BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maturu P, Wei-Liang Y, Androutsopoulos VP, Jiang W, Wang L, Tsatsakis AM, Couroucli XI. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol 2018;114:23-33. [PMID: 29432836 DOI: 10.1016/j.fct.2018.02.026] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Yao H, Wallace J, Peterson AL, Scaffa A, Rizal S, Hegarty K, Maeda H, Chang JL, Oulhen N, Kreiling JA, Huntington KE, De Paepe ME, Barbosa G, Dennery PA. Timing and cell specificity of senescence drives postnatal lung development and injury. Nat Commun 2023;14:273. [PMID: 36650158 DOI: 10.1038/s41467-023-35985-4] [Reference Citation Analysis]
2 Zhong Y, Zhang Z, Chen X. Inhibition of miR-21 improves pulmonary vascular responses in bronchopulmonary dysplasia by targeting the DDAH1/ADMA/NO pathway. Open Med (Wars) 2022;17:1949-64. [PMID: 36561848 DOI: 10.1515/med-2022-0584] [Reference Citation Analysis]
3 Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol. [DOI: 10.1007/s10565-022-09773-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals 2022;15:1049. [DOI: 10.3390/ph15091049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Ma X, Ming H, Liu L, Zhu J, Pan L, Chen Y, Xiang Y. OGG1 in Lung—More than Base Excision Repair. Antioxidants 2022;11:933. [DOI: 10.3390/antiox11050933] [Reference Citation Analysis]
6 Shivanna B, Chu C, Moorthy B. The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022;23:1516. [PMID: 35163440 DOI: 10.3390/ijms23031516] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
7 Burke R, Chu C, Zhou GD, Putluri V, Putluri N, Stading RE, Couroucli X, Lingappan K, Moorthy B. Role of Human NADPH Quinone Oxidoreductase (NQO1) in Oxygen-Mediated Cellular Injury and Oxidative DNA Damage in Human Pulmonary Cells. Oxid Med Cell Longev 2021;2021:5544600. [PMID: 34691356 DOI: 10.1155/2021/5544600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Choi Y, Rekers L, Dong Y, Holzfurtner L, Goetz MJ, Shahzad T, Zimmer KP, Behnke J, Behnke J, Bellusci S, Ehrhardt H. Oxygen Toxicity to the Immature Lung-Part I: Pathomechanistic Understanding and Preclinical Perspectives. Int J Mol Sci 2021;22:11006. [PMID: 34681665 DOI: 10.3390/ijms222011006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
9 Khazdair MR, Saadat S, Aslani MR, Shakeri F, Boskabady MH. Experimental and clinical studies on the effects of Portulaca oleracea L. and its constituents on respiratory, allergic, and immunologic disorders, a review. Phytother Res 2021. [PMID: 34462981 DOI: 10.1002/ptr.7268] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Tao X, Fang Y, Huo C. Long non-coding RNA Rian protects against experimental bronchopulmonary dysplasia by sponging miR-421. Exp Ther Med 2021;22:781. [PMID: 34055080 DOI: 10.3892/etm.2021.10213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
11 Huang LT, Chou HC, Chen CM. Roxadustat attenuates hyperoxia-induced lung injury by upregulating proangiogenic factors in newborn mice. Pediatr Neonatol 2021;62:369-78. [PMID: 33865748 DOI: 10.1016/j.pedneo.2021.03.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Kuper-Sassé ME, MacFarlane PM, Mayer CA, Martin RJ, Prakash YS, Pabelick CM, Raffay TM. Prenatal Maternal Lipopolysaccharide and Mild Newborn Hyperoxia Increase Intrapulmonary Airway but Not Vessel Reactivity in a Mouse Model. Children (Basel) 2021;8:195. [PMID: 33807828 DOI: 10.3390/children8030195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ji L, Liu Z, Dong C, Wu D, Yang S, Wu L. LncRNA CASC2 targets CAV1 by competitively binding with microRNA-194-5p to inhibit neonatal lung injury. Exp Mol Pathol 2021;118:104575. [PMID: 33212124 DOI: 10.1016/j.yexmp.2020.104575] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
14 Yuan W, Liu X, Zeng L, Liu H, Cai B, Huang Y, Tao X, Mo L, Zhao L, Gao C. Silencing of Long Non-Coding RNA X Inactive Specific Transcript (Xist) Contributes to Suppression of Bronchopulmonary Dysplasia Induced by Hyperoxia in Newborn Mice via microRNA-101-3p and the transforming growth factor-beta 1 (TGF-β1)/Smad3 Axis. Med Sci Monit 2020;26:e922424. [PMID: 33070148 DOI: 10.12659/MSM.922424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Jiao B, Tang Y, Liu S, Guo C. Tetrandrine attenuates hyperoxia-induced lung injury in newborn rats via NF-κB p65 and ERK1/2 pathway inhibition. Ann Transl Med 2020;8:1018. [PMID: 32953818 DOI: 10.21037/atm-20-5573] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
16 Li X, Wang Q, Luo T, Li T. Decreased neutrophil levels in bronchopulmonary dysplasia infants. Pediatr Neonatol 2020;61:637-44. [PMID: 32863167 DOI: 10.1016/j.pedneo.2020.08.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Sun C, Zhang S, Wang J, Jiang W, Xin Q, Chen X, Zhang Z, Luan Y. EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis. Aging (Albany NY) 2019;11:2477-87. [PMID: 31035257 DOI: 10.18632/aging.101937] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
18 Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019;317:L832-87. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Cited by in Crossref: 74] [Cited by in F6Publishing: 76] [Article Influence: 18.5] [Reference Citation Analysis]
19 Lu X, Wang C, Wu D, Zhang C, Xiao C, Xu F. Quantitative proteomics reveals the mechanisms of hydrogen-conferred protection against hyperoxia-induced injury in type II alveolar epithelial cells. Exp Lung Res 2018;44:464-75. [PMID: 30973277 DOI: 10.1080/01902148.2019.1601296] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
20 Naeem A, Ahmed I, Silveyra P. Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. EMJ 2019. [DOI: 10.33590/emj/10313109] [Reference Citation Analysis]
21 Chen X, Zhang X, Pan J. Effect of Montelukast on Bronchopulmonary Dysplasia (BPD) and Related Mechanisms. Med Sci Monit 2019;25:1886-93. [PMID: 30862773 DOI: 10.12659/MSM.912774] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]