BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Papoutsis K, Zhang J, Bowyer MC, Brunton N, Gibney ER, Lyng J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem 2021;338:128119. [PMID: 33091976 DOI: 10.1016/j.foodchem.2020.128119] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Shang C, Gu Y, Koyama T. Major triterpenes, cycloeucalenone and 31‐norcyclolaudenone as inhibitors against both α‐glucosidase and α‐amylase in banana peel. Int J Food Sci Technol 2021;56:3519-26. [DOI: 10.1111/ijfs.14978] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Sinan KI, Zengin G, Zheleva-Dimitrova D, Gevrenova R, Picot-Allain MCN, Dall'Acqua S, Behl T, Goh BH, Ying PTS, Mahomoodally MF. Exploring the Chemical Profiles and Biological Values of Two Spondias Species (S. dulcis and S. mombin): Valuable Sources of Bioactive Natural Products. Antioxidants (Basel) 2021;10:1771. [PMID: 34829642 DOI: 10.3390/antiox10111771] [Reference Citation Analysis]
3 Jin G, Wang C, Ran G, Hao S, Song Q. Protein-stabilized Ir nanoparticles with usual charge-selective peroxidase properties. J Mater Chem B 2021;9:8464-71. [PMID: 34545897 DOI: 10.1039/d1tb01532j] [Reference Citation Analysis]
4 Li M, Bao X, Zhang X, Ren H, Cai S, Hu X, Yi J. Exploring the phytochemicals and inhibitory effects against α-glucosidase and dipeptidyl peptidase-IV in Chinese pickled chili pepper: Insights into mechanisms by molecular docking analysis. LWT 2022;162:113467. [DOI: 10.1016/j.lwt.2022.113467] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Tejedor-calvo E, García-barreda S, Sánchez S, Morte A, Siles-sánchez MDLN, Soler-rivas C, Santoyo S, Marco P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022;11:298. [DOI: 10.3390/foods11030298] [Reference Citation Analysis]
6 Vega-gálvez A, Uribe E, Pastén A, Vega M, Poblete J, Bilbao-sainz C, Chiou B. Low-temperature vacuum drying as novel process to improve papaya (Vasconcellea pubescens) nutritional-functional properties. Future Foods 2022. [DOI: 10.1016/j.fufo.2022.100117] [Reference Citation Analysis]
7 Świątek Ł, Sieniawska E, Sinan KI, Zengin G, Uba AI, Bene K, Maciejewska-turska M, Rajtar B, Polz-dacewicz M, Aktumsek A. Bridging the Chemical Profiles and Biological Effects of Spathodea campanulata Extracts: A New Contribution on the Road from Natural Treasure to Pharmacy Shelves. Molecules 2022;27:4694. [DOI: 10.3390/molecules27154694] [Reference Citation Analysis]
8 Yahiaoui S, Kati D, Ali LM, El Cheikh K, Morére A, Menut C, Bachir-bey M, Bettache N. Assessment of antioxidant, antiproliferative, anti-inflammatory, and enzyme inhibition activities and UPLC-MS phenolic determination of Ficus carica latex. Industrial Crops and Products 2022;178:114629. [DOI: 10.1016/j.indcrop.2022.114629] [Reference Citation Analysis]
9 Zhou Y, Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit Rev Food Sci Nutr 2022;:1-26. [PMID: 35866515 DOI: 10.1080/10408398.2022.2101425] [Reference Citation Analysis]
10 Ocal M, Altunoglu YC, Angeloni S, Mustafa AM, Caprioli G, Zengin G, Paksoy MY, Baloglu MC. Comparative Content, Biological and Anticancer Activities of Heracleum humile Extracts Obtained by Ultrasound-Assisted Extraction Method. Chem Biodivers 2022;:e202101040. [PMID: 35638152 DOI: 10.1002/cbdv.202101040] [Reference Citation Analysis]
11 Sirichai P, Kittibunchakul S, Thangsiri S, On-Nom N, Chupeerach C, Temviriyanukul P, Inthachat W, Nuchuchua O, Aursalung A, Sahasakul Y, Charoenkiatkul S, Suttisansanee U. Impact of Drying Processes on Phenolics and In Vitro Health-Related Activities of Indigenous Plants in Thailand. Plants (Basel) 2022;11:294. [PMID: 35161275 DOI: 10.3390/plants11030294] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Wang J, Jayaprakasha GK, Patil BS. Untargeted Chemometrics Evaluation of the Effect of Juicing Technique on Phytochemical Profiles and Antioxidant Activities in Common Vegetables. ACS Food Sci Technol 2021;1:77-87. [DOI: 10.1021/acsfoodscitech.0c00013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
13 Fu M, Shen W, Gao W, Namujia L, Yang X, Cao J, Sun L. Essential moieties of myricetins, quercetins and catechins for binding and inhibitory activity against α-Glucosidase. Bioorg Chem 2021;115:105235. [PMID: 34388484 DOI: 10.1016/j.bioorg.2021.105235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
14 Zhu Y, Wen P, Wang P, Li Y, Tong Y, Ren F, Liu S. Influence of native cellulose, microcrystalline cellulose and soluble cellodextrin on inhibition of starch digestibility. Int J Biol Macromol 2022:S0141-8130(22)01683-X. [PMID: 35932809 DOI: 10.1016/j.ijbiomac.2022.07.243] [Reference Citation Analysis]
15 Ak G, Gevrenova R, Sinan KI, Zengin G, Zheleva D, Mahomoodally MF, Senkardes I, Brunetti L, Leone S, Di Simone SC, Recinella L, Chiavaroli A, Menghini L, Orlando G, Ferrante C. Tanacetum vulgare L. (Tansy) as an effective bioresource with promising pharmacological effects from natural arsenal. Food Chem Toxicol 2021;153:112268. [PMID: 34015423 DOI: 10.1016/j.fct.2021.112268] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Kajszczak D, Kowalska-baron A, Sosnowska D, Podsędek A. In Vitro Inhibitory Effects of Viburnum opulus Bark and Flower Extracts on Digestion of Potato Starch and Carbohydrate Hydrolases Activity. Molecules 2022;27:3118. [DOI: 10.3390/molecules27103118] [Reference Citation Analysis]
17 Tu J, Brennan MA, Wu G, Bai W, Cheng P, Tian B, Brennan CS. Delivery of Phenolic Compounds, Peptides and β-Glucan to the Gastrointestinal Tract by Incorporating Dietary Fibre-Rich Mushrooms into Sorghum Biscuits. Foods 2021;10:1812. [PMID: 34441591 DOI: 10.3390/foods10081812] [Reference Citation Analysis]
18 Trindade PL, Soares EDR, Inada KOP, Martins FF, Rudnicki M, Perrone D, Monteiro M, Souza-Mello V, Daleprane JB. Consumption of phenolic-rich jabuticaba (Myrciaria jaboticaba) powder ameliorates obesity-related disorders in mice. Br J Nutr 2021;:1-9. [PMID: 33787474 DOI: 10.1017/S0007114521001136] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2022;:1-10. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Reference Citation Analysis]
20 Xiao Z, Yang R, Wang H, Cui X, Zhang Y, Yuan Y, Yue T, Li P. Inhibitory properties of polyphenols in Malus "Winter Red" crabapple fruit on α-glucosidase and α-amylase using improved methods. J Food Biochem 2021;45:e13942. [PMID: 34535900 DOI: 10.1111/jfbc.13942] [Reference Citation Analysis]
21 Lin Y, Huang H, Wang C. Effects of High Pressure-Assisted Extraction on Yield, Antioxidant, Antimicrobial, and Anti-diabetic Properties of Chlorogenic Acid and Caffeine Extracted from Green Coffee Beans. Food Bioprocess Technol. [DOI: 10.1007/s11947-022-02828-x] [Reference Citation Analysis]
22 Zhang Y, Li D, Qiao J, Ni Y, Liu P, Huang D, Huo J. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chem 2022;385:132588. [PMID: 35303652 DOI: 10.1016/j.foodchem.2022.132588] [Reference Citation Analysis]
23 Uuh Narvaez JJ, Segura Campos MR. Combination therapy of bioactive compounds with acarbose: A proposal to control hyperglycemia in type 2 diabetes. J Food Biochem 2022;:e14268. [PMID: 35662051 DOI: 10.1111/jfbc.14268] [Reference Citation Analysis]
24 Peddio S, Padiglia A, Cannea FB, Crnjar R, Zam W, Sharifi-Rad J, Rescigno A, Zucca P. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother Res 2022. [PMID: 35485365 DOI: 10.1002/ptr.7480] [Reference Citation Analysis]
25 Swaraz AM, Sultana F, Bari MW, Ahmed KS, Hasan M, Islam MM, Islam MA, Satter MA, Hossain MH, Islam MS, Khan MI, Raihan MO. Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer's. Biomed Pharmacother 2021;141:111859. [PMID: 34246953 DOI: 10.1016/j.biopha.2021.111859] [Reference Citation Analysis]
26 Zhang L, Martinelli E, Senizza B, Miras-Moreno B, Yildiztugay E, Arikan B, Elbasan F, Ak G, Balci M, Zengin G, Rouphael Y, Lucini L. The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce. Plants (Basel) 2021;10:1457. [PMID: 34371660 DOI: 10.3390/plants10071457] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Onikanni AS, Lawal B, Olusola AO, Olugbodi JO, Sani S, Ajiboye BO, Ilesanmi OB, Alqarni M, Mostafa-Hedeab G, Obaidullah AJ, Batiha GE, Wu ATH. Sterculia tragacantha Lindl Leaf Extract Ameliorates STZ-Induced Diabetes, Oxidative Stress, Inflammation and Neuronal Impairment. J Inflamm Res 2021;14:6749-64. [PMID: 34916823 DOI: 10.2147/JIR.S319673] [Reference Citation Analysis]
28 Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2021. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Aloo SO, Ofosu FK, Daliri EB, Oh DH. UHPLC-ESI-QTOF-MS/MS Metabolite Profiling of the Antioxidant and Antidiabetic Activities of Red Cabbage and Broccoli Seeds and Sprouts. Antioxidants (Basel) 2021;10:852. [PMID: 34073543 DOI: 10.3390/antiox10060852] [Reference Citation Analysis]
30 Ma Y, Liu Y, Yu H, Mu S, Li H, Liu X, Zhang M, Jiang Z, Hou J. Biological activities and in vitro digestion characteristics of glycosylated α-lactalbumin prepared by microwave heating: Impacts of ultrasonication. LWT 2022;158:113141. [DOI: 10.1016/j.lwt.2022.113141] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
31 Ribeiro LO, de Freitas BP, Lorentino CMA, Frota HF, Dos Santos ALS, Moreira DL, do Amaral BS, Jung EP, Kunigami CN. Umbu Fruit Peel as Source of Antioxidant, Antimicrobial and α-Amylase Inhibitor Compounds. Molecules 2022;27:410. [PMID: 35056726 DOI: 10.3390/molecules27020410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Gevrenova R, Zengin G, Sinan KI, Yıldıztugay E, Zheleva-Dimitrova D, Picot-Allain C, Mahomoodally MF, Imran M, Dall'Acqua S. UHPLC-MS Characterization and Biological Insights of Different Solvent Extracts of Two Achillea Species (A. aleppica and A. santolinoides) from Turkey. Antioxidants (Basel) 2021;10:1180. [PMID: 34439428 DOI: 10.3390/antiox10081180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Liu Z, Zhang J, Lu S, Tang W, Zhou Y, Quek SY. Effects of different drying methods on phenolic components and in vitro hypoglycemic activities of pulp extracts from two Chinese bayberry (Myrica rubra Sieb. et Zucc.) cultivars. Food Science and Human Wellness 2022;11:366-73. [DOI: 10.1016/j.fshw.2021.11.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Cao J, Yan S, Xiao Y, Han L, Sun L, Wang M. Number of galloyl moiety and intramolecular bonds in galloyl-based polyphenols affect their interaction with alpha-glucosidase. Food Chem 2021;367:129846. [PMID: 34399273 DOI: 10.1016/j.foodchem.2021.129846] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
35 Caldeira ASP, Mbiakop UC, Pádua RM, van de Venter M, Matsabisa MG, Campana PRV, Cortes SF, Braga FC. Bioguided chemical characterization of pequi (Caryocar brasiliense) fruit peels towards an anti-diabetic activity. Food Chem 2021;345:128734. [PMID: 33310563 DOI: 10.1016/j.foodchem.2020.128734] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Guimarães JT, Almeida PP, Brito ML, Cruz BO, Costa NS, Almeida Ito RV, Mota JC, Bertolo MR, Morais ST, Neto RP, Tavares MIB, Souto F, Bogusz Junior S, Pimentel TC, Stockler-pinto MB, Freitas MQ, Cruz AG. In vivo functional and health benefits of a prebiotic soursop whey beverage processed by high-intensity ultrasound: Study with healthy Wistar rats. Food Chemistry 2022;380:132193. [DOI: 10.1016/j.foodchem.2022.132193] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Qiao Y, Ikeda Y, Ito M, Kimura T, Ikeuchi T, Takita T, Yasukawa K. Inhibition of α‐amylase and α‐glucosidase by Morus australis fruit extract and its components iminosugar, anthocyanin, and glucose. Journal of Food Science. [DOI: 10.1111/1750-3841.16098] [Reference Citation Analysis]
38 Shehadeh MB, Suaifan GARY, Abu-Odeh AM. Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021;26:4333. [PMID: 34299610 DOI: 10.3390/molecules26144333] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Aleixandre A, Rosell CM. Starch gels enriched with phenolics: Effects on paste properties, structure and digestibility. LWT 2022;161:113350. [DOI: 10.1016/j.lwt.2022.113350] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
40 Gong H, Zhang Y, Wang T, Wang S, Yu N, Wang W, Wu Y, Yuan H. Physicochemical and sensory acceptance of functional beverages from Ginkgo biloba seed extracts. Food Measure. [DOI: 10.1007/s11694-022-01293-6] [Reference Citation Analysis]
41 Sohrabi M, Binaeizadeh MR, Iraji A, Larijani B, Saeedi M, Mahdavi M. A review on α-glucosidase inhibitory activity of first row transition metal complexes: a futuristic strategy for treatment of type 2 diabetes. RSC Adv 2022;12:12011-52. [PMID: 35481063 DOI: 10.1039/d2ra00067a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Xu L, Zhang L, Li YH, Li LY, Xie ZH, Tu ZC. Inhibitory activity and mechanism of guavinoside B from guava fruits against α-glucosidase: Insights by spectroscopy and molecular docking analyses. J Food Biochem 2022;:e14101. [PMID: 35170060 DOI: 10.1111/jfbc.14101] [Reference Citation Analysis]
43 Dawood MAO, Habotta OAE, Elsabagh M, Azra MN, Van Doan H, Kari ZA, Sewilam H. Fruit processing by‐products in the aquafeed industry: A feasible strategy for aquaculture sustainability. Reviews in Aquaculture. [DOI: 10.1111/raq.12680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Tousif MI, Nazir M, Saleem M, Tauseef S, Uddin R, Altaf M, Zengin G, Ak G, Ozturk RB, Mahomoodally MF. Exploring the industrial importance of a miracle herb Withania somnifera (L.) Dunal: Authentication through chemical profiling, in vitro studies and computational analyses. Process Biochemistry 2022;121:514-28. [DOI: 10.1016/j.procbio.2022.07.028] [Reference Citation Analysis]
45 Yusuf E, Wojdyło A, Oszmiański J, Nowicka P. Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021;10:808. [PMID: 33918549 DOI: 10.3390/foods10040808] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ombra MN, Nazzaro F, Fratianni F. Lowering the predicted glycemic index of pasta using dried onions as functional ingredients. Int J Food Sci Nutr 2022;:1-8. [PMID: 35043745 DOI: 10.1080/09637486.2021.2025211] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Siegień J, Buchholz T, Popowski D, Granica S, Osińska E, Melzig MF, Czerwińska ME. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem 2021;355:129414. [PMID: 33773461 DOI: 10.1016/j.foodchem.2021.129414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Park HY, Kim KS, Ak G, Zengin G, Cziáky Z, Jekő J, Adaikalam K, Song K, Kim DH, Sivanesan I. Establishment of a Rapid Micropropagation System for Kaempferia parviflora Wall. Ex Baker: Phytochemical Analysis of Leaf Extracts and Evaluation of Biological Activities. Plants (Basel) 2021;10:698. [PMID: 33916375 DOI: 10.3390/plants10040698] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Temviriyanukul P, Kittibunchakul S, Trisonthi P, Inthachat W, Siriwan D, Suttisansanee U. Analysis of Phytonutrients, Anti-Mutagenic and Chemopreventive Effects of Tropical Fruit Extracts. Foods 2021;10:2600. [PMID: 34828882 DOI: 10.3390/foods10112600] [Reference Citation Analysis]
50 Gong L, Feng D, Wang T, Ren Y, Liu Y, Wang J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Sci Nutr 2020;8:6320-37. [PMID: 33312519 DOI: 10.1002/fsn3.1987] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
51 Abu-odeh A, Shehadeh M, Suaifan GARY, Karameh N, Abdel Rahman D, Kandil Y. In Vitro and In Vivo Antidiabetic Activity, Phenolic Content and Microscopical Characterization of Terfezia claveryi. Molecules 2022;27:4843. [DOI: 10.3390/molecules27154843] [Reference Citation Analysis]
52 Kandylis P, Bekatorou A, Dimitrellou D, Plioni I, Giannopoulou K. Health Promoting Properties of Cereal Vinegars. Foods 2021;10:344. [PMID: 33562762 DOI: 10.3390/foods10020344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Çayan F, Tel-Çayan G, Deveci E, Duru ME. HPLC-DAD characterization of phenolic profile and in vitro antioxidant, anticholinesterase, and antidiabetic activities of five mushroom species from Turkey. 3 Biotech 2021;11:273. [PMID: 34055565 DOI: 10.1007/s13205-021-02819-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Zheleva-Dimitrova D, Zengin G, Ak G, Sinan KI, Mahomoodally MF, Gevrenova R, Balabanova V, Stefanova A, Nedialkov P, Voynikov Y. Innovative Biochemometric Approach to the Metabolite and Biological Profiling of the Balkan Thistle (Cirsium appendiculatum Griseb.), Asteraceae. Plants (Basel) 2021;10:2046. [PMID: 34685855 DOI: 10.3390/plants10102046] [Reference Citation Analysis]
55 Zhang J, Ding W, Tang Z, Kong Y, Liu J, Cao X. Identification of the effective α-amylase inhibitors from Dalbergia odorifera: Virtual screening, spectroscopy, molecular docking, and molecular dynamic simulation. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121448. [PMID: 35717927 DOI: 10.1016/j.saa.2022.121448] [Reference Citation Analysis]
56 Jiang S, Chen C, Dong Q, Shao Y, Zhao X, Tao Y, Yue H. Alkaloids and phenolics identification in fruit of Nitraria tangutorum Bobr. by UPLC-Q-TOF-MS/MS and their a-glucosidase inhibitory effects in vivo and in vitro. Food Chem 2021;364:130412. [PMID: 34174646 DOI: 10.1016/j.foodchem.2021.130412] [Reference Citation Analysis]
57 Aleixandre A, Gil JV, Sineiro J, Rosell CM. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem 2022;372:131231. [PMID: 34624776 DOI: 10.1016/j.foodchem.2021.131231] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 16.0] [Reference Citation Analysis]
58 Zhang Y, Bai B, Yan Y, Liang J, Guan X. Bound Polyphenols from Red Quinoa Prevailed over Free Polyphenols in Reducing Postprandial Blood Glucose Rises by Inhibiting α-Glucosidase Activity and Starch Digestion. Nutrients 2022;14:728. [PMID: 35215378 DOI: 10.3390/nu14040728] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
59 Kirkan B, Sarikurkcu C, Zengin G. Bioactive constituents, antioxidant effects and enzyme inhibitory properties of two Onosma species (Onosma trapezuntea and O. rigidum). South African Journal of Botany 2022;145:142-8. [DOI: 10.1016/j.sajb.2021.09.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Angeloni S, Spinozzi E, Maggi F, Sagratini G, Caprioli G, Borsetta G, Ak G, Sinan KI, Zengin G, Arpini S, Mombelli G, Ricciutelli M. Phytochemical Profile and Biological Activities of Crude and Purified Leonurus cardiaca Extracts. Plants (Basel) 2021;10:195. [PMID: 33494336 DOI: 10.3390/plants10020195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
61 Cattivelli A, Conte A, Martini S, Tagliazucchi D. Cooking and In Vitro Digestion Modulate the Anti-Diabetic Properties of Red-Skinned Onion and Dark Purple Eggplant Phenolic Compounds. Foods 2022;11:689. [DOI: 10.3390/foods11050689] [Reference Citation Analysis]
62 Li L, Fan Q, Zhao W. High effective proteinaceous α-amylase inhibitors from grains and control release. LWT 2022;157:113098. [DOI: 10.1016/j.lwt.2022.113098] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Ahmad JB, Ajani EO, Sabiu S. Chemical Group Profiling, In Vitro and In Silico Evaluation of Aristolochia ringens on α-Amylase and α-Glucosidase Activity. Evid Based Complement Alternat Med 2021;2021:6679185. [PMID: 34194523 DOI: 10.1155/2021/6679185] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Khongkarat P, Traiyasut P, Phuwapraisirisan P, Chanchao C. First report of fatty acids in Mimosadiplotricha bee pollen with in vitro lipase inhibitory activity. PeerJ 2022;10:e12722. [PMID: 35036098 DOI: 10.7717/peerj.12722] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
65 Ben Hassine A, Rocchetti G, Zhang L, Senizza B, Zengin G, Mahomoodally MF, Ben-Attia M, Rouphael Y, Lucini L, El-Bok S. Untargeted Phytochemical Profile, Antioxidant Capacity and Enzyme Inhibitory Activity of Cultivated and Wild Lupin Seeds from Tunisia. Molecules 2021;26:3452. [PMID: 34200152 DOI: 10.3390/molecules26113452] [Reference Citation Analysis]
66 Xiao Z, Hou X, Zhang T, Yuan Y, Xiao J, Song W, Yue T. Starch-digesting product analysis based on the hydrophilic interaction liquid chromatography coupled mass spectrometry method to evaluate the inhibition of flavonoids on pancreatic α-amylase. Food Chem 2022;372:131175. [PMID: 34653779 DOI: 10.1016/j.foodchem.2021.131175] [Reference Citation Analysis]
67 Renganathan S, Manokaran S, Vasanthakumar P, Singaravelu U, Kim PS, Kutzner A, Heese K. Phytochemical Profiling in Conjunction with In Vitro and In Silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) De Wit for the Treatment of Diabetes Mellitus. ACS Omega 2021;6:19045-57. [PMID: 34337243 DOI: 10.1021/acsomega.1c02350] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
68 Zengin G, Uba AI, Ocal M, Sharifi-rad M, Caprioli G, Angeloni S, Altunoglu YC, Baloglu MC, Yıldıztugay E. Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications. Food Bioscience 2022;49:101858. [DOI: 10.1016/j.fbio.2022.101858] [Reference Citation Analysis]
69 Kajszczak D, Kowalska-Baron A, Podsędek A. Glycoside Hydrolases and Non-Enzymatic Glycation Inhibitory Potential of Viburnum opulus L. Fruit-In Vitro Studies. Antioxidants (Basel) 2021;10:989. [PMID: 34205673 DOI: 10.3390/antiox10060989] [Reference Citation Analysis]