BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang Z, Long C, Sun Y. A high-order three-scale reduced asymptotic approach for thermo-mechanical problems of nonlinear heterogeneous materials with multiple spatial scales. European Journal of Mechanics - A/Solids 2020;80:103905. [DOI: 10.1016/j.euromechsol.2019.103905] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Lu M, Zheng Y, Du J, Zhang L, Zhang H. An adaptive multiscale finite element method for strain localization analysis with the Cosserat continuum theory. European Journal of Mechanics - A/Solids 2022;92:104450. [DOI: 10.1016/j.euromechsol.2021.104450] [Reference Citation Analysis]
2 Yang Z, Sun Y, Cui J, Ma Q. A high-order three-scale reduced homogenization for nonlinear heterogeneous materials with multiple configurations. Journal of Computational Physics 2021;425:109900. [DOI: 10.1016/j.jcp.2020.109900] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Yang Z, Sun Y, Liu Y, Ma Q. A second-order reduced multiscale approach for non-linear axisymmetric structures with periodic configurations. Applied Mathematical Modelling 2020;88:791-809. [DOI: 10.1016/j.apm.2020.07.009] [Reference Citation Analysis]
4 Kunc O, Fritzen F. Many‐scale finite strain computational homogenization via Concentric Interpolation. Int J Numer Methods Eng 2020;121:4689-4716. [DOI: 10.1002/nme.6454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]