BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control 2016;70:1-8. [DOI: 10.1016/j.foodcont.2016.05.015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 23] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CAF, Hashemi Moosavi M, Mousavi Khaneghah A, Sant'Ana AS. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem Toxicol 2021;148:111976. [PMID: 33422602 DOI: 10.1016/j.fct.2021.111976] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 12.0] [Reference Citation Analysis]
2 Šerá B, Šerý M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci Technol 2018;20:044012. [DOI: 10.1088/2058-6272/aaacc6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 4] [Article Influence: 7.8] [Reference Citation Analysis]
3 Hoppanová L, Dylíková J, Kováčik D, Medvecká V, Ďurina P, Kryštofová S, Zahoranová A, Kaliňáková B. The effect of cold atmospheric pressure plasma on Aspergillus ochraceus and ochratoxin A production. Antonie Van Leeuwenhoek 2020;113:1479-88. [PMID: 32766937 DOI: 10.1007/s10482-020-01457-8] [Reference Citation Analysis]
4 Misra NN, Yadav B, Roopesh MS, Jo C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Compr Rev Food Sci Food Saf 2019;18:106-20. [PMID: 33337013 DOI: 10.1111/1541-4337.12398] [Cited by in Crossref: 79] [Cited by in F6Publishing: 37] [Article Influence: 19.8] [Reference Citation Analysis]
5 Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. JoF 2022;8:102. [DOI: 10.3390/jof8020102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Šimončicová J, Kaliňáková B, Kováčik D, Medvecká V, Lakatoš B, Kryštofová S, Hoppanová L, Palušková V, Hudecová D, Ďurina P, Zahoranová A. Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol 2018;102:6647-58. [PMID: 29858953 DOI: 10.1007/s00253-018-9118-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
7 Martín‐garcía J, Zas R, Solla A, Woodward S, Hantula J, Vainio EJ, Mullett M, Morales‐rodríguez C, Vannini A, Martínez‐álvarez P, Pinto G, Alves A, Amaral J, Wingfield MJ, Fourie G, Steenkamp ET, Ahumada R, Šerá B, Sanz‐ros AV, Raposo R, Elvira‐recuenco M, Iturritxa E, Gordon TR, Diez JJ. Environmentally friendly methods for controlling pine pitch canker. Plant Pathol 2019;68:843-60. [DOI: 10.1111/ppa.13009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
8 Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device. Clinical Plasma Medicine 2017;7-8:16-23. [DOI: 10.1016/j.cpme.2017.06.001] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhao L, Zhang M, Bhandari B, Bai B. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. Int J Food Microbiol 2020;334:108835. [PMID: 32898829 DOI: 10.1016/j.ijfoodmicro.2020.108835] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Dasan BG, Boyaci IH. Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food Bioprocess Technol 2018;11:334-43. [DOI: 10.1007/s11947-017-2014-0] [Cited by in Crossref: 57] [Cited by in F6Publishing: 27] [Article Influence: 11.4] [Reference Citation Analysis]
11 Lo Porto C, Sergio L, Boari F, Logrieco AF, Cantore V. Cold plasma pretreatment improves the germination of wild asparagus (Asparagus acutifolius L.) seeds. Scientia Horticulturae 2019;256:108554. [DOI: 10.1016/j.scienta.2019.108554] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
12 Wu Y, Cheng J, Sun D. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology 2021;109:647-61. [DOI: 10.1016/j.tifs.2021.01.053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
13 Lin CM, Herianto S, Chen HL, Chiu YC, Hou CY. The application of a novel non-thermal plasma device with double rotary plasma jets for inactivation of Salmonella Enteritidis on shell eggs and its effects on sensory properties. Int J Food Microbiol 2021;355:109332. [PMID: 34358812 DOI: 10.1016/j.ijfoodmicro.2021.109332] [Reference Citation Analysis]
14 Kiš M, Milošević S, Vulić A, Herceg Z, Vukušić T, Pleadin J. Efficacy of low pressure DBD plasma in the reduction of T-2 and HT-2 toxin in oat flour. Food Chem 2020;316:126372. [PMID: 32062580 DOI: 10.1016/j.foodchem.2020.126372] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
15 Dasan BG, Yildirim T, Boyaci IH. Surface decontamination of eggshells by using non-thermal atmospheric plasma. Int J Food Microbiol 2018;266:267-73. [PMID: 29274482 DOI: 10.1016/j.ijfoodmicro.2017.12.021] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 4.6] [Reference Citation Analysis]
16 Hertwig C, Meneses N, Mathys A. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science & Technology 2018;77:131-42. [DOI: 10.1016/j.tifs.2018.05.011] [Cited by in Crossref: 71] [Cited by in F6Publishing: 21] [Article Influence: 17.8] [Reference Citation Analysis]
17 Shirani K, Shahidi F, Mortazavi SA. Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. Int J Food Microbiol 2020;335:108892. [PMID: 32979616 DOI: 10.1016/j.ijfoodmicro.2020.108892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
18 Georgescu N, Apostol L, Gherendi F. Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control 2017;76:52-61. [DOI: 10.1016/j.foodcont.2017.01.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 10] [Article Influence: 5.4] [Reference Citation Analysis]
19 Kaur M, Hüberli D, Bayliss KL. Cold plasma: exploring a new option for management of postharvest fungal pathogens, mycotoxins and insect pests in Australian stored cereal grain. Crop Pasture Sci 2020;71:715. [DOI: 10.1071/cp20078] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Shirkole S, Jayabalan R, Sutar P. Dry Sterilization of Paprika (Capsicum annuum L.) by Short Time-Intensive Microwave-Infrared Radiation: Establishment of Process Using Glass Transition, Sorption, and Quality Degradation Kinetic Parameters. Innovative Food Science & Emerging Technologies 2020;62:102345. [DOI: 10.1016/j.ifset.2020.102345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
21 Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol 2018;36:615-26. [PMID: 29329724 DOI: 10.1016/j.tibtech.2017.11.001] [Cited by in Crossref: 130] [Cited by in F6Publishing: 67] [Article Influence: 32.5] [Reference Citation Analysis]
22 Li S, Chen S, Liang Q, Ma Z, Han F, Xu Y, Jin Y, Wu W. Low temperature plasma pretreatment enhances hot‐air drying kinetics of corn kernels. J Food Process Eng 2019;42. [DOI: 10.1111/jfpe.13195] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Charoux CMG, Patange A, Lamba S, O'Donnell CP, Tiwari BK, Scannell AGM. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. J Appl Microbiol 2021;130:325-40. [PMID: 32797725 DOI: 10.1111/jam.14823] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lin C, Patel AK, Chiu Y, Hou C, Kuo C, Dong C, Chen H. The application of novel rotary plasma jets to inhibit the aflatoxin-producing Aspergillus flavus and the spoilage fungus, Aspergillus niger on peanuts. Innovative Food Science & Emerging Technologies 2022;78:102994. [DOI: 10.1016/j.ifset.2022.102994] [Reference Citation Analysis]
25 Mohapatra D, Kumar S, Kotwaliwale N, Singh KK. Critical factors responsible for fungi growth in stored food grains and non-Chemical approaches for their control. Industrial Crops and Products 2017;108:162-82. [DOI: 10.1016/j.indcrop.2017.06.039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
26 Siddique SS, Hardy GESJ, Bayliss KL. Cold plasma: a potential new method to manage postharvest diseases caused by fungal plant pathogens. Plant Pathol 2018;67:1011-21. [DOI: 10.1111/ppa.12825] [Cited by in Crossref: 19] [Cited by in F6Publishing: 4] [Article Influence: 4.8] [Reference Citation Analysis]
27 Dasan BG, Onal-ulusoy B, Pawlat J, Diatczyk J, Sen Y, Mutlu M. A New and Simple Approach for Decontamination of Food Contact Surfaces with Gliding Arc Discharge Atmospheric Non-Thermal Plasma. Food Bioprocess Technol 2017;10:650-61. [DOI: 10.1007/s11947-016-1847-2] [Cited by in Crossref: 46] [Cited by in F6Publishing: 14] [Article Influence: 7.7] [Reference Citation Analysis]
28 Wu Y, Cheng JH, Sun DW. Subcellular damages of Colletotrichum asianum and inhibition of mango anthracnose by dielectric barrier discharge plasma. Food Chem 2022;381:132197. [PMID: 35121319 DOI: 10.1016/j.foodchem.2022.132197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
29 Sen Y, Onal-ulusoy B, Mutlu M. Aspergillus decontamination in hazelnuts: Evaluation of atmospheric and low-pressure plasma technology. Innovative Food Science & Emerging Technologies 2019;54:235-42. [DOI: 10.1016/j.ifset.2019.04.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
30 Geremew T, Haesaert G, Abate D, Audenaert K. An HPLC-FLD method to measure ochratoxin A in teff ( Eragrostis tef ) and wheat ( Triticum spp.) destined for the local Ethiopian market. World Mycotoxin Journal 2018;11:359-68. [DOI: 10.3920/wmj2017.2175] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
31 Li S, Chen S, Han F, Xv Y, Sun H, Ma Z, Chen J, Wu W. Development and Optimization of Cold Plasma Pretreatment for Drying on Corn Kernels. J Food Sci 2019;84:2181-9. [PMID: 31355452 DOI: 10.1111/1750-3841.14708] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
32 Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, Zahoranová A. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 2018;106:862-9. [PMID: 29579997 DOI: 10.1016/j.foodres.2018.01.066] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
33 Lin C, Herianto S, Syu S, Song C, Chen H, Hou C. Applying a large-scale device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory characteristics. LWT 2021;142:111067. [DOI: 10.1016/j.lwt.2021.111067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Xu J, Zhang M, Bhandari B, Cao P. Microorganism control and product quality improvement of Twice-cooked pork dish using ZnO nanoparticles combined radio frequency pasteurization. LWT 2018;95:65-71. [DOI: 10.1016/j.lwt.2018.04.067] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]