BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mehmood SS, Lu G, Luo D, Hussain MA, Raza A, Zafar Z, Zhang X, Cheng Y, Zou X, Lv Y. Integrated analysis of transcriptomics and proteomics provides insights into the molecular regulation of cold response in Brassica napus. Environmental and Experimental Botany 2021;187:104480. [DOI: 10.1016/j.envexpbot.2021.104480] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu H, Li J, Wang L, Li X, Liu Y, Wang X, Gao T, Ma Y. Integrated transcriptomic and metabolomics analysis reveals abscisic acid signal transduction and sugar metabolism pathways as defense responses to cold stress in Argyranthemum frutescens. Environmental and Experimental Botany 2023;205:105115. [DOI: 10.1016/j.envexpbot.2022.105115] [Reference Citation Analysis]
2 Liu X, Wei R, Tian M, Liu J, Ruan Y, Sun C, Liu C. Combined Transcriptome and Metabolome Profiling Provide Insights into Cold Responses in Rapeseed (Brassica napus L.) Genotypes with Contrasting Cold-Stress Sensitivity. IJMS 2022;23:13546. [DOI: 10.3390/ijms232113546] [Reference Citation Analysis]
3 Rahman SU, Nawaz MF, Gul S, Yasin G, Hussain B, Li Y, Cheng H. State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A review. Ecotoxicol Environ Saf 2022;242:113952. [PMID: 35999767 DOI: 10.1016/j.ecoenv.2022.113952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhou R, Jiang F, Niu L, Song X, Yu L, Yang Y, Wu Z. Increase Crop Resilience to Heat Stress Using Omic Strategies. Front Plant Sci 2022;13:891861. [PMID: 35656008 DOI: 10.3389/fpls.2022.891861] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Rico-chávez AK, Franco JA, Fernandez-jaramillo AA, Contreras-medina LM, Guevara-gonzález RG, Hernandez-escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. Plants 2022;11:970. [DOI: 10.3390/plants11070970] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Ding X, Cheng Y, Liu Z, Li Q, Lv Y, Zou X. Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3.4” modulating cold tolerance. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.104848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Fan M, Zhang Y, Li X, Wu S, Yang M, Yin H, Liu W, Fan Z, Li J. Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. Front Plant Sci 2022;13:811791. [DOI: 10.3389/fpls.2022.811791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Rai AN, Rao M, Gupta NC, Kashyap A, Thakur S, Bharadwaj P, Perumal S, Suprasanna P. Transcriptomics Research and Resources in Brassica spp. The Brassica juncea Genome 2022. [DOI: 10.1007/978-3-030-91507-0_17] [Reference Citation Analysis]