BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol. 2008;584:40-48. [PMID: 18299127 DOI: 10.1016/j.ejphar.2008.01.026] [Cited by in Crossref: 188] [Cited by in F6Publishing: 192] [Article Influence: 13.4] [Reference Citation Analysis]
Number Citing Articles
1 Manco M, Putignani L, Bottazzo GF. Gut Microbiota, Lipopolysaccharides, and Innate Immunity in the Pathogenesis of Obesity and Cardiovascular Risk. Endocrine Reviews 2010;31:817-44. [DOI: 10.1210/er.2009-0030] [Cited by in Crossref: 268] [Cited by in F6Publishing: 262] [Article Influence: 22.3] [Reference Citation Analysis]
2 Rogava M, Braun AD, van der Sluis TC, Shridhar N, Tüting T, Gaffal E. Tumor cell intrinsic Toll-like receptor 4 signaling promotes melanoma progression and metastatic dissemination. Int J Cancer 2022;150:142-51. [PMID: 34528710 DOI: 10.1002/ijc.33804] [Reference Citation Analysis]
3 Wu Z, Wang S, Wu I, Mata M, Fink DJ. Activation of TLR-4 to produce tumour necrosis factor-α in neuropathic pain caused by paclitaxel. Eur J Pain 2015;19:889-98. [PMID: 25388329 DOI: 10.1002/ejp.613] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
4 Greulich BM, Plotnik JP, Jerde TJ, Hollenhorst PC. Toll-like receptor 4 signaling activates ERG function in prostate cancer and provides a therapeutic target. NAR Cancer 2021;3:zcaa046. [PMID: 33554122 DOI: 10.1093/narcan/zcaa046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Rodríguez-Valentín M, López S, Rivera M, Ríos-Olivares E, Cubano L, Boukli NM. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J Immunol Res 2018;2018:8741698. [PMID: 30116757 DOI: 10.1155/2018/8741698] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
6 Torres-Ruiz J, Carrillo-Vazquez DA, Padilla-Ortiz DM, Vazquez-Rodriguez R, Nuñez-Alvarez C, Juarez-Vega G, Gomez-Martin D. TLR expression in peripheral monocyte subsets of patients with idiopathic inflammatory myopathies: association with clinical and immunological features. J Transl Med 2020;18:125. [PMID: 32164729 DOI: 10.1186/s12967-020-02290-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Li J, Wang X, Zhang F, Yin H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther. 2013;138:441-451. [PMID: 23531543 DOI: 10.1016/j.pharmthera.2013.03.003] [Cited by in Crossref: 75] [Cited by in F6Publishing: 72] [Article Influence: 8.3] [Reference Citation Analysis]
8 Pulakazhi Venu VK, Adijiang A, Seibert T, Chen YX, Shi C, Batulan Z, O'Brien ER. Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/- mice. FASEB J 2017;31:2364-79. [PMID: 28232480 DOI: 10.1096/fj.201601188R] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
9 Wang X, Smith C, Yin H. Targeting Toll-like receptors with small molecule agents. Chem Soc Rev 2013;42:4859-66. [PMID: 23503527 DOI: 10.1039/c3cs60039d] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 8.4] [Reference Citation Analysis]
10 Samarpita S, Kim JY, Rasool MK, Kim KS. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res Ther 2020;22:16. [PMID: 31973752 DOI: 10.1186/s13075-020-2097-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
11 Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 2011;79:34-41. [PMID: 20881006 DOI: 10.1124/mol.110.068064] [Cited by in Crossref: 301] [Cited by in F6Publishing: 294] [Article Influence: 25.1] [Reference Citation Analysis]
12 Zhang N, Liang H, Farese RV, Li J, Musi N, Hussey SE. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats. PLoS One 2015;10:e0132575. [PMID: 26196892 DOI: 10.1371/journal.pone.0132575] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
13 Gabrilovich MI, Walrath J, van Lunteren J, Nethery D, Seifu M, Kern JA, Harding CV, Tuscano L, Lee H, Williams SD, Mackay W, Tomashefski JF Jr, Silver RF. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol 2013;173:512-22. [PMID: 23668840 DOI: 10.1111/cei.12138] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]
14 Kashani B, Zandi Z, Bashash D, Zaghal A, Momeny M, Poursani EM, Pourbagheri-sigaroodi A, Mousavi SA, Ghaffari SH. Small molecule inhibitor of TLR4 inhibits ovarian cancer cell proliferation: new insight into the anticancer effect of TAK-242 (Resatorvid). Cancer Chemother Pharmacol 2020;85:47-59. [DOI: 10.1007/s00280-019-03988-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
15 Monguió-Tortajada M, Franquesa M, Sarrias MR, Borràs FE. Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis 2018;9:499. [PMID: 29717111 DOI: 10.1038/s41419-018-0520-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
16 Wang J, He GZ, Wang YK, Zhu QK, Chen W, Guo T. TLR4-HMGB1-, MyD88- and TRIF-dependent signaling in mouse intestinal ischemia/reperfusion injury. World J Gastroenterol 2015; 21(27): 8314-8325 [PMID: 26217083 DOI: 10.3748/wjg.v21.i27.8314] [Cited by in CrossRef: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
17 Kataoka H, Mori T, Into T. Citrobacter koseri stimulates dendritic cells to induce IL-33 expression via abundant ATP production. J Med Microbiol 2021;70. [PMID: 33439115 DOI: 10.1099/jmm.0.001303] [Reference Citation Analysis]
18 O’Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev. 2009;61:177-197. [PMID: 19474110 DOI: 10.1124/pr.109.001073] [Cited by in Crossref: 302] [Cited by in F6Publishing: 285] [Article Influence: 23.2] [Reference Citation Analysis]
19 Ali I, Nanchal R, Husnain F, Audi S, Konduri GG, Densmore JC, Medhora M, Jacobs ER. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide. Pulm Circ 2013;3:578-88. [PMID: 24618542 DOI: 10.1086/674337] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
20 Liang H, Hussey SE, Sanchez-Avila A, Tantiwong P, Musi N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One. 2013;8:e63983. [PMID: 23704966 DOI: 10.1371/journal.pone.0063983] [Cited by in Crossref: 93] [Cited by in F6Publishing: 84] [Article Influence: 10.3] [Reference Citation Analysis]
21 Shao Z, Jiao B, Liu T, Cheng Y, Liu H, Liu Y. TAK-242 treatment ameliorates liver ischemia/reperfusion injury by inhibiting TLR4 signaling pathway in a swine model of Maastricht-category-III cardiac death. Biomed Pharmacother 2016;84:495-501. [PMID: 27685793 DOI: 10.1016/j.biopha.2016.09.036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
22 Zhang D, Li H, Li T, Zhou M, Hao S, Yan H, Yu Z, Li W, Li K, Hang C. TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury: Implication in the treatment of human brain injury. Neurochemistry International 2014;75:11-8. [DOI: 10.1016/j.neuint.2014.05.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
23 Song Y, Liu X, Yue H, Ji J, Dou H, Hou Y. Anti-inflammatory effects of benzenediamine derivate FC-98 on sepsis injury in mice via suppression of JNK, NF-κB and IRF3 signaling pathways. Mol Immunol 2015;67:183-92. [PMID: 26032013 DOI: 10.1016/j.molimm.2015.05.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
24 Wu C, Ding X, Zhou C, Ye P, Sun Y, Wu J, Zhang A, Huang X, Ren L, Wang K, Deng P, Yue Z, Chen J, Wang S, Xia J. Inhibition of intimal hyperplasia in murine aortic allografts by administration of a small-molecule TLR4 inhibitor TAK-242. Sci Rep 2017;7:15799. [PMID: 29150694 DOI: 10.1038/s41598-017-16160-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
25 Kiripolsky J, Romano RA, Kasperek EM, Yu G, Kramer JM. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren's Syndrome. Front Immunol 2019;10:2963. [PMID: 31993047 DOI: 10.3389/fimmu.2019.02963] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
26 Ghochikyan A, Pichugin A, Bagaev A, Davtyan A, Hovakimyan A, Tukhvatulin A, Davtyan H, Shcheblyakov D, Logunov D, Chulkina M, Savilova A, Trofimov D, Nelson EL, Agadjanyan MG, Ataullakhanov RI. Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax®, as a therapeutic strategy for metastatic breast cancer. J Transl Med 2014;12:322. [PMID: 25432242 DOI: 10.1186/s12967-014-0322-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
27 Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 2016;60:39-47. [PMID: 26465095 DOI: 10.1111/jpi.12286] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 6.4] [Reference Citation Analysis]
28 Raveendran VV, Tan X, Sweeney ME, Levant B, Slusser J, Stechschulte DJ, Dileepan KN. Lipopolysaccharide induces H1 receptor expression and enhances histamine responsiveness in human coronary artery endothelial cells. Immunology 2011;132:578-88. [PMID: 21255012 DOI: 10.1111/j.1365-2567.2010.03403.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
29 Lin Z, Lu J, Zhou W, Shen Y. Structural insights into TIR domain specificity of the bridging adaptor Mal in TLR4 signaling. PLoS One 2012;7:e34202. [PMID: 22485159 DOI: 10.1371/journal.pone.0034202] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 5.0] [Reference Citation Analysis]
30 Hussey SE, Liang H, Costford SR, Klip A, DeFronzo RA, Sanchez-Avila A, Ely B, Musi N. TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep 2012;33:37-47. [PMID: 23050932 DOI: 10.1042/BSR20120098] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 3.2] [Reference Citation Analysis]
31 Zandi Z, Kashani B, Bashash D, Poursani EM, Mousavi SA, Chahardoli B, Ghaffari SH. The anticancer effect of the TLR4 inhibition using TAK‐242 (resatorvid) either as a single agent or in combination with chemotherapy: A novel therapeutic potential for breast cancer. J Cell Biochem 2020;121:1623-34. [DOI: 10.1002/jcb.29397] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
32 Slomiany BL, Slomiany A. Syk: a new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses. Inflammopharmacology. 2019;27:203-211. [PMID: 30820719 DOI: 10.1007/s10787-019-00577-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020;24:44-52. [PMID: 32158615 DOI: 10.1080/19768354.2020.1726811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Wang XQ, Wan HQ, Wei XJ, Zhang Y, Qu P. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Mol Med Rep 2016;14:49-56. [PMID: 27176130 DOI: 10.3892/mmr.2016.5233] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
35 Lee GL, Wu JY, Tsai CS, Lin CY, Tsai YT, Lin CS, Wang YF, Yet SF, Hsu YJ, Kuo CC. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function. Int J Mol Sci 2016;17:E1394. [PMID: 27563891 DOI: 10.3390/ijms17091394] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
36 Lunin SM, Glushkova OV, Khrenov MO, Parfenyuk SB, Novoselova TV, Fesenko EE, Novoselova EG. Thymus peptides regulate activity of RAW 264.7 macrophage cells: inhibitory analysis and a role of signal cascades. Expert Opin Ther Targets 2011;15:1337-46. [PMID: 22148922 DOI: 10.1517/14728222.2011.641952] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
37 Li Y, Wang Y, Chen Y, Wang Y, Zhang S, Liu P, Chen Z, Song P, Luo L, Luo Y, Dang Y, Zhao L. Corilagin Ameliorates Atherosclerosis in Peripheral Artery Disease via the Toll-Like Receptor-4 Signaling Pathway in vitro and in vivo. Front Immunol 2020;11:1611. [PMID: 32849545 DOI: 10.3389/fimmu.2020.01611] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Facci L, Barbierato M, Zusso M, Skaper SD, Giusti P. Serum amyloid A primes microglia for ATP-dependent interleukin-1β release. J Neuroinflammation 2018;15:164. [PMID: 29803222 DOI: 10.1186/s12974-018-1205-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
39 Deka A, Sharma M, Mukhopadhyay R, Devi A, Doley R. Naja kaouthia venom protein, Nk-CRISP, upregulates inflammatory gene expression in human macrophages. Int J Biol Macromol 2020;160:602-11. [PMID: 32470580 DOI: 10.1016/j.ijbiomac.2020.05.169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Nguyen J, Jiao J, Smoot K, Watt GP, Zhao C, Song X, Stevenson HL, McCormick JB, Fisher-Hoch SP, Zhang J, Futreal PA, Beretta L. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in obesity and steatohepatitis. Oncotarget 2018;9:29495-507. [PMID: 30034633 DOI: 10.18632/oncotarget.25685] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
41 Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. CMC 2019;25:5487-502. [DOI: 10.2174/0929867324666170828125328] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
42 Orci LA, Lacotte S, Delaune V, Slits F, Oldani G, Lazarevic V, Rossetti C, Rubbia-Brandt L, Morel P, Toso C. Effects of the gut-liver axis on ischaemia-mediated hepatocellular carcinoma recurrence in the mouse liver. J Hepatol. 2018;68:978-985. [PMID: 29331341 DOI: 10.1016/j.jhep.2017.12.025] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
43 Mei J, Ma J, Xu Y, Wang Y, Hu M, Ma F, Qin Z, Xue R, Tao N. Cinnamaldehyde Treatment of Prostate Cancer-Associated Fibroblasts Prevents Their Inhibitory Effect on T Cells Through Toll-Like Receptor 4. Drug Des Devel Ther 2020;14:3363-72. [PMID: 32884240 DOI: 10.2147/DDDT.S241410] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
44 Xia L, Zhou H, Hu L, Xie H, Wang T, Xu Y, Liu J, Zhang X, Yan J. Both NF-κB and c-Jun/AP-1 involved in anti-β2GPI/β2GPI-induced tissue factor expression in monocytes. Thromb Haemost. 2013;109:643-651. [PMID: 23467542 DOI: 10.1160/th12-09-0655] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
45 Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut. 2009;58:704-720. [PMID: 19359436 DOI: 10.1136/gut.2008.156307] [Cited by in Crossref: 225] [Cited by in F6Publishing: 226] [Article Influence: 17.3] [Reference Citation Analysis]
46 Bai T, Chen CC, Lau LF. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol 2010;184:3223-32. [PMID: 20164416 DOI: 10.4049/jimmunol.0902792] [Cited by in Crossref: 104] [Cited by in F6Publishing: 103] [Article Influence: 8.7] [Reference Citation Analysis]
47 He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A 2011;108:20054-9. [PMID: 22123964 DOI: 10.1073/pnas.1116302108] [Cited by in Crossref: 392] [Cited by in F6Publishing: 381] [Article Influence: 35.6] [Reference Citation Analysis]
48 Gatica S, Villegas V, Vallejos A, Olivares P, Aballai V, Lagos-meza F, Echeverria C, Cabello-verrugio C, Varela D, Simon F. TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia. Lab Invest 2020;100:234-49. [DOI: 10.1038/s41374-019-0304-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
49 Shirey KA, Lai W, Brown LJ, Blanco JCG, Beadenkopf R, Wang Y, Vogel SN, Snyder GA. Select targeting of intracellular Toll-interleukin-1 receptor resistance domains for protection against influenza-induced disease. Innate Immun 2020;26:26-34. [PMID: 31955622 DOI: 10.1177/1753425919846281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
50 Yu P, Cheng X, Du Y, Huang L, Dong R. TAK-242 can be the potential agents for preventing invasion and metastasis of hepatocellular carcinoma. Med Hypotheses. 2013;81:653-655. [PMID: 23910073 DOI: 10.1016/j.mehy.2013.06.034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
51 Sharma TP, Curry S, McDowell CM. Effects of Toll-Like Receptor 4 Inhibition on Transforming Growth Factor-β2 Signaling in the Human Trabecular Meshwork. J Ocul Pharmacol Ther 2020;36:170-8. [PMID: 31834824 DOI: 10.1089/jop.2019.0076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Tse K, Chow K, Leung W, Wong Y, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience 2014;267:241-51. [DOI: 10.1016/j.neuroscience.2014.02.041] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 5.9] [Reference Citation Analysis]
53 Wang D, Tao K, Xion J, Xu S, Jiang Y, Chen Q, He S. TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-κB signaling pathway. Biochemical and Biophysical Research Communications 2016;472:508-15. [DOI: 10.1016/j.bbrc.2016.03.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
54 Knobloch J, Schild K, Jungck D, Urban K, Müller K, Schweda EK, Rupp J, Koch A. The T-helper cell type 1 immune response to gram-negative bacterial infections is impaired in COPD. Am J Respir Crit Care Med. 2011;183:204-214. [PMID: 20709824 DOI: 10.1164/rccm.201002-0199oc] [Cited by in Crossref: 40] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
55 Ferrer JR, Wertheim JA, Mirkin CA. Dual Toll-Like Receptor Targeting Liposomal Spherical Nucleic Acids. Bioconjug Chem 2019;30:944-51. [PMID: 30830754 DOI: 10.1021/acs.bioconjchem.9b00047] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
56 Boyd JH. Toll-like receptors and opportunities for new sepsis therapeutics. Curr Infect Dis Rep 2012;14:455-61. [PMID: 22805995 DOI: 10.1007/s11908-012-0273-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
57 Fu J, Lu L, Wang H, Hou Y, Dou H. Hirsutella sinensis mycelium regulates autophagy of alveolar macrophages via TLR4/NF-κB signaling pathway. Int J Med Sci 2021;18:1810-23. [PMID: 33746598 DOI: 10.7150/ijms.51654] [Reference Citation Analysis]
58 Alibashe-Ahmed M, Brioudes E, Reith W, Bosco D, Berney T. Toll-like receptor 4 inhibition prevents autoimmune diabetes in NOD mice. Sci Rep 2019;9:19350. [PMID: 31852918 DOI: 10.1038/s41598-019-55521-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
59 Woller SA, Ravula SB, Tucci FC, Beaton G, Corr M, Isseroff RR, Soulika AM, Chigbrow M, Eddinger KA, Yaksh TL. Systemic TAK-242 prevents intrathecal LPS evoked hyperalgesia in male, but not female mice and prevents delayed allodynia following intraplantar formalin in both male and female mice: The role of TLR4 in the evolution of a persistent pain state. Brain Behav Immun 2016;56:271-80. [PMID: 27044335 DOI: 10.1016/j.bbi.2016.03.026] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 7.3] [Reference Citation Analysis]
60 Müller HD, Cvikl BB, Lussi AA, Gruber RR. Salivary pellets induce a pro-inflammatory response involving the TLR4-NF-kB pathway in gingival fibroblasts. BMC Oral Health 2016;17:15. [PMID: 27430277 DOI: 10.1186/s12903-016-0229-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
61 Peri F, Piazza M. Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnol Adv. 2012;30:251-260. [PMID: 21664961 DOI: 10.1016/j.biotechadv.2011.05.014] [Cited by in Crossref: 113] [Cited by in F6Publishing: 115] [Article Influence: 10.3] [Reference Citation Analysis]
62 Inubushi T, Kawazoe A, Miyauchi M, Kudo Y, Ao M, Ishikado A, Makino T, Takata T. Molecular mechanisms of the inhibitory effects of bovine lactoferrin on lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 2012;287:23527-36. [PMID: 22593578 DOI: 10.1074/jbc.M111.324673] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
63 Makkouk A, Abdelnoor AM. The potential use of toll-like receptor (TLR) agonists and antagonists as prophylactic and/or therapeutic agents. Immunopharmacology and Immunotoxicology 2009;31:331-8. [DOI: 10.1080/08923970902802926] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
64 Perry BD, Rahnert JA, Xie Y, Zheng B, Woodworth-Hobbs ME, Price SR. Palmitate-induced ER stress and inhibition of protein synthesis in cultured myotubes does not require Toll-like receptor 4. PLoS One 2018;13:e0191313. [PMID: 29329354 DOI: 10.1371/journal.pone.0191313] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
65 Baakhlagh S, Kashani B, Zandi Z, Bashash D, Moradkhani M, Nasrollahzadeh A, Yaghmaei M, Mousavi SA, Ghaffari SH. Toll-like receptor 4 signaling pathway is correlated with pathophysiological characteristics of AML patients and its inhibition using TAK-242 suppresses AML cell proliferation. Int Immunopharmacol 2021;90:107202. [PMID: 33278749 DOI: 10.1016/j.intimp.2020.107202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Svajger U, Pohleven J, Kos J, Strukelj B, Jeras M. CNL, a ricin B-like lectin from mushroom Clitocybe nebularis, induces maturation and activation of dendritic cells via the toll-like receptor 4 pathway. Immunology 2011;134:409-18. [PMID: 22044067 DOI: 10.1111/j.1365-2567.2011.03500.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
67 Wang D, Zhang J, Yang D, Wang J, Li J, Han Y, Kang Z, Zhang H. Electroacupuncture restores intestinal mucosal barrier through TLR4/NF-κB p65 pathway in functional dyspepsia-like rats. Anat Rec (Hoboken) 2021. [PMID: 34713984 DOI: 10.1002/ar.24800] [Reference Citation Analysis]
68 Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain Behav Immun 2019;81:41-51. [PMID: 31271873 DOI: 10.1016/j.bbi.2019.06.042] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
69 Yu L, Sun G, Wei J, Wang Y, Du C, Li J. Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3. Chin J Ocean Limnol 2016;34:1064-71. [DOI: 10.1007/s00343-016-4393-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
70 Frommer KW, Schäffler A, Rehart S, Lehr A, Müller-Ladner U, Neumann E. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann Rheum Dis 2015;74:303-10. [PMID: 24285492 DOI: 10.1136/annrheumdis-2013-203755] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 6.9] [Reference Citation Analysis]
71 Tangerås LH, Silva GB, Stødle GS, Gierman LM, Skei B, Collett K, Beversmark AL, Skråstad RB, Thomsen LCV, Bjørge L, Iversen AC. Placental inflammation by HMGB1 activation of TLR4 at the syncytium. Placenta 2018;72-73:53-61. [PMID: 30501882 DOI: 10.1016/j.placenta.2018.10.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
72 Cong L, Yang S, Zhang Y, Cao J, Fu X. DFMG attenuates the activation of macrophages induced by co‑culture with LPC‑injured HUVE‑12 cells via the TLR4/MyD88/NF‑κB signaling pathway. Int J Mol Med 2018;41:2619-28. [PMID: 29484368 DOI: 10.3892/ijmm.2018.3511] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
73 Sergi D, Morris AC, Kahn DE, McLean FH, Hay EA, Kubitz P, MacKenzie A, Martinoli MG, Drew JE, Williams LM. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 2020;23:321-34. [PMID: 30032721 DOI: 10.1080/1028415X.2018.1501533] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
74 Hardie J, Mas-Rosario JA, Ha S, Rizzo EM, Farkas ME. Macrophage activation by a substituted pyrimido[5,4-b]indole increases anti-cancer activity. Pharmacol Res 2019;148:104452. [PMID: 31518642 DOI: 10.1016/j.phrs.2019.104452] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
75 Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, Ling EA. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflammation 2013;10:23. [PMID: 23388509 DOI: 10.1186/1742-2094-10-23] [Cited by in Crossref: 142] [Cited by in F6Publishing: 166] [Article Influence: 15.8] [Reference Citation Analysis]
76 Zhang G, Cai Q, Zhou H, He C, Chen Y, Zhang P, Wang T, Xu L, Yan J. OxLDL/β2GPI/anti‑β2GPI Ab complex induces inflammatory activation via the TLR4/NF‑κB pathway in HUVECs. Mol Med Rep 2021;23:148. [PMID: 33355374 DOI: 10.3892/mmr.2020.11787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Madeira A, Burgelin I, Perron H, Curtin F, Lang AB, Faucard R. MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J Neuroimmunol 2016;291:29-38. [PMID: 26857492 DOI: 10.1016/j.jneuroim.2015.12.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
78 Katsargyris A, Klonaris C, Bastounis E, Theocharis S. Toll-like receptor modulation: a novel therapeutic strategy in cardiovascular disease? Expert Opin Ther Targets 2008;12:1329-46. [PMID: 18851691 DOI: 10.1517/14728222.12.11.1329] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 1.4] [Reference Citation Analysis]
79 Liu L, Ghosh N, Slivka PF, Fiorini Z, Hutchinson MR, Watkins LR, Yin H. An MD2 hot-spot-mimicking peptide that suppresses TLR4-mediated inflammatory response in vitro and in vivo. Chembiochem 2011;12:1827-31. [PMID: 21678541 DOI: 10.1002/cbic.201100211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
80 Del Cornò M, Cappon A, Donninelli G, Varano B, Marra F, Gessani S. HIV-1 gp120 signaling through TLR4 modulates innate immune activation in human macrophages and the biology of hepatic stellate cells. Journal of Leukocyte Biology 2016;100:599-606. [DOI: 10.1189/jlb.4a1215-534r] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
81 Ghosh F, Abdshill H, Arnér K, Voss U, Taylor L. Retinal neuroinflammatory induced neuronal degeneration - Role of toll-like receptor-4 and relationship with gliosis. Exp Eye Res 2018;169:99-110. [PMID: 29425879 DOI: 10.1016/j.exer.2018.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
82 Melo-Gonzalez F, Fenton TM, Forss C, Smedley C, Goenka A, MacDonald AS, Thornton DJ, Travis MA. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem 2018;293:8543-53. [PMID: 29581231 DOI: 10.1074/jbc.M117.789305] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
83 Farzi A, Halicka J, Mayerhofer R, Fröhlich EE, Tatzl E, Holzer P. Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Sci Rep 2015;5:9499. [PMID: 25962524 DOI: 10.1038/srep09499] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
84 Peled E, Sosnik A. Amphiphilic galactomannan nanoparticles trigger the alternative activation of murine macrophages. J Control Release 2021;339:473-83. [PMID: 34662585 DOI: 10.1016/j.jconrel.2021.10.017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Schilling J, Lai L, Sambandam N, Dey CE, Leone TC, Kelly DP. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor γ coactivator-1 signaling. Circ Heart Fail 2011;4:474-82. [PMID: 21558447 DOI: 10.1161/CIRCHEARTFAILURE.110.959833] [Cited by in Crossref: 81] [Cited by in F6Publishing: 48] [Article Influence: 7.4] [Reference Citation Analysis]
86 Barbierato M, Borri M, Facci L, Zusso M, Skaper SD, Giusti P. Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A. Sci Rep 2017;7:12158. [PMID: 28939905 DOI: 10.1038/s41598-017-12529-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
87 Tian L, Wen Q, Dang X, You W, Fan L, Wang K. Immune response associated with Toll-like receptor 4 signaling pathway leads to steroid-induced femoral head osteonecrosis. BMC Musculoskelet Disord 2014;15:18. [PMID: 24428851 DOI: 10.1186/1471-2474-15-18] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
88 Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240-273, Table of Contents. [PMID: 19366914 DOI: 10.1128/cmr.00046-08] [Cited by in Crossref: 1586] [Cited by in F6Publishing: 825] [Article Influence: 122.0] [Reference Citation Analysis]
89 Rondina MT, Schwertz H, Harris ES, Kraemer BF, Campbell RA, Mackman N, Grissom CK, Weyrich AS, Zimmerman GA. The septic milieu triggers expression of spliced tissue factor mRNA in human platelets. J Thromb Haemost 2011;9:748-58. [PMID: 21255247 DOI: 10.1111/j.1538-7836.2011.04208.x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 87] [Article Influence: 7.7] [Reference Citation Analysis]
90 Khan MM, Gandhi C, Chauhan N, Stevens JW, Motto DG, Lentz SR, Chauhan AK. Alternatively-spliced extra domain A of fibronectin promotes acute inflammation and brain injury after cerebral ischemia in mice. Stroke 2012;43:1376-82. [PMID: 22363055 DOI: 10.1161/STROKEAHA.111.635516] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
91 Lee SJ, Seo KW, Kim CD. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways. Korean J Physiol Pharmacol 2015;19:263-8. [PMID: 25954132 DOI: 10.4196/kjpp.2015.19.3.263] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
92 Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, Palaniyar N. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Sci Rep. 2017;7:3409. [PMID: 28611461 DOI: 10.1038/s41598-017-03257-z] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 12.4] [Reference Citation Analysis]
93 Stelmasiak M, Słotwiński R. Infection-induced innate antimicrobial response disorders: from signaling pathways and their modulation to selected biomarkers. Cent Eur J Immunol 2020;45:104-16. [PMID: 32425688 DOI: 10.5114/ceji.2020.94712] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Kashani B, Zandi Z, Karimzadeh MR, Bashash D, Nasrollahzadeh A, Ghaffari SH. Blockade of TLR4 using TAK-242 (resatorvid) enhances anti-cancer effects of chemotherapeutic agents: a novel synergistic approach for breast and ovarian cancers. Immunol Res 2019;67:505-16. [DOI: 10.1007/s12026-019-09113-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
95 Bhattacharyya S, Tamaki Z, Wang W, Hinchcliff M, Hoover P, Getsios S, White ES, Varga J. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med 2014;6:232ra50. [PMID: 24739758 DOI: 10.1126/scitranslmed.3008264] [Cited by in Crossref: 132] [Cited by in F6Publishing: 123] [Article Influence: 16.5] [Reference Citation Analysis]
96 Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem Pharmacol 2018;147:104-18. [PMID: 29175419 DOI: 10.1016/j.bcp.2017.11.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
97 Feng H, He Y, La L, Hou C, Song L, Yang Q, Wu F, Liu W, Hou L, Li Y, Wang C, Li Y. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J Ethnopharmacol 2020;256:112785. [PMID: 32222576 DOI: 10.1016/j.jep.2020.112785] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
98 Kikuchi H, Sekiya M, Katou Y, Ueda K, Kabeya T, Kurata S, Oshima Y. Revised Structure and Synthesis of Celastramycin A, A Potent Innate Immune Suppressor. Org Lett 2009;11:1693-5. [DOI: 10.1021/ol9002306] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
99 Fan Y, Hu L, Zhu S, Han Y, Liu W, Yang Y, Li Q. Paeoniflorin attenuates postoperative pain by suppressing Matrix Metalloproteinase‐9/2 in mice. Eur J Pain 2018;22:272-81. [DOI: 10.1002/ejp.1116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
100 Tedesco S, Zusso M, Facci L, Trenti A, Boscaro C, Belluti F, Fadini GP, Skaper SD, Giusti P, Bolego C, Cignarella A. Bisdemethoxycurcumin and Its Cyclized Pyrazole Analogue Differentially Disrupt Lipopolysaccharide Signalling in Human Monocyte-Derived Macrophages. Mediators Inflamm 2018;2018:2868702. [PMID: 29576743 DOI: 10.1155/2018/2868702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
101 Gao X, Zhao G, Li C, Lin J, Jiang N, Wang Q, Hu L, Xu Q, Peng X, He K, Zhu G. LOX-1 and TLR4 affect each other and regulate the generation of ROS in A. fumigatus keratitis. Int Immunopharmacol 2016;40:392-9. [PMID: 27694040 DOI: 10.1016/j.intimp.2016.09.027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
102 Seki H, Tasaka S, Fukunaga K, Shiraishi Y, Moriyama K, Miyamoto K, Nakano Y, Matsunaga N, Takashima K, Matsumoto T, Ii M, Ishizaka A, Takeda J. Effect of Toll-like receptor 4 inhibitor on LPS-induced lung injury. Inflamm Res 2010;59:837-45. [PMID: 20387088 DOI: 10.1007/s00011-010-0195-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
103 Wittebole X, Castanares-Zapatero D, Laterre PF. Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm 2010;2010:568396. [PMID: 20396414 DOI: 10.1155/2010/568396] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 6.9] [Reference Citation Analysis]
104 Nakano Y, Shimazawa M, Ojino K, Izawa H, Takeuchi H, Inoue Y, Tsuruma K, Hara H. Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage induced by optic nerve crush in mice. J Pharmacol Sci 2017;133:176-83. [PMID: 28318829 DOI: 10.1016/j.jphs.2017.02.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
105 Yabuta S, Shidoji Y. TLR4-mediated pyroptosis in human hepatoma-derived HuH-7 cells induced by a branched-chain polyunsaturated fatty acid, geranylgeranoic acid. Biosci Rep 2020;40:BSR20194118. [PMID: 32270855 DOI: 10.1042/BSR20194118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
106 Song Y, Dou H, Gong W, Liu X, Yu Z, Li E, Tan R, Hou Y. Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol. 2013;705:49-60. [PMID: 23438875 DOI: 10.1016/j.ejphar.2013.02.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
107 Valkov E, Stamp A, Dimaio F, Baker D, Verstak B, Roversi P, Kellie S, Sweet MJ, Mansell A, Gay NJ, Martin JL, Kobe B. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection. Proc Natl Acad Sci U S A 2011;108:14879-84. [PMID: 21873236 DOI: 10.1073/pnas.1104780108] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 8.7] [Reference Citation Analysis]
108 Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2021;:1-17. [PMID: 34689707 DOI: 10.1080/15548627.2021.1990669] [Reference Citation Analysis]
109 Ono Y, Sakamoto K. Lipopolysaccharide inhibits myogenic differentiation of C2C12 myoblasts through the Toll-like receptor 4-nuclear factor-κB signaling pathway and myoblast-derived tumor necrosis factor-α. PLoS One 2017;12:e0182040. [PMID: 28742154 DOI: 10.1371/journal.pone.0182040] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
110 Liu S, Zhang S, Sun Y, Zhou W. Transcriptomics Changes in the Peritoneum of Mice with Lipopolysaccharide-Induced Peritonitis. Int J Mol Sci 2021;22:13008. [PMID: 34884814 DOI: 10.3390/ijms222313008] [Reference Citation Analysis]
111 Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation 2018;15:37. [PMID: 29426327 DOI: 10.1186/s12974-017-1052-x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 64] [Article Influence: 17.3] [Reference Citation Analysis]
112 Ho CC, Luo YH, Chuang TH, Yang CS, Ling YC, Lin P. Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages. Toxicology 2013;308:1-9. [PMID: 23499856 DOI: 10.1016/j.tox.2013.03.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.9] [Reference Citation Analysis]
113 Mai K, Chui JJ, Di Girolamo N, McCluskey PJ, Wakefield D. Role of toll-like receptors in human iris pigment epithelial cells and their response to pathogen-associated molecular patterns. J Inflamm (Lond) 2014;11:20. [PMID: 25089120 DOI: 10.1186/1476-9255-11-20] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
114 Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, Yu D, Zhang F, Xu L, Chen L, Sun X. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci Rep 2015;5:11445. [PMID: 26086415 DOI: 10.1038/srep11445] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.9] [Reference Citation Analysis]
115 Rice TW, Wheeler AP, Bernard GR, Vincent JL, Angus DC, Aikawa N, Demeyer I, Sainati S, Amlot N, Cao C, Ii M, Matsuda H, Mouri K, Cohen J. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med. 2010;38:1685-1694. [PMID: 20562702 DOI: 10.1097/ccm.0b013e3181e7c5c9] [Cited by in Crossref: 269] [Cited by in F6Publishing: 146] [Article Influence: 22.4] [Reference Citation Analysis]
116 Gárate I, García-Bueno B, Madrigal JL, Caso JR, Alou L, Gómez-Lus ML, Leza JC. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation 2014;11:8. [PMID: 24410883 DOI: 10.1186/1742-2094-11-8] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 8.8] [Reference Citation Analysis]
117 Vivot K, Langlois A, Bietiger W, Dal S, Seyfritz E, Pinget M, Jeandidier N, Maillard E, Gies JP, Sigrist S. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways. PLoS One 2014;9:e107656. [PMID: 25343247 DOI: 10.1371/journal.pone.0107656] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
118 Antonova OY, Yurinskaya MM, Evgen'ev MB, Vinokurov MG. The role of the TLR-dependent signaling pathway in the mechanism of phagocyte protection by exogenous heat shock protein HSP70 from the endotoxin action. Dokl Biol Sci 2013;452:305-9. [PMID: 24150653 DOI: 10.1134/S0012496613050037] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
119 Gong YN, Wang X, Wang J, Yang Z, Li S, Yang J, Liu L, Lei X, Shao F. Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Res 2010;20:1289-305. [PMID: 20856264 DOI: 10.1038/cr.2010.135] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 5.9] [Reference Citation Analysis]
120 Xia L, Zhou H, Wang T, Xie Y, Wang T, Wang X, Yan J. Activation of mTOR is involved in anti-β 2 GPI/β 2 GPI-induced expression of tissue factor and IL-8 in monocytes. Thrombosis Research 2017;157:103-10. [DOI: 10.1016/j.thromres.2017.05.023] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
121 Holl EK, Shumansky KL, Pitoc G, Ramsburg E, Sullenger BA. Nucleic acid scavenging polymers inhibit extracellular DNA-mediated innate immune activation without inhibiting anti-viral responses. PLoS One 2013;8:e69413. [PMID: 23936008 DOI: 10.1371/journal.pone.0069413] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
122 Mudaliar H, Pollock C, Komala MG, Chadban S, Wu H, Panchapakesan U. The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol 2013;305:F143-54. [PMID: 23576640 DOI: 10.1152/ajprenal.00398.2012] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 9.2] [Reference Citation Analysis]
123 Chen R, Yuan H, Zhang T, Wang Z, Hu A, Wu L, Yang Z, Mao Y, Ji D, Zhu X. Heme Oxygenase-2 Suppress TNF-α and IL6 Expression via TLR4/MyD88-Dependent Signaling Pathway in Mouse Cerebral Vascular Endothelial Cells. Mol Neurobiol 2014;50:971-8. [DOI: 10.1007/s12035-014-8693-x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
124 Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, Beausejour CM, Coppe JP, Rodier F, Campisi J. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol. 2013;201:613-629. [PMID: 23649808 DOI: 10.1083/jcb.201206006] [Cited by in Crossref: 212] [Cited by in F6Publishing: 206] [Article Influence: 23.6] [Reference Citation Analysis]
125 Adapala NS, Yamaguchi R, Phipps M, Aruwajoye O, Kim HK. Necrotic Bone Stimulates Proinflammatory Responses in Macrophages through the Activation of Toll-Like Receptor 4. The American Journal of Pathology 2016;186:2987-99. [DOI: 10.1016/j.ajpath.2016.06.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
126 Ho CC, Luo YH, Chuang TH, Lin P. Quantum dots induced interferon beta expression via TRIF-dependent signaling pathways by promoting endocytosis of TLR4. Toxicology 2016;344-346:61-70. [PMID: 26925925 DOI: 10.1016/j.tox.2016.02.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
127 Chang CA, Akinbobuyi B, Quintana JM, Yoshimatsu G, Naziruddin B, Kane RR. Ex-vivo generation of drug-eluting islets improves transplant outcomes by inhibiting TLR4-Mediated NFkB upregulation. Biomaterials 2018;159:13-24. [PMID: 29309990 DOI: 10.1016/j.biomaterials.2017.12.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
128 Mehta HV, Jones PH, Weiss JP, Okeoma CM. IFN-α and lipopolysaccharide upregulate APOBEC3 mRNA through different signaling pathways. J Immunol 2012;189:4088-103. [PMID: 22972924 DOI: 10.4049/jimmunol.1200777] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 3.7] [Reference Citation Analysis]
129 Viciani E, Montagnani F, Tavarini S, Tordini G, Maccari S, Morandi M, Faenzi E, Biagini C, Romano A, Salerni L, Finco O, Lazzi S, Ruggiero P, De Luca A, Barocchi MA, Manetti AG. Paediatric obstructive sleep apnoea syndrome (OSAS) is associated with tonsil colonisation by Streptococcus pyogenes. Sci Rep 2016;6:20609. [PMID: 26860261 DOI: 10.1038/srep20609] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
130 Broering R, Lu M, Schlaak JF. Role of Toll-like receptors in liver health and disease. Clin Sci (Lond). 2011;121:415-426. [PMID: 21797822 DOI: 10.1042/cs20110065] [Cited by in Crossref: 53] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
131 Goldfarb RD, Ortegel JW, Parrillo JE, Zanotti-Cavazzoni S, Casey LC, Dellinger RP. TAKEDA-143242 increased survival via reduced cytokines in porcine peritonitis. J Surg Res 2011;166:e165-73. [PMID: 21236445 DOI: 10.1016/j.jss.2010.09.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
132 Jinno F, Yoneyama T, Morohashi A, Kondo T, Asahi S. Chemical reactivity of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) in vitro. Biopharm Drug Dispos 2011;32:408-25. [PMID: 21887787 DOI: 10.1002/bdd.769] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
133 Oya S, Yokoyama Y, Kokuryo T, Uno M, Yamauchi K, Nagino M. Inhibition of Toll-like receptor 4 suppresses liver injury induced by biliary obstruction and subsequent intraportal lipopolysaccharide injection. American Journal of Physiology-Gastrointestinal and Liver Physiology 2014;306:G244-52. [DOI: 10.1152/ajpgi.00366.2013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
134 Müller HD, Cvikl B, Lussi A, Gruber R. Chemokine expression of oral fibroblasts and epithelial cells in response to artificial saliva. Clin Oral Investig 2016;20:1035-42. [PMID: 26342602 DOI: 10.1007/s00784-015-1582-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
135 Patra MC, Kwon HK, Batool M, Choi S. Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer. Front Immunol 2018;9:489. [PMID: 29593733 DOI: 10.3389/fimmu.2018.00489] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
136 Fiorotto R, Scirpo R, Trauner M, Fabris L, Hoque R, Spirli C, Strazzabosco M. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-κB-mediated inflammatory response in mice. Gastroenterology. 2011;141:1498-1508, 1508.e1-e5. [PMID: 21712022 DOI: 10.1053/j.gastro.2011.06.052] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 7.7] [Reference Citation Analysis]
137 Ye S, Zheng Q, Zhou Y, Bai B, Yang D, Zhao Z. Chlojaponilactone B Attenuates Lipopolysaccharide-Induced Inflammatory Responses by Suppressing TLR4-Mediated ROS Generation and NF-κB Signaling Pathway. Molecules 2019;24:E3731. [PMID: 31623197 DOI: 10.3390/molecules24203731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
138 Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, Iizawa Y, Ii M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 2009;157:1250-62. [PMID: 19563534 DOI: 10.1111/j.1476-5381.2009.00297.x] [Cited by in Crossref: 134] [Cited by in F6Publishing: 136] [Article Influence: 10.3] [Reference Citation Analysis]
139 Xu D, Liang J, Cui M, Zhang L, Ren S, Zheng W, Dong X, Zhang B. Saturated fatty acids activate the inflammatory signalling pathway in Schwann cells: Implication in sciatic nerve injury. Scand J Immunol 2020;92:e12896. [PMID: 32557749 DOI: 10.1111/sji.12896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
140 Mosoian A, Zhang L, Hong F, Cunyat F, Rahman A, Bhalla R, Panchal A, Saiman Y, Fiel MI, Florman S, Roayaie S, Schwartz M, Branch A, Stevenson M, Bansal MB. Frontline Science: HIV infection of Kupffer cells results in an amplified proinflammatory response to LPS. J Leukoc Biol. 2017;101:1083-1090. [PMID: 27986871 DOI: 10.1189/jlb.3hi0516-242r] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
141 Zandi Z, Kashani B, Poursani EM, Bashash D, Kabuli M, Momeny M, Mousavi-pak SH, Sheikhsaran F, Alimoghaddam K, Mousavi SA, Ghaffari SH. TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition. European Journal of Pharmacology 2019;853:256-63. [DOI: 10.1016/j.ejphar.2019.03.046] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
142 Yokoi T, Yokoyama Y, Kokuryo T, Yamaguchi J, Nagino M. Inhibition of Toll-like receptor 4 ameliorates experimental postischemic injury in the cholestatic liver through inhibition of high-mobility group box protein b1 (HMGB1) signaling. Surgery 2018;163:270-6. [DOI: 10.1016/j.surg.2017.08.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
143 Knobloch J, Feldmann M, Wahl C, Jungck D, Behr J, Stoelben E, Koch A. Endothelin Receptor Antagonists Attenuate the Inflammatory Response of Human Pulmonary Vascular Smooth Muscle Cells to Bacterial Endotoxin. J Pharmacol Exp Ther 2013;346:290-9. [DOI: 10.1124/jpet.112.202358] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
144 Mayerhofer R, Fröhlich EE, Reichmann F, Farzi A, Kogelnik N, Fröhlich E, Sattler W, Holzer P. Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain Behav Immun 2017;60:174-87. [PMID: 27751870 DOI: 10.1016/j.bbi.2016.10.011] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 6.7] [Reference Citation Analysis]
145 Zhang L, Mosoian A, Schwartz ME, Florman SS, Gunasekaran G, Schiano T, Fiel MI, Jiang W, Shen Q, Branch AD, Bansal MB. HIV infection modulates IL-1β response to LPS stimulation through a TLR4-NLRP3 pathway in human liver macrophages. J Leukoc Biol 2019;105:783-95. [PMID: 30776150 DOI: 10.1002/JLB.4A1018-381R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
146 Shalini V, Jayalekshmi A, Helen A. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats. Mol Immunol 2015;66:229-39. [PMID: 25839778 DOI: 10.1016/j.molimm.2015.03.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
147 Joce C, Stahl JA, Shridhar M, Hutchinson MR, Watkins LR, Fedichev PO, Yin H. Application of a novel in silico high-throughput screen to identify selective inhibitors for protein-protein interactions. Bioorg Med Chem Lett 2010;20:5411-3. [PMID: 20709548 DOI: 10.1016/j.bmcl.2010.07.103] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
148 Jones PH, Okeoma CM. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated BST-2/tetherin regulation. Cell Signal 2013;25:2752-61. [PMID: 24036213 DOI: 10.1016/j.cellsig.2013.08.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
149 Shu Y, Liu X, Ma X, Gao J, He W, Cao X, Chen J. Immune response mechanism of mouse monocytes/macrophages treated with κ-carrageenan polysaccharide. Environmental Toxicology and Pharmacology 2017;53:191-8. [DOI: 10.1016/j.etap.2017.06.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
150 Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol. 2010;8:8-14. [PMID: 19946286 DOI: 10.1038/nrmicro2266] [Cited by in Crossref: 212] [Cited by in F6Publishing: 212] [Article Influence: 17.7] [Reference Citation Analysis]
151 Ono Y, Maejima Y, Saito M, Sakamoto K, Horita S, Shimomura K, Inoue S, Kotani J. TAK-242, a specific inhibitor of Toll-like receptor 4 signalling, prevents endotoxemia-induced skeletal muscle wasting in mice. Sci Rep 2020;10:694. [PMID: 31959927 DOI: 10.1038/s41598-020-57714-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
152 Shi X, Li M, Huang K, Zhou S, Hu Y, Pan S, Gu Y. HMGB1 binding heptamer peptide improves survival and ameliorates brain injury in rats after cardiac arrest and cardiopulmonary resuscitation. Neuroscience 2017;360:128-38. [PMID: 28778700 DOI: 10.1016/j.neuroscience.2017.07.052] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
153 Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands: THERAPEUTICTARGETINGOF TOLL-LIKE RECEPTORS. Med Res Rev 2012;32:294-325. [DOI: 10.1002/med.20214] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
154 Yang J, Zhao Y, Shi J, Shao F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 2013;110:14408-13. [PMID: 23940371 DOI: 10.1073/pnas.1306376110] [Cited by in Crossref: 242] [Cited by in F6Publishing: 221] [Article Influence: 26.9] [Reference Citation Analysis]
155 De S, Whiten DR, Ruggeri FS, Hughes C, Rodrigues M, Sideris DI, Taylor CG, Aprile FA, Muyldermans S, Knowles TPJ, Vendruscolo M, Bryant C, Blennow K, Skoog I, Kern S, Zetterberg H, Klenerman D. Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathol Commun 2019;7:120. [PMID: 31349874 DOI: 10.1186/s40478-019-0777-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
156 Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem Biol Interact 2018;293:11-9. [PMID: 30031708 DOI: 10.1016/j.cbi.2018.07.011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
157 Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020;8:559791. [PMID: 33015057 DOI: 10.3389/fcell.2020.559791] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
158 Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8(3): 162-182 [PMID: 26839640 DOI: 10.4254/wjh.v8.i3.162] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
159 Liang Q, Dong S, Lei L, Liu J, Zhang J, Li J, Duan J, Fan D. Protective effects of Sparstolonin B, a selective TLR2 and TLR4 antagonist, on mouse endotoxin shock. Cytokine 2015;75:302-9. [PMID: 25573805 DOI: 10.1016/j.cyto.2014.12.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
160 Olthof ED, Gülich AF, Renne MF, Landman S, Joosten LA, Roelofs HM, Wanten GJ. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4. Toxicol In Vitro 2015;29:1851-8. [PMID: 26162596 DOI: 10.1016/j.tiv.2015.07.004] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
161 Lee SJ, Gharbi A, You JS, Han HD, Kang TH, Hong SH, Park WS, Jung ID, Park Y. Drug repositioning of TANK-binding kinase 1 inhibitor CYT387 as an alternative for the treatment of Gram-negative bacterial sepsis. International Immunopharmacology 2019;73:482-90. [DOI: 10.1016/j.intimp.2019.05.051] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
162 Zhou H, Chen D, Xie H, Xia L, Wang T, Yuan W, Yan J. Activation of MAPKs in the anti-β2GPI/β2GPI-induced tissue factor expression through TLR4/IRAKs pathway in THP-1 cells. Thrombosis Research 2012;130:e229-35. [DOI: 10.1016/j.thromres.2012.08.303] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
163 Parthasarathy G, Philipp MT. Inflammatory mediator release from primary rhesus microglia in response to Borrelia burgdorferi results from the activation of several receptors and pathways. J Neuroinflammation 2015;12:60. [PMID: 25889406 DOI: 10.1186/s12974-015-0274-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
164 Wang P, Han X, Mo B, Huang G, Wang C. LPS enhances TLR4 expression and IFN‑γ production via the TLR4/IRAK/NF‑κB signaling pathway in rat pulmonary arterial smooth muscle cells. Mol Med Rep 2017;16:3111-6. [PMID: 28714001 DOI: 10.3892/mmr.2017.6983] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
165 Li J, Sparkenbaugh EM, Su G, Zhang F, Xu Y, Xia K, He P, Baytas S, Pechauer S, Padmanabhan A, Linhardt RJ, Pawlinski R, Liu J. Enzymatic Synthesis of Chondroitin Sulfate E to Attenuate Bacteria Lipopolysaccharide-Induced Organ Damage. ACS Cent Sci 2020;6:1199-207. [PMID: 32724854 DOI: 10.1021/acscentsci.0c00712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
166 Carrillo-sepulveda MA, Spitler K, Pandey D, Berkowitz DE, Matsumoto T. Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med 2015;93:1341-54. [DOI: 10.1007/s00109-015-1318-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
167 Jobin PG, Solis N, Machado Y, Bell PA, Kwon NH, Kim S, Overall CM, Butler GS. Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. J Biol Chem 2019;294:12866-79. [PMID: 31324718 DOI: 10.1074/jbc.RA119.009584] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
168 Nguyen PL, Bui BP, Lee H, Cho J. A Novel 1,8-Naphthyridine-2-Carboxamide Derivative Attenuates Inflammatory Responses and Cell Migration in LPS-Treated BV2 Cells via the Suppression of ROS Generation and TLR4/Myd88/NF-κB Signaling Pathway. Int J Mol Sci 2021;22:2527. [PMID: 33802409 DOI: 10.3390/ijms22052527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
169 Aravalli RN. Role of innate immunity in the development of hepatocellular carcinoma. World J Gastroenterol 2013; 19(43): 7500-7514 [PMID: 24282342 DOI: 10.3748/wjg.v19.i43.7500] [Cited by in CrossRef: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
170 Chen Y, Huang W, Yang M, Xin G, Cui W, Xie Z, Silverstein RL. Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase. Arterioscler Thromb Vasc Biol 2017;37:1462-9. [PMID: 28619997 DOI: 10.1161/ATVBAHA.117.309444] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
171 Korgaonkar AA, Li Y, Sekhar D, Subramanian D, Guevarra J, Swietek B, Pallottie A, Singh S, Kella K, Elkabes S, Santhakumar V. Toll-like Receptor 4 Signaling in Neurons Enhances Calcium-Permeable α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Currents and Drives Post-Traumatic Epileptogenesis. Ann Neurol 2020;87:497-515. [PMID: 32031699 DOI: 10.1002/ana.25698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
172 Pattabiraman G, Palasiewicz K, Galvin JP, Ucker DS. Aging-associated dysregulation of homeostatic immune response termination (and not initiation). Aging Cell 2017;16:585-93. [PMID: 28371013 DOI: 10.1111/acel.12589] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
173 Leon CG, Tory R, Jia J, Sivak O, Wasan KM. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 2008;25:1751-61. [PMID: 18493843 DOI: 10.1007/s11095-008-9571-x] [Cited by in Crossref: 120] [Cited by in F6Publishing: 115] [Article Influence: 8.6] [Reference Citation Analysis]
174 Geraghty P, Dabo AJ, D'Armiento J. TLR4 protein contributes to cigarette smoke-induced matrix metalloproteinase-1 (MMP-1) expression in chronic obstructive pulmonary disease. J Biol Chem 2011;286:30211-8. [PMID: 21730072 DOI: 10.1074/jbc.M111.238824] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
175 Li P, Liang Q, Cui X, Li J, Zou N, Wu Q, Duan J. Protective effects of the active fraction from the tuber of Scirpus yagara in mouse endotoxin shock model. Journal of Ethnopharmacology 2014;158:331-7. [DOI: 10.1016/j.jep.2014.10.032] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
176 Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2017;41:513-23. [PMID: 29021698 DOI: 10.1016/j.jgr.2016.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
177 Sjölinder M, Altenbacher G, Wang X, Gao Y, Hansson C, Sjölinder H. The meningococcal adhesin NhhA provokes proinflammatory responses in macrophages via toll-like receptor 4-dependent and -independent pathways. Infect Immun 2012;80:4027-33. [PMID: 22949555 DOI: 10.1128/IAI.00456-12] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
178 Ishikado A, Nishio Y, Yamane K, Mukose A, Morino K, Murakami Y, Sekine O, Makino T, Maegawa H, Kashiwagi A. Soy phosphatidylcholine inhibited TLR4-mediated MCP-1 expression in vascular cells. Atherosclerosis 2009;205:404-12. [PMID: 19215923 DOI: 10.1016/j.atherosclerosis.2009.01.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.3] [Reference Citation Analysis]
179 Santaolalla R, Sussman DA, Abreu MT. TLR signaling: a link between gut microflora, colorectal inflammation and tumorigenesis. Drug Discovery Today: Disease Mechanisms 2011;8:e57-62. [DOI: 10.1016/j.ddmec.2012.02.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
180 Wang EL, Qian ZR, Nakasono M, Tanahashi T, Yoshimoto K, Bando Y, Kudo E, Shimada M, Sano T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer. 2010;102:908-915. [PMID: 20145615 DOI: 10.1038/sj.bjc.6605558] [Cited by in Crossref: 151] [Cited by in F6Publishing: 151] [Article Influence: 12.6] [Reference Citation Analysis]
181 Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021;154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Reference Citation Analysis]
182 Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF. Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 2010;30:232-244. [PMID: 20665376 DOI: 10.1055/s-0030-1255353] [Cited by in Crossref: 91] [Cited by in F6Publishing: 91] [Article Influence: 7.6] [Reference Citation Analysis]
183 Chavez SA, Martinko AJ, Lau C, Pham MN, Cheng K, Bevan DE, Mollnes TE, Yin H. Development of β-amino alcohol derivatives that inhibit Toll-like receptor 4 mediated inflammatory response as potential antiseptics. J Med Chem 2011;54:4659-69. [PMID: 21591694 DOI: 10.1021/jm2003365] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
184 Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, Vera A, DiLuna ML, Delpire E, Alper SL, Gunel M, Gerzanich V, Medzhitov R, Simard JM, Kahle KT. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 2017;23:997-1003. [PMID: 28692063 DOI: 10.1038/nm.4361] [Cited by in Crossref: 101] [Cited by in F6Publishing: 91] [Article Influence: 20.2] [Reference Citation Analysis]
185 Puck A, Künig S, Modak M, May L, Fritz P, Battin C, Radakovics K, Steinberger P, Reipert BM, Crowe BA, Stöckl J. The soluble cytoplasmic tail of CD45 regulates T-cell activation via TLR4 signaling. Eur J Immunol 2021. [PMID: 34626426 DOI: 10.1002/eji.202149227] [Reference Citation Analysis]
186 Bi L, Pian Y, Chen S, Ren Z, Liu P, Lv Q, Zheng Y, Zhang S, Hao H, Yuan Y, Jiang Y. Toll-like receptor 4 confers inflammatory response to Suilysin. Front Microbiol 2015;6:644. [PMID: 26167160 DOI: 10.3389/fmicb.2015.00644] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
187 Aye IL, Waddell BJ, Mark PJ, Keelan JA. Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB. Mol Hum Reprod 2012;18:341-53. [PMID: 22238372 DOI: 10.1093/molehr/gas001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
188 Jacobsen TD, Hernandez PA, Chahine NO. Inhibition of toll-like receptor 4 protects against inflammation-induced mechanobiological alterations to intervertebral disc cells. Eur Cell Mater 2021;41:576-91. [PMID: 34013512 DOI: 10.22203/eCM.v041a37] [Reference Citation Analysis]
189 Fekonja O, Avbelj M, Jerala R. Suppression of TLR signaling by targeting TIR domain-containing proteins. Curr Protein Pept Sci 2012;13:776-88. [PMID: 23305364 DOI: 10.2174/138920312804871148] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
190 Tsai CC, Chen TY, Tsai KJ, Lin MW, Hsu CY, Wu DC, Tsai EM, Hsieh TH. NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer. Biomed Pharmacother 2020;132:110869. [PMID: 33113427 DOI: 10.1016/j.biopha.2020.110869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
191 Nadigel J, Audusseau S, Baglole CJ, Eidelman DH, Hamid Q. IL-8 production in response to cigarette smoke is decreased in epithelial cells from COPD patients. Pulm Pharmacol Ther 2013;26:596-602. [PMID: 23499888 DOI: 10.1016/j.pupt.2013.03.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
192 Yang J, Liu D, Khatri KS, Wang J, Zhang G, Meng C, Guan J. Prognostic value of toll-like receptor 4 and nuclear factor-κBp65 in oral squamous cell carcinoma patients. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2016;122:753-764.e1. [DOI: 10.1016/j.oooo.2016.08.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
193 Tom JK, Dotsey EY, Wong HY, Stutts L, Moore T, Davies DH, Felgner PL, Esser-Kahn AP. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists. ACS Cent Sci 2015;1:439-48. [PMID: 26640818 DOI: 10.1021/acscentsci.5b00274] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
194 Ang Z, Er JZ, Tan NS, Lu J, Liou YC, Grosse J, Ding JL. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep 2016;6:34145. [PMID: 27667443 DOI: 10.1038/srep34145] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 6.8] [Reference Citation Analysis]
195 Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 2014;115:25-44. [PMID: 24291544 DOI: 10.1016/j.pneurobio.2013.11.003] [Cited by in Crossref: 302] [Cited by in F6Publishing: 303] [Article Influence: 33.6] [Reference Citation Analysis]
196 Song DH, Lee JO. Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 2012;250:216-29. [PMID: 23046132 DOI: 10.1111/j.1600-065X.2012.01167.x] [Cited by in Crossref: 123] [Cited by in F6Publishing: 63] [Article Influence: 13.7] [Reference Citation Analysis]
197 Lee SU, Oh ES, Ryu HW, Kim MO, Kang MJ, Song YN, Lee RW, Kim DY, Ro H, Jung S, Hong ST, Oh SR. Longifolioside A inhibits TLR4-mediated inflammatory responses by blocking PKCδ activation in LPS-stimulated THP-1 macrophages. Cytokine 2020;131:155116. [PMID: 32388485 DOI: 10.1016/j.cyto.2020.155116] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]