BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Komkova MA, Pasquarelli A, Andreev EA, Galushin AA, Karyakin AA. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta 2020;339:135924. [DOI: 10.1016/j.electacta.2020.135924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Gayda G, Stasyuk N, Zakalskiy A, Gonchar M, Katz E. Arginine-hydrolyzing enzymes for electrochemical biosensors. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.100941] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Warczak M, Osial M, Urbanska W, Pisarek M, Nogala W, Opallo M. Hydrogen peroxide generation catalyzed by battery waste material. Electrochemistry Communications 2022. [DOI: 10.1016/j.elecom.2022.107239] [Reference Citation Analysis]
3 Yang Z, Li M, Li H, Li H, Li C, Yang B. Polycrystalline boron-doped diamond-based electrochemical biosensor for simultaneous detection of dopamine and melatonin. Anal Chim Acta 2020;1135:73-82. [PMID: 33070861 DOI: 10.1016/j.aca.2020.08.042] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
4 Joshi P, Riley P, Goud K, Mishra RK, Narayan R. Recent advances of boron-doped diamond electrochemical sensors toward environmental applications. Current Opinion in Electrochemistry 2022;32:100920. [DOI: 10.1016/j.coelec.2021.100920] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Kondo T. Recent electroanalytical applications of boron-doped diamond electrodes. Current Opinion in Electrochemistry 2022;32:100891. [DOI: 10.1016/j.coelec.2021.100891] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Kalisz J, Nogala W, Adamiak W, Gocyla M, Girault HH, Opallo M. The Solvent Effect on H2 O2 Generation at Room Temperature Ionic Liquid|Water Interface. Chemphyschem 2021;22:1352-60. [PMID: 33909320 DOI: 10.1002/cphc.202100219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Zhang W, Ma J, Meng F, Jiang Y, Shen L, Sun T, Qin Y, Zhu N, Zhang M. Wearable biomolecule smart sensor based on Au@PB NPs with high electrochemical activity. Journal of Alloys and Compounds 2022;891:161983. [DOI: 10.1016/j.jallcom.2021.161983] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Xie B, Sun B, Gao T, Ma Y, Yin G, Zuo P. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coordination Chemistry Reviews 2022;460:214478. [DOI: 10.1016/j.ccr.2022.214478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Rocha RG, Stefano JS, Cardoso RM, Zambiazi PJ, Bonacin JA, Richter EM, Munoz RAA. Electrochemical synthesis of Prussian blue from iron impurities in 3D-printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide. Talanta 2020;219:121289. [PMID: 32887031 DOI: 10.1016/j.talanta.2020.121289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
10 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Zhang M, Zhang W, Engelbrekt C, Hou C, Zhu N, Chi Q. Size‐Dependent and Self‐Catalytic Gold@Prussian Blue Nanoparticles for the Electrochemical Detection of Hydrogen Peroxide. ChemElectroChem 2020;7:3818-23. [DOI: 10.1002/celc.202000988] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Jian Z, Xu J, Yang N, Han S, Jiang X. A perspective on diamond composites and their electrochemical applications. Current Opinion in Electrochemistry 2021;30:100835. [DOI: 10.1016/j.coelec.2021.100835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Esmail Tehrani S, Quang Nguyen L, Garelli G, Jensen BM, Ruzgas T, Emnéus J, Sylvest Keller S. Hydrogen Peroxide Detection Using Prussian Blue‐modified 3D Pyrolytic Carbon Microelectrodes. Electroanalysis 2021;33:2516-28. [DOI: 10.1002/elan.202100387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Anojčić J, Kullawanichaiyanan K, Mutić S, Guzsvány V, Leesakul N, Mimica Dukić N. Self-assembled iridium(III) complex microspheres on the carbon paste electrode surface for signal enhanced amperometric determination of H2O2 in color cream developers. Journal of Electroanalytical Chemistry 2022;904:115873. [DOI: 10.1016/j.jelechem.2021.115873] [Reference Citation Analysis]
15 Quezada V, Martinez T, Nelson R, Pérez-fehrmann M, Zaragoza G, Vizcarra A, Kesternich V, Hernández-saravia LP. A novel platform of using copper (II) complex with triazole-carboxilated modified as bidentated ligand SPCE for the detection of hydrogen peroxide in milk. Journal of Electroanalytical Chemistry 2020;879:114763. [DOI: 10.1016/j.jelechem.2020.114763] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Matias TA, de Faria LV, Rocha RG, Silva MNT, Nossol E, Richter EM, Muñoz RAA. Prussian blue-modified laser-induced graphene platforms for detection of hydrogen peroxide. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05295-5] [Reference Citation Analysis]
17 Jiang Y, Yang Y, Shen L, Ma J, Ma H, Zhu N. Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal Chem 2021. [PMID: 34874165 DOI: 10.1021/acs.analchem.1c04420] [Reference Citation Analysis]
18 Kongkaew S, Joonyong K, Kanatharana P, Thavarungkul P, Limbut W. Fabrication and characterization of Prussian blue screen-printed working electrode and their application for free chlorine monitoring in swimming pool water. Electrochimica Acta 2021;388:138558. [DOI: 10.1016/j.electacta.2021.138558] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Demkiv O, Stasyuk N, Serkiz R, Gayda G, Nisnevitch M, Gonchar M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences 2021;11:777. [DOI: 10.3390/app11020777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
20 Peng R, Offenhäusser A, Ermolenko Y, Mourzina Y. Biomimetic sensor based on Mn(III) meso-tetra(N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sensors and Actuators B: Chemical 2020;321:128437. [DOI: 10.1016/j.snb.2020.128437] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
21 Brainina KZ, Kazakov YE. Electrochemical Hybrid Methods and Sensors for Antioxidant/Oxidant Activity Monitoring and Their Use as a Diagnostic Tool of Oxidative Stress: Future Perspectives and Challenges. Chemosensors 2020;8:90. [DOI: 10.3390/chemosensors8040090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]