BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KH, Zhou W. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany 2016;132:42-52. [DOI: 10.1016/j.envexpbot.2016.08.004] [Cited by in Crossref: 120] [Cited by in F6Publishing: 75] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Zvobgo G, Lwalaba JLW, Sehar S, Mapodzeke JM, Shamsi IH, Zhang G. The Tolerance Index and Translocation Factor were Used to Identify the Barley Genotypes with High Arsenic Stress Tolerance. Communications in Soil Science and Plant Analysis 2018;49:50-62. [DOI: 10.1080/00103624.2017.1421645] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
2 Guarino F, Miranda A, Castiglione S, Cicatelli A. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 2020;251:126310. [PMID: 32443249 DOI: 10.1016/j.chemosphere.2020.126310] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
3 Nahar N, Rahman A, Nawani NN, Ghosh S, Mandal A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology 2017;218:121-6. [DOI: 10.1016/j.jplph.2017.08.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 7.4] [Reference Citation Analysis]
4 Thongnok S, Siripornadulsil W, Siripornadulsil S. AsIII-oxidizing and Cd-tolerant plant growth-promoting bacteria synergistically reduce arsenic translocation, toxicity and accumulation in KDML105 rice. Environmental and Experimental Botany 2021;192:104660. [DOI: 10.1016/j.envexpbot.2021.104660] [Reference Citation Analysis]
5 Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiologia Plantarum. [DOI: 10.1111/ppl.13285] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
6 Rahman SU, Khalid M, Kayani SI, Tang K. The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition. Ecotoxicol Environ Saf 2020;206:111202. [PMID: 32889311 DOI: 10.1016/j.ecoenv.2020.111202] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Kumar A, Basu S, Kumar G. Evaluating the effect of seed-priming for improving arsenic tolerance in rice. J Plant Biochem Biotechnol . [DOI: 10.1007/s13562-021-00666-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sousa GV, Teles VLG, Pereira EG, Modolo LV, Costa LM. Interactions between As and Se upon long exposure time and effects on nutrients translocation in golden flaxseed seedlings. J Hazard Mater 2021;402:123565. [PMID: 32759002 DOI: 10.1016/j.jhazmat.2020.123565] [Reference Citation Analysis]
9 Mitra A, Chatterjee S, Moogouei R, Gupta D. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy 2017;7:67. [DOI: 10.3390/agronomy7040067] [Cited by in Crossref: 57] [Cited by in F6Publishing: 19] [Article Influence: 11.4] [Reference Citation Analysis]
10 G Meselhy A, Sharma S, Guo Z, Singh G, Yuan H, Tripathi RD, Xing B, Musante C, White JC, Dhankher OP. Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice (Oryza sativa L.). Environ Sci Technol 2021;55:13490-503. [PMID: 34570468 DOI: 10.1021/acs.est.1c05495] [Reference Citation Analysis]
11 Liu J, Dhungana B, Cobb GP. Copper oxide nanoparticles and arsenic interact to alter seedling growth of rice (Oryza sativa japonica). Chemosphere 2018;206:330-7. [PMID: 29754057 DOI: 10.1016/j.chemosphere.2018.05.021] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
12 Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M. miRNA regulation and stress adaptation in plants. Environmental and Experimental Botany 2021;184:104369. [DOI: 10.1016/j.envexpbot.2020.104369] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
13 Das S, Majumder B, Biswas AK. Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. Ecotoxicology 2022. [PMID: 35122561 DOI: 10.1007/s10646-022-02524-8] [Reference Citation Analysis]
14 Gupta K, Srivastava S, Saxena G, Kumar A. Application of Pteris vittata L. for phytoremediation of arsenic and biomonitoring of the process through cyto-genetic biomarkers of Trigonella foenum-graecum L. Physiol Mol Biol Plants. [DOI: 10.1007/s12298-022-01124-4] [Reference Citation Analysis]
15 Yu H, Yan X, Zheng X, Xu K, Zhong Q, Yang T, Liu F, Wang C, Shu L, He Z, Xiao F, Yan Q. Differential distribution of and similar biochemical responses to different species of arsenic and antimony in Vetiveria zizanioides. Environ Geochem Health 2020;42:3995-4010. [DOI: 10.1007/s10653-020-00658-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Terrón-camero LC, Peláez-vico MÁ, Del-val C, Sandalio LM, Romero-puertas MC, Brouquisse R. Role of nitric oxide in plant responses to heavy metal stress: exogenous application versus endogenous production. Journal of Experimental Botany 2019;70:4477-88. [DOI: 10.1093/jxb/erz184] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
17 Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L. Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review. Environ Pollut 2021;286:117389. [PMID: 34058445 DOI: 10.1016/j.envpol.2021.117389] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Garg N, Kashyap L. Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res 2017;24:18520-35. [DOI: 10.1007/s11356-017-9463-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.6] [Reference Citation Analysis]
19 Songy A, Vallet J, Gantet M, Boos A, Ronot P, Tarnus C, Clément C, Larignon P, Goddard ML, Fontaine F. Sodium arsenite effect on Vitis vinifera L. Physiology. J Plant Physiol 2019;238:72-9. [PMID: 31146184 DOI: 10.1016/j.jplph.2019.05.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
20 Kandhol N, Bharti, Bansal R, Parveen N, Singh VP, Chauhan DK, Sonah H, Sahi S, Grillo R, Peralta-Videa J, Deshmukh R, Tripathi DK. Nanoparticles as a potential protective agent for arsenic toxicity alleviation in plants. Environ Pollut 2022;:118887. [PMID: 35077838 DOI: 10.1016/j.envpol.2022.118887] [Reference Citation Analysis]
21 Natasha, Bibi I, Hussain K, Amen R, Hasan IMU, Shahid M, Bashir S, Niazi NK, Mehmood T, Asghar HN, Nawaz MF, Hussain MM, Ali W. The potential of microbes and sulfate in reducing arsenic phytoaccumulation by maize (Zea mays L.) plants. Environ Geochem Health 2021. [PMID: 33811285 DOI: 10.1007/s10653-021-00902-5] [Reference Citation Analysis]
22 Asgher M, Ahmed S, Sehar Z, Gautam H, Gandhi SG, Khan NA. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). Journal of Hazardous Materials 2021;401:123365. [DOI: 10.1016/j.jhazmat.2020.123365] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 13.0] [Reference Citation Analysis]
23 Hannan F, Islam F, Huang Q, Farooq MA, Ayyaz A, Fang R, Ali B, Xie X, Zhou W. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere 2021;282:130897. [DOI: 10.1016/j.chemosphere.2021.130897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Gu S, Cheng P, Bao X, Zhou W, Bai J, Jiao Y, Zhang T, Li Q. Insufficient Zn uptake reduces rice grain yield in integrated rice-crayfish culture – a case study in the Jianghan Plain, China. Archives of Agronomy and Soil Science. [DOI: 10.1080/03650340.2022.2042471] [Reference Citation Analysis]
25 Martins GC, de Oliveira C, Ribeiro PG, Natal-da-Luz T, Sousa JP, Bundschuh J, Guilherme LRG. Assessing the Brazilian prevention value for soil arsenic: Effects on emergence and growth of plant species relevant to tropical agroecosystems. Sci Total Environ 2019;694:133663. [PMID: 31756827 DOI: 10.1016/j.scitotenv.2019.133663] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
26 de Campos FV, de Oliveira JA, da Silva AA, Ribeiro C, dos Santos Farnese F. Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool? Ecological Indicators 2019;104:794-801. [DOI: 10.1016/j.ecolind.2019.04.048] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
27 López YC, Ortega GA, Reguera E. Hazardous ions decontamination: From the element to the material. Chemical Engineering Journal Advances 2022;11:100297. [DOI: 10.1016/j.ceja.2022.100297] [Reference Citation Analysis]
28 Hwang S, Chapagain S, Han A, Park YC, Park HM, Kim YH, Jang CS. Molecular characterization of rice arsenic-induced RING finger E3 ligase 2 ( OsAIR2 ) and its heterogeneous overexpression in Arabidopsis thaliana. Physiol Plantarum 2017;161:372-84. [DOI: 10.1111/ppl.12607] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
29 Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, Oh SE, Ahmad S. Human health implications, risk assessment and remediation of As-contaminated water: A critical review. Sci Total Environ 2017;601-602:756-69. [PMID: 28577410 DOI: 10.1016/j.scitotenv.2017.05.223] [Cited by in Crossref: 92] [Cited by in F6Publishing: 70] [Article Influence: 18.4] [Reference Citation Analysis]
30 Nabi A, Aftab T, Masroor M, Khan A, Naeem M. Exogenous triacontanol provides tolerance against arsenic-induced toxicity by scavenging ROS and improving morphology and physiological activities of Mentha arvensis L. Environ Pollut 2021;295:118609. [PMID: 34896400 DOI: 10.1016/j.envpol.2021.118609] [Reference Citation Analysis]
31 Zhang D, Yang S, Cheng H, Wang Y, Liu J. Speciation of inorganic and organic species of mercury and arsenic in lotus root using high performance liquid chromatography with inductively coupled plasma mass spectrometric detection in one run. Talanta 2019;199:620-7. [DOI: 10.1016/j.talanta.2019.03.023] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
32 Vromman D, Martínez J, Kumar M, Šlejkovec Z, Lutts S. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environ Sci Pollut Res 2018;25:34473-86. [DOI: 10.1007/s11356-018-3351-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
33 Lin S, Yang H, Na Z, Lin K. A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere 2018;192:258-66. [DOI: 10.1016/j.chemosphere.2017.10.163] [Cited by in Crossref: 25] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
34 Lebrun M, Miard F, Nandillon R, Léger J, Hattab-hambli N, Scippa GS, Bourgerie S, Morabito D. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere 2018;194:316-26. [DOI: 10.1016/j.chemosphere.2017.11.113] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 8.5] [Reference Citation Analysis]
35 Lewis DH. Boron: the essential element for vascular plants that never was. New Phytol 2018;221:1685-90. [DOI: 10.1111/nph.15519] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
36 Asadi karam E, Keramat B, Sorbo S, Maresca V, Asrar Z, Mozafari H, Basile A. Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environmental and Experimental Botany 2017;141:161-9. [DOI: 10.1016/j.envexpbot.2017.07.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 2.4] [Reference Citation Analysis]
37 Torres S, Martínez LD, Pacheco PH. Determination of arsenic species distribution in extra virgin olive oils from arsenic-endemic areas by dimensional chromatography and atomic spectroscopy. Journal of Food Composition and Analysis 2018;66:121-6. [DOI: 10.1016/j.jfca.2017.12.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
38 Jha PK, Tripathi P. Arsenic and fluoride contamination in groundwater: A review of global scenarios with special reference to India. Groundwater for Sustainable Development 2021;13:100576. [DOI: 10.1016/j.gsd.2021.100576] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
39 Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci Total Environ 2021;800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Gu J, Zhou H, Tang H, Yang W, Zeng M, Liu Z, Peng P, Liao B. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. Ecotoxicology and Environmental Safety 2019;171:451-9. [DOI: 10.1016/j.ecoenv.2019.01.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
41 Samanta S, Banerjee A, Roychoudhury A. Arsenic Toxicity is Counteracted by Exogenous Application of Melatonin to Different Extents in Arsenic-susceptible and Arsenic-tolerant Rice Cultivars. J Plant Growth Regul. [DOI: 10.1007/s00344-021-10432-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
42 Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. Environ Sci Pollut Res Int 2021. [PMID: 34859349 DOI: 10.1007/s11356-021-17817-4] [Reference Citation Analysis]
43 Singh S, Kumar V, Datta S, Dhanjal DS, Singh S, Kumar S, Kapoor D, Prasad R, Singh J. Physiological responses, tolerance, and remediation strategies in plants exposed to metalloids. Environ Sci Pollut Res 2021;28:40233-48. [DOI: 10.1007/s11356-020-10293-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
44 Boorboori MR, Gao Y, Wang H, Fang C. Usage of Si, P, Se, and Ca Decrease Arsenic Concentration/Toxicity in Rice, a Review. Applied Sciences 2021;11:8090. [DOI: 10.3390/app11178090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Karwal M, Kaushik A. Bioconversion of lawn waste amended with kitchen waste and buffalo dung in to value-added vermicompost using Eisenia foetida to alleviate landfill burden. J Mater Cycles Waste Manag 2021;23:358-70. [DOI: 10.1007/s10163-020-01101-7] [Reference Citation Analysis]
46 Asgher M, Sehar Z, Rehaman A, Rashid S, Ahmed S, Per TS, Alyemeni MN, Khan NA. Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). Environmental Pollution 2022;301:119008. [DOI: 10.1016/j.envpol.2022.119008] [Reference Citation Analysis]
47 Alvarenga IFS, dos Santos FE, Silveira GL, Andrade-vieira LF, Martins GC, Guilherme LRG. Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. Science of The Total Environment 2020;698:134272. [DOI: 10.1016/j.scitotenv.2019.134272] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
48 Roque-álvarez I, Sosa-rodríguez FS, Vazquez-arenas J, Escobedo-bretado MA, Labastida I, Corral-rivas JJ, Aragón-piña A, Armienta MA, Ponce-peña P, Lara RH. Spatial distribution, mobility and bioavailability of arsenic, lead, copper and zinc in low polluted forest ecosystem in North-western Mexico. Chemosphere 2018;210:320-33. [DOI: 10.1016/j.chemosphere.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
49 Khare R, Kumar S, Shukla T, Ranjan A, Trivedi PK. Differential sulphur assimilation mechanism regulates response of Arabidopsis thaliana natural variation towards arsenic stress under limiting sulphur condition. J Hazard Mater 2017;337:198-207. [PMID: 28525880 DOI: 10.1016/j.jhazmat.2017.05.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
50 Armendariz AL, Talano MA, Olmos Nicotra MF, Escudero L, Breser ML, Porporatto C, Agostini E. Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiology and Biochemistry 2019;138:26-35. [DOI: 10.1016/j.plaphy.2019.02.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
51 Budzyńska S, Krzesłowska M, Niedzielski P, Goliński P, Mleczek M. Arsenate phytoextraction abilities of one-year-old tree species and its effects on the nutritional element content in plant organs. International Journal of Phytoremediation 2019;21:1019-31. [DOI: 10.1080/15226514.2019.1594684] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
52 Khan MIR, Khan NA, Jahan B, Goyal V, Hamid J, Khan S, Iqbal N, Alamri S, Siddiqui MH. Phosphorus supplementation modulates nitric oxide biosynthesis and stabilizes the defence system to improve arsenic stress tolerance in mustard. Plant Biol (Stuttg) 2021;23 Suppl 1:152-61. [PMID: 33176068 DOI: 10.1111/plb.13211] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
53 Coelho DG, Marinato CS, de Matos LP, de Andrade HM, da Silva VM, Santos-neves PH, Araújo SC, Oliveira JA. Is arsenite more toxic than arsenate in plants? Ecotoxicology 2020;29:196-202. [DOI: 10.1007/s10646-019-02152-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
54 Saeed M, Masood Quraishi U, Naseem Malik R. Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms. Food Chem 2021;355:129607. [PMID: 33799259 DOI: 10.1016/j.foodchem.2021.129607] [Reference Citation Analysis]
55 Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. Environ Pollut 2021;290:118029. [PMID: 34474375 DOI: 10.1016/j.envpol.2021.118029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
56 da Silva AA, de Oliveira JA, de Campos FV, Ribeiro C, Farnese FDS, Costa AC. Phytoremediation potential of Salvinia molesta for arsenite contaminated water: role of antioxidant enzymes. Theor Exp Plant Physiol 2018;30:275-86. [DOI: 10.1007/s40626-018-0121-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
57 Ma J, Lei E, Lei M, Liu Y, Chen T. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 2018;194:737-44. [DOI: 10.1016/j.chemosphere.2017.11.135] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
58 Liu J, Simms M, Song S, King RS, Cobb GP. Physiological Effects of Copper Oxide Nanoparticles and Arsenic on the Growth and Life Cycle of Rice ( Oryza sativa japonica 'Koshihikari'). Environ Sci Technol 2018;52:13728-37. [PMID: 30403853 DOI: 10.1021/acs.est.8b03731] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
59 Raza A, Khan AHA, Nawaz I, Qu Z, Yousaf S, Ali MA, Sayal AU, Iqbal M. Evaluation of Arsenic-Induced Stress in Dahlia pinnata Cav.: Morphological and Physiological Response. Soil and Sediment Contamination: An International Journal 2019;28:716-28. [DOI: 10.1080/15320383.2019.1657380] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
60 Allevato E, Stazi SR, Marabottini R, D'Annibale A. Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice. Ecotoxicol Environ Saf 2019;185:109701. [PMID: 31562999 DOI: 10.1016/j.ecoenv.2019.109701] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
61 Kim JH, Lee JE, Jang CS. Regulation of Oryza sativa molybdate transporter1;3 degradation via RING finger E3 ligase OsAIR3. J Plant Physiol 2021;264:153484. [PMID: 34343729 DOI: 10.1016/j.jplph.2021.153484] [Reference Citation Analysis]
62 Deepa A, Padmini V. Highly Efficient Colorimetric Sensor for Selective and Sensitive Detection of Arsenite Ion (III) in Aqueous Medium. J Fluoresc 2019;29:813-8. [DOI: 10.1007/s10895-019-02401-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Budzyńska S, Mleczek P, Szostek M, Goliński P, Niedzielski P, Kaniuczak J, Rissmann I, Rymaniak E, Mleczek M. Phytoextraction of arsenic forms in selected tree species growing in As-polluted mining sludge. J Environ Sci Health A Tox Hazard Subst Environ Eng 2019;54:933-42. [PMID: 31084458 DOI: 10.1080/10934529.2019.1609322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Ulhassan Z, Bhat JA, Zhou W, Senan AM, Alam P, Ahmad P. Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review. Environ Pollut 2022;302:119038. [PMID: 35196561 DOI: 10.1016/j.envpol.2022.119038] [Reference Citation Analysis]
65 Farooq MA, Hong Z, Islam F, Noor Y, Hannan F, Zhang Y, Ayyaz A, Mwamba TM, Zhou W, Song W. Comprehensive proteomic analysis of arsenic induced toxicity reveals the mechanism of multilevel coordination of efficient defense and energy metabolism in two Brassica napus cultivars. Ecotoxicol Environ Saf 2021;208:111744. [PMID: 33396070 DOI: 10.1016/j.ecoenv.2020.111744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Ayyaz A, Miao Y, Hannan F, Islam F, Zhang K, Xu J, Farooq MA, Zhou W. Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. Physiol Plant 2021;172:1133-48. [PMID: 33599291 DOI: 10.1111/ppl.13375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
67 Rego A, Mota C, Gueifão S, Ventura M, Delgado I, Lopes J, Matos A, Castanheira I. Amino acid contents and toxically relevant arsenic of rice varieties consumed in Portugal. Measurement 2018;113:189-95. [DOI: 10.1016/j.measurement.2017.03.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
68 Edelstein M, Ben-hur M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae 2018;234:431-44. [DOI: 10.1016/j.scienta.2017.12.039] [Cited by in Crossref: 112] [Cited by in F6Publishing: 45] [Article Influence: 28.0] [Reference Citation Analysis]
69 Zhen Z, Yan C, Zhao Y. Influence of epiphytic bacteria on arsenic metabolism in Hydrilla verticillata. Environ Pollut 2020;261:114232. [PMID: 32114122 DOI: 10.1016/j.envpol.2020.114232] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
70 Farias JG, Bernardy K, Schwalbert R, Del Frari BK, Meharg A, Carey M, Marques AC, Signes-pastor A, Sausen D, Schorr MR, Tavares MS, Nicoloso FT. Effect of phosphorus on arsenic uptake and metabolism in rice cultivars differing in phosphorus use efficiency and response. An Acad Bras Ciênc 2017;89:163-74. [DOI: 10.1590/0001-3765201720160320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
71 Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. Journal of Hazardous Materials 2021;406:124289. [DOI: 10.1016/j.jhazmat.2020.124289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
72 da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, Oliveira JA. Arsenic-hyperaccumulation and antioxidant system in the aquatic macrophyte Spirodela intermedia W. Koch (Lemnaceae). Theor Exp Plant Physiol 2017;29:203-13. [DOI: 10.1007/s40626-017-0096-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
73 Al Mahmud J, Bhuyan MHMB, Anee TI, Nahar K, Fujita M, Hasanuzzaman M. Reactive Oxygen Species Metabolism and Antioxidant Defense in Plants Under Metal/Metalloid Stress. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF, editors. Plant Abiotic Stress Tolerance. Cham: Springer International Publishing; 2019. pp. 221-57. [DOI: 10.1007/978-3-030-06118-0_10] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
74 Zhen Z, Yan C, Zhao Y. Epiphytic bacterial community enhances arsenic uptake and reduction by Myriophyllum verticillatum. Environ Sci Pollut Res Int 2020;27:44205-17. [PMID: 32757129 DOI: 10.1007/s11356-020-10274-5] [Reference Citation Analysis]
75 Simiele M, Lebrun M, Miard F, Trupiano D, Poupart P, Forestier O, Scippa GS, Bourgerie S, Morabito D. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. Science of The Total Environment 2020;710:136203. [DOI: 10.1016/j.scitotenv.2019.136203] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
76 Muhammad J, Xu P, Khan S, Su JQ, Sarwar T, Nazneen S, Khan A. Arsenic contribution of poultry manure towards soils and food plants contamination and associated cancer risk in Khyber Pakhtunkhwa, Pakistan. Environ Geochem Health 2021. [PMID: 34542787 DOI: 10.1007/s10653-021-01096-6] [Reference Citation Analysis]
77 Sun Q, Ding S, Zhang L, Chen X, Liu Q, Chen M, Wang Y. Effect of phosphorus competition on arsenic bioavailability in dry and flooded soils: comparative study using diffusive gradients in thin films and chemical extraction methods. J Soils Sediments 2019;19:1830-8. [DOI: 10.1007/s11368-018-2196-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
78 Raffa CM, Chiampo F, Shanthakumar S. Remediation of Metal/Metalloid-Polluted Soils: A Short Review. Applied Sciences 2021;11:4134. [DOI: 10.3390/app11094134] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
79 Shaji E, Santosh M, Sarath K, Prakash P, Deepchand V, Divya B. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers 2021;12:101079. [DOI: 10.1016/j.gsf.2020.08.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 12] [Article Influence: 29.0] [Reference Citation Analysis]
80 Martínez-castillo JI, Saldaña-robles A, Ozuna C. Arsenic stress in plants: A metabolomic perspective. Plant Stress 2022;3:100055. [DOI: 10.1016/j.stress.2022.100055] [Reference Citation Analysis]
81 Shabnam N, Kim M, Kim H. Iron (III) oxide nanoparticles alleviate arsenic induced stunting in Vigna radiata. Ecotoxicology and Environmental Safety 2019;183:109496. [DOI: 10.1016/j.ecoenv.2019.109496] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
82 Leão GA, Oliveira JAD, Felipe RTA, Farnese FS. Phytoremediation of arsenic-contaminated water: the role of antioxidant metabolism of Azolla caroliniana Willd. (Salviniales). Acta Bot Bras 2017;31:161-8. [DOI: 10.1590/0102-33062016abb0407] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.6] [Reference Citation Analysis]
83 Li Q, Wang H, Wang H, Zheng W, Wu D, Wang Z. Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress. Ecotoxicology and Environmental Safety 2018;158:37-43. [DOI: 10.1016/j.ecoenv.2018.04.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
84 Sil P, Das P, Biswas AK. Impact of Exogenous Silicate Amendments on Nitrogen Metabolism in Wheat Seedlings Subjected to Arsenate Stress. Silicon 2020;12:535-45. [DOI: 10.1007/s12633-019-00158-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
85 Kofroňová M, Hrdinová A, Mašková P, Soudek P, Tremlová J, Pinkas D, Lipavská H. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotoxicology and Environmental Safety 2019;174:295-304. [DOI: 10.1016/j.ecoenv.2019.02.028] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
86 Alamri S, Alsubaie QD, Al-Amri AA, Al-Munqedi B, Ali HM, Kushwaha BK, Singh VP, Siddiqui MH. Priming of tomato seedlings with 2-oxoglutarate induces arsenic toxicity alleviatory responses by involving endogenous nitric oxide. Physiol Plant 2021;173:45-57. [PMID: 32656764 DOI: 10.1111/ppl.13168] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
87 Liu J, Wolfe K, Cobb GP. Exposure to Copper Oxide Nanoparticles and Arsenic Causes Intergenerational Effects on Rice (Oryza sativa japonica Koshihikari) Seed Germination and Seedling Growth. Environ Toxicol Chem 2019;38:1978-87. [PMID: 31162729 DOI: 10.1002/etc.4510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
88 Khan MA, Yasmin H, Shah ZA, Rinklebe J, Alyemeni MN, Ahmad P. Co application of biofertilizer and zinc oxide nanoparticles upregulate protective mechanism culminating improved arsenic resistance in maize. Chemosphere 2022;:133796. [PMID: 35104550 DOI: 10.1016/j.chemosphere.2022.133796] [Reference Citation Analysis]
89 Parveen N, Berni R, Sudhakaran S, Bhat JA, Shinde S, Ramawat N, Singh VP, Sahi S, Deshmukh R, Chauhan DK, Tripathi DK. Metalloids in plants: A systematic discussion beyond description. Annals of Applied Biology 2022;180:7-25. [DOI: 10.1111/aab.12666] [Reference Citation Analysis]
90 Samanta S, Roychoudhury A. Recent trend in nanoparticle research in regulating arsenic bioaccumulation and mitigating arsenic toxicity in plant species. J Plant Biochem Biotechnol 2021;30:793-812. [DOI: 10.1007/s13562-021-00727-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernández-Zapata JC, Martínez Nicolás JJ, Garcia-Sanchez F. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol Environ Saf 2019;180:588-99. [PMID: 31132554 DOI: 10.1016/j.ecoenv.2019.05.037] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
92 Nahar K, Rhaman MS, Parvin K, Bardhan K, Marques DN, García-caparrós P, Hasanuzzaman M. Arsenic-Induced Oxidative Stress and Antioxidant Defense in Plants. Stresses 2022;2:179-209. [DOI: 10.3390/stresses2020013] [Reference Citation Analysis]
93 Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. J Hazard Mater 2021;417:126050. [PMID: 34229383 DOI: 10.1016/j.jhazmat.2021.126050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Coelho DG, de Andrade HM, Marinato CS, Araujo SC, de Matos LP, da Silva VM, de Oliveira JA. Exogenous jasmonic acid enhances oxidative protection of Lemna valdiviana subjected to arsenic. Acta Physiol Plant 2020;42. [DOI: 10.1007/s11738-020-03086-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
95 Nurnaeimah N, Mat N, Suryati Mohd K, Badaluddin NA, Yusoff N, Sajili MH, Mahmud K, Mohd Adnan AF, Khandaker MM. The Effects of Hydrogen Peroxide on Plant Growth, Mineral Accumulation, as Well as Biological and Chemical Properties of Ficus deltoidea. Agronomy 2020;10:599. [DOI: 10.3390/agronomy10040599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
96 Shamshir F, Abbas G, Amjad M, Rizwan M, Akram M, Ahmad S, Tahir M, Ali S, Farooq ABU. Physiological and biochemical characterization of Kalongi (Nigella sativa) against arsenic stress: Implications for human health risk assessment. Environ Pollut 2022;298:118829. [PMID: 35031409 DOI: 10.1016/j.envpol.2022.118829] [Reference Citation Analysis]
97 Khan Z, Thounaojam DTC, Upadhyaya DH. Arsenic stress in Rice (Oryza sativa) and its amelioration approaches. Plant Stress 2022. [DOI: 10.1016/j.stress.2022.100076] [Reference Citation Analysis]
98 Farooq MA, Islam F, Yang C, Nawaz A, Athar H, Gill RA, Ali B, Song W, Zhou W. Methyl jasmonate alleviates arsenic-induced oxidative damage and modulates the ascorbate–glutathione cycle in oilseed rape roots. Plant Growth Regul 2018;84:135-48. [DOI: 10.1007/s10725-017-0327-7] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 7.4] [Reference Citation Analysis]
99 Debiec-andrzejewska K, Krucon T, Piatkowska K, Drewniak L. Enhancing the plants growth and arsenic uptake from soil using arsenite-oxidizing bacteria. Environmental Pollution 2020;264:114692. [DOI: 10.1016/j.envpol.2020.114692] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
100 Sandil S, Dobosy P, Kröpfl K, Füzy A, Óvári M, Záray G. Effect of irrigation water containing arsenic on elemental composition of bean and lettuce plants cultivated in calcareous sandy soil. Food Prod Process and Nutr 2019;1. [DOI: 10.1186/s43014-019-0014-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
101 Gao Z, Tang X, Ye M, Gul I, Chen H, Yan G, Chang SX, Liang Y. Effects of silicon on the uptake and accumulation of arsenite and dimethylarsinic acid in rice (Oryza sativa L.). J Hazard Mater 2021;409:124442. [PMID: 33168309 DOI: 10.1016/j.jhazmat.2020.124442] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Krayem M, Deluchat V, Hourdin P, Labrousse P. Are Myriophyllum alterniflorum biomarker responses to arsenic stress differentially affected by hydrodynamic conditions? Chemosphere 2019;225:497-506. [PMID: 30897473 DOI: 10.1016/j.chemosphere.2019.03.065] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
103 Saldaña-Robles N, Damián-Ascencio C, Gutiérrez-Chávez A, Zanor G, Guerra-Sánchez R, Herrera-Díaz I, Saldaña-Robles A. Spatio-temporal groundwater arsenic distribution in Central Mexico: implications in accumulation of arsenic in barley (Hordeum vulgare L.) agrosystem. Environ Sci Pollut Res Int 2021;28:11333-47. [PMID: 33123880 DOI: 10.1007/s11356-020-11317-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
104 Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere 2020;250:126308. [PMID: 32135439 DOI: 10.1016/j.chemosphere.2020.126308] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
105 Li X, Ahammed GJ, Zhang XN, Zhang L, Yan P, Zhang LP, Fu JY, Han WY. Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 2021;403:123922. [PMID: 33264973 DOI: 10.1016/j.jhazmat.2020.123922] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]