BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma X, Laaksonen O, Zheng J, Yang W, Trépanier M, Kallio H, Yang B. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem 2016;200:189-98. [PMID: 26830578 DOI: 10.1016/j.foodchem.2016.01.036] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Kewlani P, Tiwari DC, Singh B, Negi VS, Bhatt ID, Pande V. Source-dependent variation in phenolic compounds and antioxidant activities of Prinsepia utilis Royle fruits. Environ Monit Assess 2022;194:162. [PMID: 35141786 DOI: 10.1007/s10661-022-09786-z] [Reference Citation Analysis]
2 Guo R, Guo X, Li T, Fu X, Liu RH. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chemistry 2017;221:997-1003. [DOI: 10.1016/j.foodchem.2016.11.063] [Cited by in Crossref: 67] [Cited by in F6Publishing: 52] [Article Influence: 13.4] [Reference Citation Analysis]
3 Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, Koplík R, Belajová E, Kukurová K, Daško Ľ, Panovská Z, Revenco D, Burčová Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020;133:109170. [PMID: 32466930 DOI: 10.1016/j.foodres.2020.109170] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
4 Ma X, Yang W, Kallio H, Yang B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 33412908 DOI: 10.1080/10408398.2020.1869921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li Y, Sun H, Li J, Qin S, Niu Z, Qiao X, Yang B. Influence of genetic background, growth latitude and bagging treatment on phenolic compounds in fruits of commercial cultivars and wild types of apples (Malus sp.). Eur Food Res Technol 2021;247:1149-65. [DOI: 10.1007/s00217-021-03695-0] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Cui Q, Liu J, Wang L, Kang Y, Meng Y, Jiao J, Fu Y. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. Journal of Cleaner Production 2018;184:826-35. [DOI: 10.1016/j.jclepro.2018.02.295] [Cited by in Crossref: 66] [Cited by in F6Publishing: 38] [Article Influence: 16.5] [Reference Citation Analysis]
7 Zheng J, Kallio H, Yang B. Sea Buckthorn ( Hippophaë rhamnoides ssp. rhamnoides ) Berries in Nordic Environment: Compositional Response to Latitude and Weather Conditions. J Agric Food Chem 2016;64:5031-44. [DOI: 10.1021/acs.jafc.6b00682] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
8 Tian Y, Liimatainen J, Alanne A, Lindstedt A, Liu P, Sinkkonen J, Kallio H, Yang B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry 2017;220:266-81. [DOI: 10.1016/j.foodchem.2016.09.145] [Cited by in Crossref: 102] [Cited by in F6Publishing: 71] [Article Influence: 20.4] [Reference Citation Analysis]
9 Pap N, Fidelis M, Azevedo L, do Carmo MAV, Wang D, Mocan A, Pereira EPR, Xavier-santos D, Sant’ana AS, Yang B, Granato D. Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science 2021;42:167-86. [DOI: 10.1016/j.cofs.2021.06.003] [Cited by in Crossref: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Li X, Chen W, Simal-Gandara J, Georgiev MI, Li H, Hu H, Wu X, Efferth T, Wang S. West meets east: open up a dialogue on phytomedicine. Chin Med 2021;16:57. [PMID: 34281584 DOI: 10.1186/s13020-021-00467-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Yang W, Laaksonen O, Kallio H, Yang B. Effects of latitude and weather conditions on proanthocyanidins in berries of Finnish wild and cultivated sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides). Food Chemistry 2017;216:87-96. [DOI: 10.1016/j.foodchem.2016.08.032] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
12 Neagu C, Mihalcea L, Enachi E, Barbu V, Borda D, Bahrim GE, Stănciuc N. Cross-Linked Microencapsulation of CO2 Supercritical Extracted Oleoresins from Sea Buckthorn: Evidence of Targeted Functionality and Stability. Molecules 2020;25:E2442. [PMID: 32456245 DOI: 10.3390/molecules25102442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
13 Kortesniemi M, Sinkkonen J, Yang B, Kallio H. NMR metabolomics demonstrates phenotypic plasticity of sea buckthorn (Hippophaë rhamnoides) berries with respect to growth conditions in Finland and Canada. Food Chemistry 2017;219:139-47. [DOI: 10.1016/j.foodchem.2016.09.125] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
14 Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022;23:605. [PMID: 35054793 DOI: 10.3390/ijms23020605] [Reference Citation Analysis]
15 Ma X, Yang W, Laaksonen O, Nylander M, Kallio H, Yang B. Role of Flavonols and Proanthocyanidins in the Sensory Quality of Sea Buckthorn ( Hippophaë rhamnoides L.) Berries. J Agric Food Chem 2017;65:9871-9. [DOI: 10.1021/acs.jafc.7b04156] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
16 Ma X, Moilanen J, Laaksonen O, Yang W, Tenhu E, Yang B. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves. Food Chemistry 2019;272:1-11. [DOI: 10.1016/j.foodchem.2018.08.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
17 Guo X, Shi L, Yang S, Yang R, Dai X, Zhang T, Liu R, Chang M, Jin Q, Wang X. Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food Funct 2019;10:4220-30. [DOI: 10.1039/c8fo02511h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
18 Sharma B, Deswal R. Ecophysiolomic analysis of stress tolerant Himalayan shrub Hipppophae rhamnoides shows multifactorial acclimation strategies induced by diverse environmental conditions. Physiol Plant 2020;168:58-76. [PMID: 30737802 DOI: 10.1111/ppl.12942] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Tkacz K, Wojdyło A, Turkiewicz IP, Bobak Ł, Nowicka P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants (Basel) 2019;8:E618. [PMID: 31817215 DOI: 10.3390/antiox8120618] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
20 Li Y, Li P, Yang K, He Q, Wang Y, Sun Y, He C, Xiao P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules 2021;26:7189. [PMID: 34885771 DOI: 10.3390/molecules26237189] [Reference Citation Analysis]
21 Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020;25:E1170. [PMID: 32150954 DOI: 10.3390/molecules25051170] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
22 Ma X, Yang W, Marsol‐vall A, Laaksonen O, Yang B. Analysis of flavour compounds and prediction of sensory properties in sea buckthorn ( Hippophaë rhamnoides L.) berries. Int J Food Sci Technol 2020;55:1705-15. [DOI: 10.1111/ijfs.14442] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
23 Terpou A, Gialleli A, Bosnea L, Kanellaki M, Koutinas AA, Castro GR. Novel cheese production by incorporation of sea buckthorn berries ( Hippophae rhamnoides L.) supported probiotic cells. LWT - Food Science and Technology 2017;79:616-24. [DOI: 10.1016/j.lwt.2016.11.021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 6.4] [Reference Citation Analysis]
24 Dienaitė L, Pukalskas A, Pukalskienė M, Pereira CV, Matias AA, Venskutonis PR. Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn (Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants (Basel) 2020;9:E274. [PMID: 32218308 DOI: 10.3390/antiox9040274] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
25 Tabaszewska M, Antoniewska A, Rutkowska J, Skoczylas Ł, Słupski J, Skoczeń-Słupska R. Bioactive Components, Volatile Profile and In Vitro Antioxidative Properties of Taxus baccata L. Red Arils. Molecules 2021;26:4474. [PMID: 34361625 DOI: 10.3390/molecules26154474] [Reference Citation Analysis]
26 Popović Z, Matić R, Bajić-ljubičić J, Tešević V, Bojović S. Geographic variability of selected phenolic compounds in fresh berries of two Cornus species. Trees 2018;32:203-14. [DOI: 10.1007/s00468-017-1624-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Vilas-franquesa A, Saldo J, Juan B. Potential of sea buckthorn-based ingredients for the food and feed industry – a review. Food Prod Process and Nutr 2020;2. [DOI: 10.1186/s43014-020-00032-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
28 Hashem NM, Shehata MG. Antioxidant and Antimicrobial Activity of Cleome droserifolia (Forssk.) Del. and Its Biological Effects on Redox Status, Immunity, and Gut Microflora. Animals (Basel) 2021;11:1929. [PMID: 34203524 DOI: 10.3390/ani11071929] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ghendov-Mosanu A, Cristea E, Patras A, Sturza R, Padureanu S, Deseatnicova O, Turculet N, Boestean O, Niculaua M. Potential Application of Hippophae Rhamnoides in Wheat Bread Production. Molecules 2020;25:E1272. [PMID: 32168868 DOI: 10.3390/molecules25061272] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Ren R, Li N, Su C, Wang Y, Zhao X, Yang L, Li Y, Zhang B, Chen J, Ma X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv 2020;10:44654-71. [DOI: 10.1039/d0ra06488b] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Zheng W, Bai H, Han S, Bao F, Zhang K, Sun L, Du H, Yang Z. Analysis on the Constituents of Branches, Berries, and Leaves of Hippophae rhamnoides L. by UHPLC-ESI-QTOF-MS and Their Anti-Inflammatory Activities. Natural Product Communications 2019;14:1934578X1987140. [DOI: 10.1177/1934578x19871404] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ashwar BA, Gani A. Noncovalent Interactions of Sea Buckthorn Polyphenols with Casein and Whey Proteins: Effect on the Stability, Antioxidant Potential, and Bioaccessibility of Polyphenols. ACS Food Sci Technol 2021;1:1206-14. [DOI: 10.1021/acsfoodscitech.1c00103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Chen X, Fedrizzi B, Kilmartin PA, Quek SY. Free and Glycosidic Volatiles in Tamarillo ( Solanum betaceum Cav. syn. Cyphomandra betacea Sendt.) Juices Prepared from Three Cultivars Grown in New Zealand. J Agric Food Chem 2021;69:4518-32. [DOI: 10.1021/acs.jafc.1c00837] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Tkacz K, Wojdyło A, Turkiewicz IP, Ferreres F, Moreno DA, Nowicka P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry 2020;309:125766. [DOI: 10.1016/j.foodchem.2019.125766] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
35 Yang W, Ma X, Laaksonen O, He W, Kallio H, Yang B. Effects of Latitude and Weather Conditions on Proanthocyanidins in Blackcurrant ( Ribes nigrum ) of Finnish Commercial Cultivars. J Agric Food Chem 2019;67:14038-47. [DOI: 10.1021/acs.jafc.9b06031] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
36 Tkacz K, Wojdyło A, Turkiewicz IP, Nowicka P. Triterpenoids, phenolic compounds, macro- and microelements in anatomical parts of sea buckthorn (Hippophaë rhamnoides L.) berries, branches and leaves. Journal of Food Composition and Analysis 2021;103:104107. [DOI: 10.1016/j.jfca.2021.104107] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]