Zhou W, Sha Y, Zeng J, Zhang X, Zhang A, Ge X. Computational Systems Pharmacology, Molecular Docking and Experiments Reveal the Protective Mechanism of Li-Da-Qian Mixture in the Treatment of Glomerulonephritis. J Inflamm Res 2021;14:6939-58. [PMID: 34949932 DOI: 10.2147/JIR.S338055] [Reference Citation Analysis]
19 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lee JH, Lee BK, Park HH, Lee BW, Woo KS, Kim HJ, Han SI, Lee YY. Oat germination and ultrafiltration process improves the polyphenol and avenanthramide contents with protective effect in oxidative-damaged HepG2 cells. J Food Biochem 2019;43:e12799. [PMID: 31353574 DOI: 10.1111/jfbc.12799] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 Zhong Y, Zhang F, Sun Z, Zhou W, Li Z, You Q, Guo Q, Hu R. Drug resistance associates with activation of Nrf2 in MCF ‐7/ DOX cells, and wogonin reverses it by down‐regulating Nrf2‐mediated cellular defense response. Mol Carcinog 2013;52:824-34. [DOI: 10.1002/mc.21921] [Cited by in Crossref: 45] [Cited by in F6Publishing: 56] [Article Influence: 4.5] [Reference Citation Analysis]
22 Wang S, Zhu X, Xiong L, Ren J. Ablation of Akt2 prevents paraquat-induced myocardial mitochondrial injury and contractile dysfunction: Role of Nrf2. Toxicology Letters 2017;269:1-14. [DOI: 10.1016/j.toxlet.2017.01.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 8.4] [Reference Citation Analysis]
23 Rungratanawanich W, Memo M, Uberti D. Redox Homeostasis and Natural Dietary Compounds: Focusing on Antioxidants of Rice (Oryza sativa L.). Nutrients 2018;10:E1605. [PMID: 30388764 DOI: 10.3390/nu10111605] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Zhang T, Kimura Y, Jiang S, Harada K, Yamashita Y, Ashida H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch Biochem Biophys 2014;557:36-46. [PMID: 24914470 DOI: 10.1016/j.abb.2014.05.023] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
25 Sompakdee V, Prawan A, Senggunprai L, Kukongviriyapan U, Samathiwat P, Wandee J, Kukongviriyapan V. Suppression of Nrf2 confers chemosensitizing effect through enhanced oxidant-mediated mitochondrial dysfunction. Biomed Pharmacother 2018;101:627-34. [PMID: 29518609 DOI: 10.1016/j.biopha.2018.02.112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
26 Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL, Wong MW, Lai ZQ, Lin ZX, Dunn K, Sanderson CM, Alghanem AF, Cross MJ, Ellis EC, Ingelman-Sundberg M, Malik HZ, Kitteringham NR, Goldring CE, Park BK. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med 2015;78:202-12. [PMID: 25445704 DOI: 10.1016/j.freeradbiomed.2014.11.003] [Cited by in Crossref: 113] [Cited by in F6Publishing: 111] [Article Influence: 14.1] [Reference Citation Analysis]
27 Woo Y, Oh J, Kim JS. Suppression of Nrf2 Activity by Chestnut Leaf Extract Increases Chemosensitivity of Breast Cancer Stem Cells to Paclitaxel. Nutrients 2017;9:E760. [PMID: 28718813 DOI: 10.3390/nu9070760] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
28 Xu J, Wang H, Ding K, Zhang L, Wang C, Li T, Wei W, Lu X. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway. Free Radic Biol Med 2014;71:186-95. [PMID: 24642087 DOI: 10.1016/j.freeradbiomed.2014.03.009] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 12.0] [Reference Citation Analysis]
29 Xu X, Zhang Y, Li W, Miao H, Zhang H, Zhou Y, Li Z, You Q, Zhao L, Guo Q. Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway. Biochem Pharmacol 2014;92:220-34. [PMID: 25264278 DOI: 10.1016/j.bcp.2014.09.008] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 6.4] [Reference Citation Analysis]
30 Ma X, Zhang J, Liu S, Huang Y, Chen B, Wang D. Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol 2012;69:485-94. [DOI: 10.1007/s00280-011-1722-9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
31 Vinod BS, Maliekal TT, Anto RJ. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal 2013;18:1307-48. [PMID: 22871022 DOI: 10.1089/ars.2012.4573] [Cited by in Crossref: 83] [Cited by in F6Publishing: 68] [Article Influence: 8.3] [Reference Citation Analysis]
32 Lin H, Qiao Y, Yang H, Nan Q, Qu W, Feng F, Liu W, Chen Y, Sun H. Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Med Chem 2020;12:243-67. [PMID: 31950858 DOI: 10.4155/fmc-2019-0285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett 2017;14:3545-51. [PMID: 28927111 DOI: 10.3892/ol.2017.6643] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
34 Mirzaei S, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Azami N, Hamzehlou S, Farahani MV, Hushmandi K, Ashrafizadeh M, Khan H, Kumar AP. Nrf2 Signaling Pathway in Chemoprotection and Doxorubicin Resistance: Potential Application in Drug Discovery. Antioxidants (Basel) 2021;10:349. [PMID: 33652780 DOI: 10.3390/antiox10030349] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
35 Boušová I, Skálová L, Souček P, Matoušková P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metabolism Reviews 2015;47:520-33. [DOI: 10.3109/03602532.2015.1089885] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
36 Wu JJ, Zhu YF, Guo ZZ, Lou YM, He SG, Guan Y, Zhu LJ, Liu ZQ, Lu LL, Liu L. Aconitum alkaloids, the major components of Aconitum species, affect expression of multidrug resistance-associated protein 2 and breast cancer resistance protein by activating the Nrf2-mediated signalling pathway. Phytomedicine 2018;44:87-97. [PMID: 29277460 DOI: 10.1016/j.phymed.2017.12.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
37 Jeddi F, Soozangar N, Sadeghi MR, Somi MH, Samadi N. Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair 2017;54:13-21. [DOI: 10.1016/j.dnarep.2017.03.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
38 Wu J, Wang H, Tang X. Rexinoid inhibits Nrf2-mediated transcription through retinoid X receptor alpha. Biochem Biophys Res Commun 2014;452:554-9. [PMID: 25172665 DOI: 10.1016/j.bbrc.2014.08.111] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
39 Samatiwat P, Prawan A, Senggunprai L, Kukongviriyapan V. Repression of Nrf2 enhances antitumor effect of 5-fluorouracil and gemcitabine on cholangiocarcinoma cells. Naunyn-Schmiedeberg's Arch Pharmacol 2015;388:601-12. [DOI: 10.1007/s00210-015-1101-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
40 Jin Y, Wang G, Han SS, He MY, Cheng X, Ma ZL, Wu X, Yang X, Liu GS. Effects of oxidative stress on hyperglycaemia-induced brain malformations in a diabetes mouse model. Exp Cell Res 2016;347:201-11. [PMID: 27497668 DOI: 10.1016/j.yexcr.2016.08.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
41 Wu PS, Yen JH, Kou MC, Wu MJ. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS One 2015;10:e0130599. [PMID: 26087007 DOI: 10.1371/journal.pone.0130599] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
42 Li C, Xu X, Wang XJ, Pan Y. Imine resveratrol analogues: molecular design, Nrf2 activation and SAR analysis. PLoS One 2014;9:e101455. [PMID: 25028928 DOI: 10.1371/journal.pone.0101455] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
43 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Namani A, Liu K, Wang S, Zhou X, Liao Y, Wang H, Wang XJ, Tang X. Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways. Aging (Albany NY). 2019;11:12600-12623. [PMID: 31884422 DOI: 10.18632/aging.102590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
45 Bialk P, Wang Y, Banas K, Kmiec EB. Functional Gene Knockout of NRF2 Increases Chemosensitivity of Human Lung Cancer A549 Cells In Vitro and in a Xenograft Mouse Model. Mol Ther Oncolytics 2018;11:75-89. [PMID: 30505938 DOI: 10.1016/j.omto.2018.10.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
46 Liu Y, Chen F, Wang S, Guo X, Shi P, Wang W, Xu B. Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors. Cell Death Dis 2013;4:e948. [PMID: 24309935 DOI: 10.1038/cddis.2013.467] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
47 Ma Y, Wu Z, Gao M, Loor J. Nuclear factor erythroid 2-related factor 2-antioxidant activation through the action of ataxia telangiectasia-mutated serine/threonine kinase is essential to counteract oxidative stress in bovine mammary epithelial cells. Journal of Dairy Science 2018;101:5317-28. [DOI: 10.3168/jds.2017-13954] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
48 Zhou Y, Zhou Y, Yang M, Wang K, Liu Y, Zhang M, Yang Y, Jin C, Wang R, Hu R. Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol 2019;22:101131. [PMID: 30735911 DOI: 10.1016/j.redox.2019.101131] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
49 Abdo H, Mahé MM, Derkinderen P, Bach-Ngohou K, Neunlist M, Lardeux B. The omega-6 fatty acid derivative 15-deoxy-Δ¹²,¹⁴-prostaglandin J2 is involved in neuroprotection by enteric glial cells against oxidative stress. J Physiol 2012;590:2739-50. [PMID: 22473776 DOI: 10.1113/jphysiol.2011.222935] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
50 Mukherjee S, Ghosh S, Das DK, Chakraborty P, Choudhury S, Gupta P, Adhikary A, Dey S, Chattopadhyay S. Gold-conjugated green tea nanoparticles for enhanced anti-tumor activities and hepatoprotection--synthesis, characterization and in vitro evaluation. J Nutr Biochem 2015;26:1283-97. [PMID: 26310506 DOI: 10.1016/j.jnutbio.2015.06.003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
51 Ferino A, Rapozzi V, Xodo LE. The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B 2020;202:111672. [PMID: 31778952 DOI: 10.1016/j.jphotobiol.2019.111672] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
52 Jaros SW, Krogul-Sobczak A, Bażanów B, Florek M, Poradowski D, Nesterov DS, Śliwińska-Hill U, Kirillov AM, Smoleński P. Self-Assembly and Multifaceted Bioactivity of a Silver(I) Quinolinate Coordination Polymer. Inorg Chem 2021;60:15435-44. [PMID: 34546735 DOI: 10.1021/acs.inorgchem.1c02110] [Reference Citation Analysis]
53 Son YO, Pratheeshkumar P, Wang Y, Kim D, Zhang Z, Shi X. Protection from Cr(VI)-induced malignant cell transformation and tumorigenesis of Cr(VI)-transformed cells by luteolin through Nrf2 signaling. Toxicol Appl Pharmacol 2017;331:24-32. [PMID: 28416455 DOI: 10.1016/j.taap.2017.04.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
54 Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. CTMC 2020;20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 2020;131:110676. [PMID: 32858502 DOI: 10.1016/j.biopha.2020.110676] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
56 Moon EJ, Giaccia A. Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 2015;79:292-9. [PMID: 25458917 DOI: 10.1016/j.freeradbiomed.2014.11.009] [Cited by in Crossref: 100] [Cited by in F6Publishing: 99] [Article Influence: 12.5] [Reference Citation Analysis]
57 Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, Yang Y, Deng Y, Zhang L, Liu B. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol 2019;176:2079-94. [PMID: 30825187 DOI: 10.1111/bph.14652] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
58 Xu J, Wise JTF, Wang L, Schumann K, Zhang Z, Shi X. Dual Roles of Oxidative Stress in Metal Carcinogenesis. J Environ Pathol Toxicol Oncol 2017;36:345-76. [PMID: 29431065 DOI: 10.1615/JEnvironPatholToxicolOncol.2017025229] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
59 D'Souza LC, Mishra S, Chakraborty A, Shekher A, Sharma A, Gupta SC. Oxidative Stress and Cancer Development: Are Noncoding RNAs the Missing Links? Antioxid Redox Signal 2020;33:1209-29. [PMID: 31891666 DOI: 10.1089/ars.2019.7987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
60 Jin XF, Wang S, Shen M, Wen X, Han XR, Wu JC, Tang GZ, Wu DM, Lu J, Zheng YL. Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways. Brain Res Bull 2017;134:236-45. [PMID: 28843352 DOI: 10.1016/j.brainresbull.2017.08.011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
61 Chian S, Thapa R, Chi Z, Wang XJ, Tang X. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem Biophys Res Commun 2014;447:602-8. [PMID: 24747074 DOI: 10.1016/j.bbrc.2014.04.039] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 9.8] [Reference Citation Analysis]
62 van der Merwe M, van Niekerk G, Fourie C, du Plessis M, Engelbrecht AM. The impact of mitochondria on cancer treatment resistance. Cell Oncol (Dordr) 2021. [PMID: 34244972 DOI: 10.1007/s13402-021-00623-y] [Reference Citation Analysis]
63 Xiang M, Namani A, Wu S, Wang X. Nrf2: bane or blessing in cancer? J Cancer Res Clin Oncol 2014;140:1251-9. [PMID: 24599821 DOI: 10.1007/s00432-014-1627-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
64 Jiang ZN, Ahmed SMU, Wang QC, Shi HF, Tang XW. Quinone oxidoreductase 1 is overexpressed in gastric cancer and associated with outcome of adjuvant chemotherapy and survival. World J Gastroenterol 2021; 27(22): 3085-3096 [PMID: 34168410 DOI: 10.3748/wjg.v27.i22.3085] [Reference Citation Analysis]
65 Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, Kou HH, Zhai C, Nelson MB, Zhang Q, Andersen ME, Pi J. An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radical Biology and Medicine 2016;99:544-56. [DOI: 10.1016/j.freeradbiomed.2016.09.010] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 16.7] [Reference Citation Analysis]
66 Payandeh Z, Pirpour Tazehkand A, Barati G, Pouremamali F, Kahroba H, Baradaran B, Samadi N. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie. 2020;179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
67 Zhang HX, Chen Y, Xu R, He QY. Nrf2 mediates the resistance of human A549 and HepG2 cancer cells to boningmycin, a new antitumor antibiotic, in vitro through regulation of glutathione levels. Acta Pharmacol Sin 2018;39:1661-9. [PMID: 30287928 DOI: 10.1038/aps.2018.21] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
68 Karathedath S, Rajamani BM, Musheer Aalam SM, Abraham A, Varatharajan S, Krishnamurthy P, Mathews V, Velayudhan SR, Balasubramanian P. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One 2017;12:e0177227. [PMID: 28505160 DOI: 10.1371/journal.pone.0177227] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
69 Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Med Res Rev. 2016;36:924-963. [PMID: 27192495 DOI: 10.1002/med.21396] [Cited by in Crossref: 286] [Cited by in F6Publishing: 277] [Article Influence: 47.7] [Reference Citation Analysis]
70 Chen F, Liu Y, Wang S, Guo X, Shi P, Wang W, Xu B. Triptolide, a Chinese herbal extract, enhances drug sensitivity of resistant myeloid leukemia cell lines through downregulation of HIF-1α and Nrf2. Pharmacogenomics 2013;14:1305-17. [PMID: 23930677 DOI: 10.2217/pgs.13.122] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
71 Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M. The Nrf2/HO-1 Axis in Cancer Cell Growth and Chemoresistance. Oxid Med Cell Longev 2016;2016:1958174. [PMID: 26697129 DOI: 10.1155/2016/1958174] [Cited by in Crossref: 113] [Cited by in F6Publishing: 121] [Article Influence: 16.1] [Reference Citation Analysis]
72 Matthews JH, Liang X, Paul VJ, Luesch H. A Complementary Chemical and Genomic Screening Approach for Druggable Targets in the Nrf2 Pathway and Small Molecule Inhibitors to Overcome Cancer Cell Drug Resistance. ACS Chem Biol 2018;13:1189-99. [PMID: 29565554 DOI: 10.1021/acschembio.7b01025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
73 Esmaeili MA. Combination of siRNA-directed gene silencing with epigallocatechin-3-gallate (EGCG) reverses drug resistance in human breast cancer cells. J Chem Biol 2016;9:41-52. [PMID: 26855680 DOI: 10.1007/s12154-015-0144-2] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
74 Wang H, Liu K, Chi Z, Zhou X, Ren G, Zhou R, Li Y, Tang X, Wang XJ. Interplay of MKP-1 and Nrf2 drives tumor growth and drug resistance in non-small cell lung cancer. Aging (Albany NY) 2019;11:11329-46. [PMID: 31811110 DOI: 10.18632/aging.102531] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
75 Liao H, Zhu D, Bai M, Chen H, Yan S, Yu J, Zhu H, Zheng W, Fan G. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int 2020;20:480. [PMID: 33041661 DOI: 10.1186/s12935-020-01470-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
76 Carini JP, Klamt F, Bassani VL. Flavonoids from Achyrocline satureioides: promising biomolecules for anticancer therapy. RSC Adv 2014;4:3131-44. [DOI: 10.1039/c3ra43627f] [Cited by in Crossref: 28] [Article Influence: 3.5] [Reference Citation Analysis]
77 Ahmed SMU, Jiang ZN, Zheng ZH, Li Y, Wang XJ, Tang X. AKR1B10 expression predicts response of gastric cancer to neoadjuvant chemotherapy. Oncol Lett 2019;17:773-80. [PMID: 30655829 DOI: 10.3892/ol.2018.9705] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
78 Best SA, Sutherland KD. "Keaping" a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle 2018;17:1696-707. [PMID: 30009666 DOI: 10.1080/15384101.2018.1496756] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
79 Schrier MS, Trivedi MS, Deth RC. Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4. Front Oncol 2017;7:46. [PMID: 28424758 DOI: 10.3389/fonc.2017.00046] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
80 Tu SH, Ho CT, Liu MF, Huang CS, Chang HW, Chang CH, Wu CH, Ho YS. Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 2013;141:1553-61. [PMID: 23790951 DOI: 10.1016/j.foodchem.2013.04.077] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
81 Ruan JS, Liu YP, Zhang L, Yan LG, Fan FT, Shen CS, Wang AY, Zheng SZ, Wang SM, Lu Y. Luteolin reduces the invasive potential of malignant melanoma cells by targeting β3 integrin and the epithelial-mesenchymal transition. Acta Pharmacol Sin 2012;33:1325-31. [PMID: 22983392 DOI: 10.1038/aps.2012.93] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.8] [Reference Citation Analysis]
82 Namani A, Matiur Rahaman M, Chen M, Tang X. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 2018;18:46. [PMID: 29306329 DOI: 10.1186/s12885-017-3907-z] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
83 Zhang J, Fang X, Li Z, Chan HF, Lin Z, Wang Y, Chen M. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. Int J Nanomedicine 2018;13:939-56. [PMID: 29491708 DOI: 10.2147/IJN.S130696] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
84 Zhang YL, Chen GL, Liu Y, Zhuang XC, Guo MQ. Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel) 2021;10:1559. [PMID: 34679694 DOI: 10.3390/antiox10101559] [Reference Citation Analysis]
85 Luo L, Chen Y, Wang H, Wang S, Liu K, Li X, Wang XJ, Tang X. Mkp-1 protects mice against toxin-induced liver damage by promoting the Nrf2 cytoprotective response. Free Radical Biology and Medicine 2018;115:361-70. [DOI: 10.1016/j.freeradbiomed.2017.12.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
86 Basak P, Sadhukhan P, Sarkar P, Sil PC. Perspectives of the Nrf-2 signaling pathway in cancer progression and therapy. Toxicol Rep 2017;4:306-18. [PMID: 28959654 DOI: 10.1016/j.toxrep.2017.06.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 12.8] [Reference Citation Analysis]
87 Tsai KJ, Tsai HY, Tsai CC, Chen TY, Hsieh TH, Chen CL, Mbuyisa L, Huang YB, Lin MW. Luteolin Inhibits Breast Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules 2021;26:6452. [PMID: 34770867 DOI: 10.3390/molecules26216452] [Reference Citation Analysis]
88 Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Cited by in Crossref: 346] [Cited by in F6Publishing: 332] [Article Influence: 115.3] [Reference Citation Analysis]
89 Panieri E, Saso L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019;2019:8592348. [PMID: 31097977 DOI: 10.1155/2019/8592348] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
90 Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 Cell Defense Pathway by Ancient Foods: Disease Prevention by Important Molecules and Microbes Lost from the Modern Western Diet. PLoS One 2016;11:e0148042. [PMID: 26885667 DOI: 10.1371/journal.pone.0148042] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 8.5] [Reference Citation Analysis]
91 Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen AL. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res 2014;122:281-320. [PMID: 24974185 DOI: 10.1016/B978-0-12-420117-0.00008-6] [Cited by in Crossref: 97] [Cited by in F6Publishing: 61] [Article Influence: 13.9] [Reference Citation Analysis]
92 Namani A, Li Y, Wang XJ, Tang X. Modulation of NRF2 signaling pathway by nuclear receptors: implications for cancer. Biochim Biophys Acta 2014;1843:1875-85. [PMID: 24851839 DOI: 10.1016/j.bbamcr.2014.05.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
93 Li C, Xu X, Tao Z, Wang XJ, Pan Y. Resveratrol dimers, nutritional components in grape wine, are selective ROS scavengers and weak Nrf2 activators. Food Chem 2015;173:218-23. [PMID: 25466015 DOI: 10.1016/j.foodchem.2014.09.165] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
94 Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019;8:1157-68. [PMID: 30735010 DOI: 10.1002/cam4.1949] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
95 Bekele RT, Venkatraman G, Liu RZ, Tang X, Mi S, Benesch MG, Mackey JR, Godbout R, Curtis JM, McMullen TP, Brindley DN. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep 2016;6:21164. [PMID: 26883574 DOI: 10.1038/srep21164] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 8.7] [Reference Citation Analysis]
96 Namani A, Zheng Z, Wang XJ, Tang X. Systematic Identification of Multi Omics-based Biomarkers in KEAP1 Mutated TCGA Lung Adenocarcinoma. J Cancer 2019;10:6813-21. [PMID: 31839815 DOI: 10.7150/jca.35489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
97 Ohnuma T, Sakamoto K, Shinoda A, Takagi C, Ohno S, Nishiyama T, Ogura K, Hiratsuka A. Procyanidins from Cinnamomi Cortex promote proteasome-independent degradation of nuclear Nrf2 through phosphorylation of insulin-like growth factor-1 receptor in A549 cells. Archives of Biochemistry and Biophysics 2017;635:66-73. [DOI: 10.1016/j.abb.2017.10.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
98 Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020;12:E3609. [PMID: 33276631 DOI: 10.3390/cancers12123609] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
99 Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021;44:263-80. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
100 Tong YH, Zhang B, Fan Y, Lin NM. Keap1-Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics. Chronic Dis Transl Med 2015;1:175-86. [PMID: 29063005 DOI: 10.1016/j.cdtm.2015.09.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
101 Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological Applications of Nrf2 Inhibitors as Potential Antineoplastic Drugs. Int J Mol Sci 2019;20:E2025. [PMID: 31022969 DOI: 10.3390/ijms20082025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
102 Chen Y, Zhang P, Chen W, Chen G. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunology Letters 2020;225:9-15. [DOI: 10.1016/j.imlet.2020.06.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
103 Krajka-kuźniak V, Paluszczak J, Baer-dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacological Reports 2017;69:393-402. [DOI: 10.1016/j.pharep.2016.12.011] [Cited by in Crossref: 109] [Cited by in F6Publishing: 110] [Article Influence: 21.8] [Reference Citation Analysis]
104 Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang RW. Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids. Front Oncol 2019;9:487. [PMID: 31245292 DOI: 10.3389/fonc.2019.00487] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 15.0] [Reference Citation Analysis]
105 Vartanian S, Ma TP, Lee J, Haverty PM, Kirkpatrick DS, Yu K, Stokoe D. Application of Mass Spectrometry Profiling to Establish Brusatol as an Inhibitor of Global Protein Synthesis. Mol Cell Proteomics 2016;15:1220-31. [PMID: 26711467 DOI: 10.1074/mcp.M115.055509] [Cited by in F6Publishing: 30] [Reference Citation Analysis]
106 Clifford T, Acton JP, Cocksedge SP, Davies KAB, Bailey SJ. The effect of dietary phytochemicals on nuclear factor erythroid 2-related factor 2 (Nrf2) activation: a systematic review of human intervention trials. Mol Biol Rep 2021;48:1745-61. [PMID: 33515348 DOI: 10.1007/s11033-020-06041-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
107 Cui Q, Wang J, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang D, Chen Z. Modulating ROS to overcome multidrug resistance in cancer. Drug Resistance Updates 2018;41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Cited by in Crossref: 155] [Cited by in F6Publishing: 154] [Article Influence: 38.8] [Reference Citation Analysis]
108 Shi F, Zhao P, Li X, Pan H, Ma S, Ding L. Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A-mediated ortho -benzoquinone metabolite formation and glutathione depletion: Luteolin induce cytotoxicity in primary rat hepatocytes. J Appl Toxicol 2015;35:1372-80. [DOI: 10.1002/jat.3106] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
109 Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. Cells 2021;10:1879. [PMID: 34440648 DOI: 10.3390/cells10081879] [Reference Citation Analysis]
110 Syu JP, Chi JT, Kung HN. Nrf2 is the key to chemotherapy resistance in MCF7 breast cancer cells under hypoxia. Oncotarget 2016;7:14659-72. [PMID: 26894974 DOI: 10.18632/oncotarget.7406] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 10.3] [Reference Citation Analysis]
111 Wang L, Zhong C, Zu Y, Zhao X, Deng Y, Wu W, Sun X, Wang L, Wu M. Preparation and characterization of luteolin nanoparticles for enhance bioavailability and inhibit liver microsomal peroxidation in rats. Journal of Functional Foods 2019;55:57-64. [DOI: 10.1016/j.jff.2019.01.054] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
112 Adinew GM, Taka E, Mendonca P, Messeha SS, Soliman KFA. The Anticancer Effects of Flavonoids through miRNAs Modulations in Triple-Negative Breast Cancer. Nutrients 2021;13:1212. [PMID: 33916931 DOI: 10.3390/nu13041212] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Sova M, Saso L. Design and development of Nrf2 modulators for cancer chemoprevention and therapy: a review. Drug Des Devel Ther 2018;12:3181-97. [PMID: 30288023 DOI: 10.2147/DDDT.S172612] [Cited by in Crossref: 35] [Cited by in F6Publishing: 19] [Article Influence: 8.8] [Reference Citation Analysis]
114 Kankia IH, Khalil HS, Langdon SP, Moult PR, Bown JL, Deeni YY. NRF2 Regulates HER1 Signaling Pathway to Modulate the Sensitivity of Ovarian Cancer Cells to Lapatinib and Erlotinib. Oxid Med Cell Longev 2017;2017:1864578. [PMID: 29410730 DOI: 10.1155/2017/1864578] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
115 Menegon S, Columbano A, Giordano S. The Dual Roles of NRF2 in Cancer. Trends Mol Med. 2016;22:578-593. [PMID: 27263465 DOI: 10.1016/j.molmed.2016.05.002] [Cited by in Crossref: 319] [Cited by in F6Publishing: 301] [Article Influence: 53.2] [Reference Citation Analysis]
116 Zheng S, Cheng Y, Teng Y, Liu X, Yu T, Wang Y, Liu J, Hu Y, Wu C, Wang X, Liu Y, You C, Gao X, Wei Y. Application of luteolin nanomicelles anti-glioma effect with improvement in vitro and in vivo. Oncotarget 2017;8:61146-62. [PMID: 28977853 DOI: 10.18632/oncotarget.18019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
117 Choi EJ, Jung BJ, Lee SH, Yoo HS, Shin EA, Ko HJ, Chang S, Kim SY, Jeon SM. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene 2017;36:5285-95. [PMID: 28504720 DOI: 10.1038/onc.2017.153] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 11.4] [Reference Citation Analysis]
118 Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radical Biology and Medicine 2015;88:221-32. [DOI: 10.1016/j.freeradbiomed.2015.06.019] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 8.7] [Reference Citation Analysis]
119 Vijayan S, Loganathan C, Sakayanathan P, Thayumanavan P. In silico and in vitro investigation of anticancer effect of newly synthesized nonivamide-s-allyl cysteine ester. J Biomol Struct Dyn 2021;:1-15. [PMID: 34344261 DOI: 10.1080/07391102.2021.1959404] [Reference Citation Analysis]
120 L Suraweera T, Rupasinghe HPV, Dellaire G, Xu Z. Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020;9:E973. [PMID: 33050575 DOI: 10.3390/antiox9100973] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
121 Kumar H, Kim I, More SV, Kim B, Choi D. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014;31:109-39. [DOI: 10.1039/c3np70065h] [Cited by in Crossref: 202] [Cited by in F6Publishing: 93] [Article Influence: 25.3] [Reference Citation Analysis]
122 Ribeiro DL, Cilião HL, Specian AF, Serpeloni JM, de Souza MF, Tangerina MM, Vilegas W, Boldrin PK, Resende FA, Varanda EA, Martínez-López W, Sannomiya M, Cólus IM. Chemical and biological characterisation of Machaerium hirtum (Vell.) Stellfeld: absence of cytotoxicity and mutagenicity and possible chemopreventive potential. Mutagenesis 2016;31:147-60. [PMID: 26314304 DOI: 10.1093/mutage/gev066] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
123 Wang L, Wang S, Yang S, Guo X, Lou H, Ren D. Phenolic alkaloids from the aerial parts of Dracocephalum heterophyllum. Phytochemistry 2012;82:166-71. [DOI: 10.1016/j.phytochem.2012.06.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
124 Sparaneo A, Fabrizio FP, la Torre A, Graziano P, Di Maio M, Fontana A, Bisceglia M, Rossi A, Pizzolitto S, De Maglio G, Tancredi A, Grimaldi F, Balsamo T, Centra F, Manzorra MC, Trombetta D, Pantalone A, Bonfitto A, Maiello E, Fazio VM, Muscarella LA. Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors. Int J Mol Sci 2019;20:E2531. [PMID: 31126053 DOI: 10.3390/ijms20102531] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
125 Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer. Molecules 2021;26:1417. [PMID: 33808001 DOI: 10.3390/molecules26051417] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
126 Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxidants & Redox Signaling 2018;29:1553-88. [DOI: 10.1089/ars.2017.7441] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
127 Huppke P, Weissbach S, Church JA, Schnur R, Krusen M, Dreha-Kulaczewski S, Kühn-Velten WN, Wolf A, Huppke B, Millan F, Begtrup A, Almusafri F, Thiele H, Altmüller J, Nürnberg P, Müller M, Gärtner J. Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nat Commun 2017;8:818. [PMID: 29018201 DOI: 10.1038/s41467-017-00932-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
128 Taguchi K, Yamamoto M. The KEAP1-NRF2 System in Cancer. Front Oncol 2017;7:85. [PMID: 28523248 DOI: 10.3389/fonc.2017.00085] [Cited by in Crossref: 176] [Cited by in F6Publishing: 170] [Article Influence: 35.2] [Reference Citation Analysis]
129 Costea T, Vlad OC, Miclea LC, Ganea C, Szöllősi J, Mocanu MM. Alleviation of Multidrug Resistance by Flavonoid and Non-Flavonoid Compounds in Breast, Lung, Colorectal and Prostate Cancer. Int J Mol Sci 2020;21:E401. [PMID: 31936346 DOI: 10.3390/ijms21020401] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
130 Torrente L, Maan G, Oumkaltoum Rezig A, Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E, Saarela J, Bicciato S, Edwards J, Dinkova-Kostova AT, de la Vega L. High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules 2020;10:E1365. [PMID: 32992842 DOI: 10.3390/biom10101365] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
131 Li Y, Wang H, Wang XJ, Tang X. The short isoform of PMLRAR α activates the NRF 2/ HO ‐1 pathway through a direct interaction with NRF 2. FEBS Lett 2017;591:2859-68. [DOI: 10.1002/1873-3468.12779] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
132 Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol 2014;281:230-41. [PMID: 25448439 DOI: 10.1016/j.taap.2014.10.008] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 6.1] [Reference Citation Analysis]
133 Qin S, Hou D. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target. Engineering 2017;3:738-52. [DOI: 10.1016/j.eng.2017.03.011] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
134 Hou X, Bai X, Gou X, Zeng H, Xia C, Zhuang W, Chen X, Zhao Z, Huang M, Jin J. 3',4',5',5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway. Mol Cells 2015;38:396-401. [PMID: 25843086 DOI: 10.14348/molcells.2015.2183] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
135 Zhan L, Zhang H, Zhang Q, Woods CG, Chen Y, Xue P, Dong J, Tokar EJ, Xu Y, Hou Y, Fu J, Yarborough K, Wang A, Qu W, Waalkes MP, Andersen ME, Pi J. Regulatory role of KEAP1 and NRF2 in PPARγ expression and chemoresistance in human non-small-cell lung carcinoma cells. Free Radic Biol Med 2012;53:758-68. [PMID: 22684020 DOI: 10.1016/j.freeradbiomed.2012.05.041] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
136 Chen HY, Islam A, Yuan TM, Chen SW, Liu PF, Chueh PJ. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. J Exp Clin Cancer Res 2018;37:161. [PMID: 30029680 DOI: 10.1186/s13046-018-0837-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
137 Paunkov A, Chartoumpekis DV, Ziros PG, Chondrogianni N, Kensler TW, Sykiotis GP. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Curr Pharm Des 2019;25:1828-46. [PMID: 31267862 DOI: 10.2174/1381612825666190701165821] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
138 Afrin S, Giampieri F, Cianciosi D, Alvarez-Suarez JM, Bullon B, Amici A, Quiles JL, Forbes-Hernández TY, Battino M. Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol 2021;156:112484. [PMID: 34389368 DOI: 10.1016/j.fct.2021.112484] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 Cort A, Ozben T, Saso L, De Luca C, Korkina L. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants. Oxid Med Cell Longev 2016;2016:4251912. [PMID: 26881027 DOI: 10.1155/2016/4251912] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 4.8] [Reference Citation Analysis]
140 Zemanova L, Hofman J, Novotna E, Musilek K, Lundova T, Havrankova J, Hostalkova A, Chlebek J, Cahlikova L, Wsol V. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. J Nat Prod 2015;78:2666-74. [PMID: 26529431 DOI: 10.1021/acs.jnatprod.5b00616] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
141 Zhang J, Jiao K, Liu J, Xia Y. Metformin reverses the resistance mechanism of lung adenocarcinoma cells that knocks down the Nrf2 gene. Oncol Lett 2018;16:6071-80. [PMID: 30333878 DOI: 10.3892/ol.2018.9382] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
142 Zhang Q, Cheng G, Qiu H, Zhu L, Ren Z, Zhao W, Zhang T, Liu L. The p53-inducible gene 3 involved in flavonoid-induced cytotoxicity through the reactive oxygen species-mediated mitochondrial apoptotic pathway in human hepatoma cells. Food Funct 2015;6:1518-25. [PMID: 25820747 DOI: 10.1039/c5fo00142k] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
143 Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 2013;34:340-6. [PMID: 23664668 DOI: 10.1016/j.tips.2013.04.005] [Cited by in F6Publishing: 408] [Reference Citation Analysis]
144 Jiang ZY, Lu MC, You QD. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. J Med Chem 2019;62:3840-56. [PMID: 30444366 DOI: 10.1021/acs.jmedchem.8b01121] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
145 Choi B, Kwak M. Shadows of NRF2 in cancer: Resistance to chemotherapy. Current Opinion in Toxicology 2016;1:20-8. [DOI: 10.1016/j.cotox.2016.08.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
146 Johnson JL, Dia VP, Wallig M, Gonzalez de Mejia E. Luteolin and Gemcitabine Protect Against Pancreatic Cancer in an Orthotopic Mouse Model. Pancreas 2015;44:144-51. [PMID: 25237909 DOI: 10.1097/MPA.0000000000000215] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
147 Yu Q, Zhang M, Ying Q, Xie X, Yue S, Tong B, Wei Q, Bai Z, Ma L. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis 2019;10:218. [PMID: 30833546 DOI: 10.1038/s41419-019-1447-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
148 Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 2017;8:884. [PMID: 29375370 DOI: 10.3389/fphar.2017.00884] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
149 Brüschweiler S, Fuchs JE, Bader G, McConnell DB, Konrat R, Mayer M. A Step toward NRF2-DNA Interaction Inhibitors by Fragment-Based NMR Methods. ChemMedChem 2021. [PMID: 34524728 DOI: 10.1002/cmdc.202100458] [Reference Citation Analysis]
150 Wang H, Chen Y, Zhang J, Tang X, Wang XJ. Using Nrf2/antioxidant response element-dependent signaling to assess the toxicity potential of fly ash particles. Ecotoxicology and Environmental Safety 2019;170:172-9. [DOI: 10.1016/j.ecoenv.2018.11.093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
151 No JH, Kim YB, Song YS. Targeting nrf2 signaling to combat chemoresistance. J Cancer Prev 2014;19:111-7. [PMID: 25337579 DOI: 10.15430/JCP.2014.19.2.111] [Cited by in Crossref: 85] [Cited by in F6Publishing: 43] [Article Influence: 10.6] [Reference Citation Analysis]
152 Ji L, Zhang R, Chen J, Xue Q, Moghal N, Tsao MS. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci Rep 2019;9:12437. [PMID: 31455821 DOI: 10.1038/s41598-019-48763-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
153 Hasanifard L, Samadi N, Rashtchizadeh N, Dastmalchi S, Karimi P. Sphingosine kinase-2 Inhibitor ABC294640 Enhances Doxorubicin-Induced Apoptosis of NSCLC Cells via Altering Survivin Expression. Drug Res (Stuttg) 2017;68:45-53. [DOI: 10.1055/s-0043-117181] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
154 Valdameri G, Trombetta-Lima M, Worfel PR, Pires AR, Martinez GR, Noleto GR, Cadena SM, Sogayar MC, Winnischofer SM, Rocha ME. Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. Chem Biol Interact. 2011;193:180-189. [PMID: 21756884 DOI: 10.1016/j.cbi.2011.06.009] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
155 Hayes AJ, Skouras C, Haugk B, Charnley RM. Keap1-Nrf2 signalling in pancreatic cancer. Int J Biochem Cell Biol 2015;65:288-99. [PMID: 26117456 DOI: 10.1016/j.biocel.2015.06.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
156 Zhao F, Ci X, Man X, Li J, Wei Z, Zhang S. Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021;26:1016. [PMID: 33671866 DOI: 10.3390/molecules26041016] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
157 Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2019;10:1551. [PMID: 32038239 DOI: 10.3389/fphar.2019.01551] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
158 Gao A, Ke Z, Wang J, Yang J, Chen S, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013;34:1806-14. [DOI: 10.1093/carcin/bgt108] [Cited by in Crossref: 99] [Cited by in F6Publishing: 94] [Article Influence: 11.0] [Reference Citation Analysis]
159 Gao AM, Ke ZP, Shi F, Sun GC, Chen H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 2013;206:100-8. [PMID: 23994249 DOI: 10.1016/j.cbi.2013.08.008] [Cited by in Crossref: 105] [Cited by in F6Publishing: 96] [Article Influence: 11.7] [Reference Citation Analysis]
160 Toth RK, Warfel NA. Strange Bedfellows: Nuclear Factor, Erythroid 2-Like 2 (Nrf2) and Hypoxia-Inducible Factor 1 (HIF-1) in Tumor Hypoxia. Antioxidants (Basel) 2017;6:E27. [PMID: 28383481 DOI: 10.3390/antiox6020027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 6.2] [Reference Citation Analysis]
161 He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41:405-16. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
162 Peng H, Wang H, Xue P, Hou Y, Dong J, Zhou T, Qu W, Peng S, Li J, Carmichael PL, Nelson B, Clewell R, Zhang Q, Andersen ME, Pi J. Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells. Toxicol Appl Pharmacol 2016;292:1-7. [PMID: 26708503 DOI: 10.1016/j.taap.2015.12.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
163 Kwon JH, Lee J, Kim J, Kirchner VA, Jo YH, Miura T, Kim N, Song GW, Hwang S, Lee SG, Yoon YI, Tak E. Upregulation of Carbonyl Reductase 1 by Nrf2 as a Potential Therapeutic Intervention for Ischemia/ Reperfusion Injury during Liver Transplantation. Mol Cells 2019;42:672-85. [PMID: 31486328 DOI: 10.14348/molcells.2019.0003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
164 Lin P, Ren Y, Yan X, Luo Y, Zhang H, Kesarwani M, Bu J, Zhan D, Zhou Y, Tang Y, Zhu S, Xu W, Zhou X, Mei C, Ma L, Ye L, Hu C, Azam M, Ding W, Jin J, Huang G, Tong H. The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica 2019;104:485-96. [PMID: 30262569 DOI: 10.3324/haematol.2018.197749] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
165 Arlt A, Schäfer H, Kalthoff H. The ‘N-factors’ in pancreatic cancer: functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis. 2012;1:e35. [PMID: 23552468 DOI: 10.1038/oncsis.2012.35] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
166 Kitakaze T, Makiyama A, Samukawa Y, Jiang S, Yamashita Y, Ashida H. A physiological concentration of luteolin induces phase II drug-metabolizing enzymes through the ERK1/2 signaling pathway in HepG2 cells. Arch Biochem Biophys 2019;663:151-9. [PMID: 30641047 DOI: 10.1016/j.abb.2019.01.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
167 Sparaneo A, Fabrizio FP, Muscarella LA. Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad. Oxid Med Cell Longev 2016;2016:7316492. [PMID: 27847554 DOI: 10.1155/2016/7316492] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
168 Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid Med Cell Longev 2019;2019:9372182. [PMID: 31396308 DOI: 10.1155/2019/9372182] [Cited by in Crossref: 136] [Cited by in F6Publishing: 130] [Article Influence: 45.3] [Reference Citation Analysis]
169 Zhan G, Pan L, Tu K, Jiao S. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids. J Food Sci 2016;81:H2578-86. [PMID: 27603811 DOI: 10.1111/1750-3841.13434] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
170 Namani A, Cui QQ, Wu Y, Wang H, Wang XJ, Tang X. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer. Oncotarget 2017;8:69847-62. [PMID: 29050246 DOI: 10.18632/oncotarget.19349] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
171 Hybertson BM, Gao B. Role of the Nrf2 signaling system in health and disease. Clin Genet 2014;86:447-52. [PMID: 25099075 DOI: 10.1111/cge.12474] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 4.3] [Reference Citation Analysis]
172 Chen Q, Peng H, Dong L, Chen L, Ma X, Peng Y, Dai S, Liu Q. Activation of the NRF2-ARE signalling pathway by the Lentinula edodes polysaccharose LNT alleviates ROS-mediated cisplatin nephrotoxicity. International Immunopharmacology 2016;36:1-8. [DOI: 10.1016/j.intimp.2016.04.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
173 Liu J, Wang S, Tian S, He Y, Lou H, Yang Z, Kong Y, Cao X. Nobiletin inhibits breast cancer via p38 mitogen-activated protein kinase, nuclear transcription factor-κB, and nuclear factor erythroid 2-related factor 2 pathways in MCF-7 cells. Food Nutr Res 2018;62. [PMID: 30574046 DOI: 10.29219/fnr.v62.1323] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
174 Gao B, Doan A, Hybertson BM. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol 2014;6:19-34. [PMID: 24520207 DOI: 10.2147/CPAA.S35078] [Cited by in Crossref: 19] [Cited by in F6Publishing: 42] [Article Influence: 2.4] [Reference Citation Analysis]
175 Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. "NRF2 addiction" in lung cancer cells and its impact on cancer therapy. Cancer Lett 2019;467:40-9. [PMID: 31574294 DOI: 10.1016/j.canlet.2019.09.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
176 Hatem E, El Banna N, Huang M. Multifaceted Roles of Glutathione and Glutathione-Based Systems in Carcinogenesis and Anticancer Drug Resistance. Antioxidants & Redox Signaling 2017;27:1217-34. [DOI: 10.1089/ars.2017.7134] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
177 Wei M, Yang Y, Chiu H, Hong S. Development of a hyphenated procedure of heat-reflux and ultrasound-assisted extraction followed by RP-HPLC separation for the determination of three flavonoids content in Scutellaria barbata D. Don. Journal of Chromatography B 2013;940:126-34. [DOI: 10.1016/j.jchromb.2013.09.015] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
178 Zhou S, Ye W, Shao Q, Zhang M, Liang J. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit Rev Oncol Hematol 2013;88:706-15. [PMID: 24126138 DOI: 10.1016/j.critrevonc.2013.09.001] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 6.9] [Reference Citation Analysis]
179 Chen HY, Cheng HL, Lee YH, Yuan TM, Chen SW, Lin YY, Chueh PJ. Tumor-associated NADH oxidase (tNOX)-NAD+-sirtuin 1 axis contributes to oxaliplatin-induced apoptosis of gastric cancer cells. Oncotarget 2017;8:15338-48. [PMID: 28122359 DOI: 10.18632/oncotarget.14787] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
180 Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021;26:2029. [PMID: 33918290 DOI: 10.3390/molecules26072029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
181 Wang XJ, Li Y, Luo L, Wang H, Chi Z, Xin A, Li X, Wu J, Tang X. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic Biol Med 2014;70:68-77. [PMID: 24556415 DOI: 10.1016/j.freeradbiomed.2014.02.010] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 6.3] [Reference Citation Analysis]
182 Fouzder C, Mukhuty A, Kundu R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch Biochem Biophys 2021;697:108700. [PMID: 33271149 DOI: 10.1016/j.abb.2020.108700] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
183 Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016;48:541-67. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 13.0] [Reference Citation Analysis]
184 Elshaer M, ElManawy AI, Hammad A, Namani A, Wang XJ, Tang X. Integrated data analysis reveals significant associations of KEAP1 mutations with DNA methylation alterations in lung adenocarcinomas. Aging (Albany NY) 2020;12:7183-206. [PMID: 32327612 DOI: 10.18632/aging.103068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
185 Chen Y, Zheng Z, Li C, Pan Y, Tang X, Wang XJ. Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. Oxid Med Cell Longev 2019;2019:7180284. [PMID: 31885813 DOI: 10.1155/2019/7180284] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
186 Ding S, Hou X, Yuan J, Tan X, Chen J, Yang N, Luo Y, Jiang Z, Jin P, Dong Z, Feng L, Jia X. Wedelolactone protects human bronchial epithelial cell injury against cigarette smoke extract-induced oxidant stress and inflammation responses through Nrf2 pathway. International Immunopharmacology 2015;29:648-55. [DOI: 10.1016/j.intimp.2015.09.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
187 Murakami Y, Sugiyama K, Ebinuma H, Nakamoto N, Ojiro K, Chu PS, Taniki N, Saito Y, Teratani T, Koda Y, Suzuki T, Saito K, Fukasawa M, Ikeda M, Kato N, Kanai T, Saito H. Dual effects of the Nrf2 inhibitor for inhibition of hepatitis C virus and hepatic cancer cells. BMC Cancer 2018;18:680. [PMID: 29940898 DOI: 10.1186/s12885-018-4588-y] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
188 Luo L, Chen Y, Wu D, Shou J, Wang S, Ye J, Tang X, Wang XJ. Butylated hydroxyanisole induces distinct expression patterns of Nrf2 and detoxification enzymes in the liver and small intestine of C57BL/6 mice. Toxicol Appl Pharmacol. 2015;288:339-348. [PMID: 26291391 DOI: 10.1016/j.taap.2015.08.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
189 Ou YC, Kuan YH, Li JR, Raung SL, Wang CC, Hung YY, Chen CJ. Induction of apoptosis by luteolin involving akt inactivation in human 786-o renal cell carcinoma cells. Evid Based Complement Alternat Med 2013;2013:109105. [PMID: 23476679 DOI: 10.1155/2013/109105] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]