BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009;71:431-44. [PMID: 18977297 DOI: 10.1016/j.ejpb.2008.09.026] [Cited by in Crossref: 401] [Cited by in F6Publishing: 351] [Article Influence: 28.6] [Reference Citation Analysis]
Number Citing Articles
1 Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015;10:975-99. [PMID: 25678787 DOI: 10.2147/IJN.S68861] [Cited by in Crossref: 864] [Cited by in F6Publishing: 291] [Article Influence: 123.4] [Reference Citation Analysis]
2 Betancourt JE, Subramani C, Serrano-Velez JL, Rosa-Molinar E, Rotello VM, Rivera JM. Drug encapsulation within self-assembled microglobules formed by thermoresponsive supramolecules. Chem Commun (Camb) 2010;46:8537-9. [PMID: 20972498 DOI: 10.1039/c0cc04063k] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
3 Calderon AJ, Bhowmick T, Leferovich J, Burman B, Pichette B, Muzykantov V, Eckmann DM, Muro S. Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers. J Control Release 2011;150:37-44. [PMID: 21047540 DOI: 10.1016/j.jconrel.2010.10.025] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 4.0] [Reference Citation Analysis]
4 Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020;161:1189-205. [PMID: 32504712 DOI: 10.1016/j.ijbiomac.2020.05.262] [Cited by in Crossref: 9] [Article Influence: 4.5] [Reference Citation Analysis]
5 Askari S, Salehi R, Zarghami N, Akbarzadeh A, Rahmati-Yamchi M. The anticancer effects of biodegradable nanomagnetic dual natural components on the leptin gene expression in lung cancer. Artif Cells Nanomed Biotechnol 2016;44:1753-63. [PMID: 26593227 DOI: 10.3109/21691401.2015.1101000] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
6 Qiao W, Wang B, Wang Y, Yang L, Zhang Y, Shao P. Cancer Therapy Based on Nanomaterials and Nanocarrier Systems. Journal of Nanomaterials 2010;2010:1-9. [DOI: 10.1155/2010/796303] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
7 Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021;329:624-44. [PMID: 33010333 DOI: 10.1016/j.jconrel.2020.09.055] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
8 Fattahi H, Laurent S, Liu F, Arsalani N, Elst LV, Muller RN. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine 2011;6:529-44. [DOI: 10.2217/nnm.11.14] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 6.4] [Reference Citation Analysis]
9 Wu S, Qi R, Kuang H, Wei Y, Jing X, Meng F, Huang Y. pH-Responsive Drug Delivery by Amphiphilic Copolymer through Boronate-Catechol Complexation. ChemPlusChem 2013;78:175-84. [DOI: 10.1002/cplu.201200227] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
10 Sayadi LR, Banyard DA, Ziegler ME, Obagi Z, Prussak J, Klopfer MJ, Evans GR, Widgerow AD. Topical oxygen therapy & micro/nanobubbles: a new modality for tissue oxygen delivery. Int Wound J 2018;15:363-74. [PMID: 29314626 DOI: 10.1111/iwj.12873] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
11 Huda S, Alam MA, Sharma PK. Smart nanocarriers-based drug delivery for cancer therapy: An innovative and developing strategy. Journal of Drug Delivery Science and Technology 2020;60:102018. [DOI: 10.1016/j.jddst.2020.102018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
12 Marianecci C, Rinaldi F, Di Marzio L, Mastriota M, Pieretti S, Celia C, Paolino D, Iannone M, Fresta M, Carafa M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int J Nanomedicine 2014;9:635-51. [PMID: 24493924 DOI: 10.2147/IJN.S55066] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
13 Zohreh N, Hosseini SH, Pourjavadi A. Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery. Journal of Industrial and Engineering Chemistry 2016;39:203-9. [DOI: 10.1016/j.jiec.2016.05.029] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
14 Liu Y, Zhou C, Wang W, Yang J, Wang H, Hong W, Huang Y. CD44 Receptor Targeting and Endosomal pH-Sensitive Dual Functional Hyaluronic Acid Micelles for Intracellular Paclitaxel Delivery. Mol Pharm 2016;13:4209-21. [PMID: 27796093 DOI: 10.1021/acs.molpharmaceut.6b00870] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
15 Zhu L, Torchilin VP. Stimulus-responsive nanopreparations for tumor targeting. Integr Biol (Camb) 2013;5:96-107. [PMID: 22869005 DOI: 10.1039/c2ib20135f] [Cited by in Crossref: 153] [Cited by in F6Publishing: 96] [Article Influence: 17.0] [Reference Citation Analysis]
16 Madni A, Tahir N, Rehman M, Raza A, Mahmood MA, Khan MI, Kashif PM. Hybrid Nano-carriers for Potential Drug Delivery. In: Maiti S, Sen KK, editors. Advanced Technology for Delivering Therapeutics. InTech; 2017. [DOI: 10.5772/66466] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
17 Rainbolt EA, Washington KE, Biewer MC, Stefan MC. Recent developments in micellar drug carriers featuring substituted poly(ε-caprolactone)s. Polym Chem 2015;6:2369-81. [DOI: 10.1039/c4py01628a] [Cited by in Crossref: 65] [Article Influence: 9.3] [Reference Citation Analysis]
18 Efthimiadou EK, Fragogeorgi E, Palamaris L, Karampelas T, Lelovas P, Loudos G, Tamvakopoulos C, Kostomitsopoulos N, Kordas G. Versatile quarto stimuli nanostructure based on Trojan Horse approach for cancer therapy: Synthesis, characterization, in vitro and in vivo studies. Mater Sci Eng C Mater Biol Appl 2017;79:605-12. [PMID: 28629059 DOI: 10.1016/j.msec.2017.05.082] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
19 Linhardt A, König M, Schöfberger W, Brüggemann O, Andrianov AK, Teasdale I. Biodegradable Polyphosphazene Based Peptide-Polymer Hybrids. Polymers (Basel) 2016;8:E161. [PMID: 30979252 DOI: 10.3390/polym8040161] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
20 Ding M, Song N, He X, Li J, Zhou L, Tan H, Fu Q, Gu Q. Toward the Next-Generation Nanomedicines: Design of Multifunctional Multiblock Polyurethanes for Effective Cancer Treatment. ACS Nano 2013;7:1918-28. [DOI: 10.1021/nn4002769] [Cited by in Crossref: 99] [Cited by in F6Publishing: 86] [Article Influence: 11.0] [Reference Citation Analysis]
21 Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J 2012;14:303-15. [PMID: 22415612 DOI: 10.1208/s12248-012-9330-0] [Cited by in Crossref: 192] [Cited by in F6Publishing: 179] [Article Influence: 19.2] [Reference Citation Analysis]
22 Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020;585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Forbes N, Pallaoro A, Reich NO, Zasadzinski JA. Rapid, Reversible Release from Thermosensitive Liposomes Triggered by Near-Infra-Red Light. Part Part Syst Charact 2014;31:1158-67. [PMID: 29167602 DOI: 10.1002/ppsc.201400035] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
24 Musacchio T, Vaze O, D'Souza G, Torchilin VP. Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug Chem 2010;21:1530-6. [PMID: 20669936 DOI: 10.1021/bc100199c] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 6.3] [Reference Citation Analysis]
25 Yam CH, Lee CH, Siu YS, Ho KM, Li P. Synthesis of dual stimuli-responsive amphiphilic particles through controlled semi-batch emulsion polymerization. Polymer 2016;106:294-302. [DOI: 10.1016/j.polymer.2016.08.092] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
26 Kundu P, Chattopadhyay N. Exogenous delivery of a pyrazole based bioactive probe to natural DNA through non-ionic TX-165 micellar carrier. Journal of Drug Delivery Science and Technology 2019;49:413-9. [DOI: 10.1016/j.jddst.2018.12.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Du JZ, Sun TM, Song WJ, Wu J, Wang J. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angew Chem Int Ed Engl 2010;49:3621-6. [PMID: 20391548 DOI: 10.1002/anie.200907210] [Cited by in Crossref: 370] [Cited by in F6Publishing: 364] [Article Influence: 30.8] [Reference Citation Analysis]
28 Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019;12:1-18. [PMID: 30364598 DOI: 10.1016/j.omtm.2018.09.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 14.0] [Reference Citation Analysis]
29 Behzadi S, Steinmann M, Estupiñán D, Landfester K, Crespy D. The pro-active payload strategy significantly increases selective release from mesoporous nanocapsules. Journal of Controlled Release 2016;242:119-25. [DOI: 10.1016/j.jconrel.2016.08.040] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
30 Zhao Y, Zhou Y, Wang D, Gao Y, Li J, Ma S, Zhao L, Zhang C, Liu Y, Li X. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(d,l-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomaterialia 2015;17:182-92. [DOI: 10.1016/j.actbio.2015.01.010] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 9.4] [Reference Citation Analysis]
31 Perrier T, Saulnier P, Benoît J. Methods for the Functionalisation of Nanoparticles: New Insights and Perspectives. Chem Eur J 2010;16:11516-29. [DOI: 10.1002/chem.201000808] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
32 Naguib YW, Cui Z. Nanomedicine: The Promise and Challenges in Cancer Chemotherapy. In: Capco DG, Chen Y, editors. Nanomaterial. Dordrecht: Springer Netherlands; 2014. pp. 207-33. [DOI: 10.1007/978-94-017-8739-0_11] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
33 Yang Y, Yang Y, Xie X, Cai X, Zhang H, Gong W, Wang Z, Mei X. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide–doxorubicin conjugate for tumor-specific therapy. Biomaterials 2014;35:4368-81. [DOI: 10.1016/j.biomaterials.2014.01.076] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 11.4] [Reference Citation Analysis]
34 De Temmerman M, Demeester J, De Smedt SC, Rejman J. Tailoring layer-by-layer capsules for biomedical applications. Nanomedicine 2012;7:771-88. [DOI: 10.2217/nnm.12.48] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.1] [Reference Citation Analysis]
35 Rosca EV, Wright M, Gonitel R, Gedroyc W, Miller AD, Thanou M. Thermosensitive, near-infrared-labeled nanoparticles for topotecan delivery to tumors. Mol Pharm 2015;12:1335-46. [PMID: 25826624 DOI: 10.1021/mp5002679] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
36 Chang B, Chen D, Wang Y, Chen Y, Jiao Y, Sha X, Yang W. Bioresponsive Controlled Drug Release Based on Mesoporous Silica Nanoparticles Coated with Reductively Sheddable Polymer Shell. Chem Mater 2013;25:574-85. [DOI: 10.1021/cm3037197] [Cited by in Crossref: 135] [Cited by in F6Publishing: 105] [Article Influence: 15.0] [Reference Citation Analysis]
37 Li W, Feng S, Guo Y. Tailoring polymeric micelles to optimize delivery to solid tumors. Nanomedicine (Lond) 2012;7:1235-52. [PMID: 22931449 DOI: 10.2217/nnm.12.88] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
38 Mosgoeller W, Prassl R, Zimmer A. Nanoparticle-Mediated Treatment of Pulmonary Arterial Hypertension. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases. Elsevier; 2012. pp. 325-54. [DOI: 10.1016/b978-0-12-391860-4.00017-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
39 Musacchio T, Toniutti M, Kautz R, Torchilin VP. 1H NMR detection of mobile lipids as a marker for apoptosis: the case of anticancer drug-loaded liposomes and polymeric micelles. Mol Pharm 2009;6:1876-82. [PMID: 19737025 DOI: 10.1021/mp900164n] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
40 Yin X, Chi Y, Guo C, Feng S, Liu J, Sun K, Wu Z. Chitooligosaccharides Modified Reduction-Sensitive Liposomes: Enhanced Cytoplasmic Drug Delivery and Osteosarcomas-Tumor Inhibition in Animal Models. Pharm Res 2017;34:2172-84. [DOI: 10.1007/s11095-017-2225-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
41 Wang L, Yuan Y, Lin S, Cheng D, Wang X, Jiang Q, Shuai X. Co-delivery of 5-fluorocytosine and cytosine deaminase into glioma cells mediated by an intracellular environment-responsive nanovesicle. Polym Chem 2014;5:4542-52. [DOI: 10.1039/c4py00291a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 1.9] [Reference Citation Analysis]
42 Zhao D, Li B, Han J, Yang Y, Zhang X, Wu G. PH responsive polypeptide based polymeric micelles for anticancer drug delivery: PH Responsive Polypeptide for Anticancer Drug Delivery. J Biomed Mater Res 2015;103:3045-53. [DOI: 10.1002/jbm.a.35434] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
43 Ramnandan D, Mokhosi S, Daniels A, Singh M. Chitosan, Polyethylene Glycol and Polyvinyl Alcohol Modified MgFe2O4 Ferrite Magnetic Nanoparticles in Doxorubicin Delivery: A Comparative Study In Vitro. Molecules 2021;26:3893. [PMID: 34202245 DOI: 10.3390/molecules26133893] [Reference Citation Analysis]
44 Wang H, Luo X, Liu C, Feng J, Zhang X, Zhuo R. A smart micellar system with an amine-containing polycarbonate shell. Acta Biomaterialia 2012;8:589-98. [DOI: 10.1016/j.actbio.2011.08.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
45 Marianecci C, Petralito S, Rinaldi F, Hanieh PN, Carafa M. Some recent advances on liposomal and niosomal vesicular carriers. Journal of Drug Delivery Science and Technology 2016;32:256-69. [DOI: 10.1016/j.jddst.2015.10.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
46 Felice B, Prabhakaran MP, Rodríguez AP, Ramakrishna S. Drug delivery vehicles on a nano-engineering perspective. Mater Sci Eng C Mater Biol Appl. 2014;41:178-195. [PMID: 24907751 DOI: 10.1016/j.msec.2014.04.049] [Cited by in Crossref: 118] [Cited by in F6Publishing: 109] [Article Influence: 14.8] [Reference Citation Analysis]
47 Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46. [PMID: 20797419 DOI: 10.1016/j.jconrel.2010.08.027] [Cited by in Crossref: 1620] [Cited by in F6Publishing: 1440] [Article Influence: 135.0] [Reference Citation Analysis]
48 Li YJ, Dong M, Kong FM, Zhou JP. Enhanced therapeutic efficacy and cytotoxicity of doxorubicin-loaded vitamin E – Pluronic micelles against liver cancer. RSC Adv 2015;5:43965-71. [DOI: 10.1039/c5ra04027b] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
49 Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics 2013;3:223-38. [PMID: 23471510 DOI: 10.7150/thno.5409] [Cited by in Crossref: 138] [Cited by in F6Publishing: 130] [Article Influence: 15.3] [Reference Citation Analysis]
50 An X, Gui R. Stimuli-responsive liposome and control release drug. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 887-917. [DOI: 10.1016/b978-0-323-46143-6.00028-2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
51 Gagliardi M, Bardi G, Gamucci O, Mazzolai B. Targeted drug delivery across biological barriers using polymer nanoparticles. Therapeutic Delivery Methods: A Concise Overview of Emerging Areas. Unitec House: Future Science Ltd; 2013. pp. 96-109. [DOI: 10.4155/ebo.13.266] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
52 Wei H, Zhuo R, Zhang X. Design and development of polymeric micelles with cleavable links for intracellular drug delivery. Progress in Polymer Science 2013;38:503-35. [DOI: 10.1016/j.progpolymsci.2012.07.002] [Cited by in Crossref: 389] [Cited by in F6Publishing: 317] [Article Influence: 43.2] [Reference Citation Analysis]
53 Denat F, Diaz-fernandez Y, Pasotti L, Sok N, Pallavicini P. A Micellar Multitasking Device: Sensing pH Windows and Gauging the Lipophilicity of Drugs with Fluorescent Signals. Chem Eur J 2010;16:1289-95. [DOI: 10.1002/chem.200902427] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
54 Gao L, Fei J, Zhao J, Cui W, Cui Y, Li J. pH- and redox-responsive polysaccharide-based microcapsules with autofluorescence for biomedical applications. Chemistry 2012;18:3185-92. [PMID: 22344618 DOI: 10.1002/chem.201103584] [Cited by in Crossref: 90] [Cited by in F6Publishing: 77] [Article Influence: 9.0] [Reference Citation Analysis]
55 Bersani S, Vila-Caballer M, Brazzale C, Barattin M, Salmaso S. pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine) decorated liposomes for the delivery of gemcitabine to cancer cells. Eur J Pharm Biopharm 2014;88:670-82. [PMID: 25157908 DOI: 10.1016/j.ejpb.2014.08.005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
56 Cavalli R, Bisazza A, Rolfo A, Balbis S, Madonnaripa D, Caniggia I, Guiot C. Ultrasound-mediated oxygen delivery from chitosan nanobubbles. International Journal of Pharmaceutics 2009;378:215-7. [DOI: 10.1016/j.ijpharm.2009.05.058] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 4.2] [Reference Citation Analysis]
57 Syamala PS, Ramesan RM. Thiol redox-sensitive cationic polymers for dual delivery of drug and gene. Ther Deliv 2018;9:751-73. [PMID: 30277132 DOI: 10.4155/tde-2018-0041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
58 Dos Santos CA, Ribeiro GB, Knirsch MC, Junior AP, Vessoni Penna TC. Influence of Pluronic® F68 on Ceftazidime Biological Activity in Parenteral Solutions. Journal of Pharmaceutical Sciences 2011;100:715-20. [DOI: 10.1002/jps.22287] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
59 Kakkar V, Modgill N, Kumar M. Novel Drug Delivery Systems for Herbal Antidepressants. In: Grosso C, editor. Herbal Medicine in Depression. Cham: Springer International Publishing; 2016. pp. 529-56. [DOI: 10.1007/978-3-319-14021-6_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 Huang X, Huang G, Zhang S, Sagiyama K, Togao O, Ma X, Wang Y, Li Y, Soesbe TC, Sumer BD, Takahashi M, Sherry AD, Gao J. Multi-Chromatic pH-Activatable 19 F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes. Angew Chem 2013;125:8232-6. [DOI: 10.1002/ange.201301135] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
61 Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials 2013;34:1213-22. [PMID: 23102622 DOI: 10.1016/j.biomaterials.2012.08.072] [Cited by in Crossref: 256] [Cited by in F6Publishing: 232] [Article Influence: 25.6] [Reference Citation Analysis]
62 Chaudhary Z, Ahmed N, .ur.Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: A review. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;67:86-100. [DOI: 10.1080/00914037.2017.1300900] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 3.6] [Reference Citation Analysis]
63 Daniel M, Grow ME, Pan H, Bednarek M, Ghann WE, Zabetakis K, Cornish J. Gold nanoparticle-cored poly(propyleneimine) dendrimers as a new platform for multifunctional drug delivery systems. New J Chem 2011;35:2366. [DOI: 10.1039/c1nj20206e] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
64 Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond) 2015;10:1941-58. [PMID: 26139127 DOI: 10.2217/nnm.15.38] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
65 Yoshida T, Lai TC, Kwon GS, Sako K. pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 2013;10:1497-513. [PMID: 23930949 DOI: 10.1517/17425247.2013.821978] [Cited by in Crossref: 165] [Cited by in F6Publishing: 128] [Article Influence: 18.3] [Reference Citation Analysis]
66 Othman R, Vladisavljević GT, Nagy ZK, Holdich RG. Encapsulation and Controlled Release of Rapamycin from Polycaprolactone Nanoparticles Prepared by Membrane Micromixing Combined with Antisolvent Precipitation. Langmuir 2016;32:10685-93. [DOI: 10.1021/acs.langmuir.6b03178] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
67 Başpınar Y, Erel-akbaba G, Kotmakçı M, Akbaba H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. International Journal of Pharmaceutics 2019;566:149-56. [DOI: 10.1016/j.ijpharm.2019.05.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
68 Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 2011;77:417-23. [PMID: 21093587 DOI: 10.1016/j.ejpb.2010.11.010] [Cited by in Crossref: 339] [Cited by in F6Publishing: 306] [Article Influence: 28.3] [Reference Citation Analysis]
69 Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015;359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
70 Balaure P, Gudovan D, Gudovan I. Organic Polymeric Nanomaterials as Advanced Tools in the Fight Against Antibiotic-Resistant Infections. Functionalized Nanomaterials for the Management of Microbial Infection. Elsevier; 2017. pp. 153-265. [DOI: 10.1016/b978-0-323-41625-2.00006-5] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
71 Hadorn M, Eggenberger Hotz P. Encapsulated Multi-vesicle Assemblies of Programmable Architecture: Towards Personalized Healthcare. In: Fred A, Filipe J, Gamboa H, editors. Biomedical Engineering Systems and Technologies. Berlin: Springer Berlin Heidelberg; 2011. pp. 141-51. [DOI: 10.1007/978-3-642-18472-7_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
72 Mussi SV, Torchilin VP. Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B 2013;1:5201. [DOI: 10.1039/c3tb20990c] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
73 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Cited by in Crossref: 922] [Cited by in F6Publishing: 836] [Article Influence: 115.3] [Reference Citation Analysis]
74 Zhao C, Nie S, Tang M, Sun S. Polymeric pH-sensitive membranes—A review. Progress in Polymer Science 2011;36:1499-520. [DOI: 10.1016/j.progpolymsci.2011.05.004] [Cited by in Crossref: 195] [Cited by in F6Publishing: 137] [Article Influence: 17.7] [Reference Citation Analysis]
75 Aminu N, Bello I, Umar NM, Tanko N, Aminu A, Audu MM. The influence of nanoparticulate drug delivery systems in drug therapy. Journal of Drug Delivery Science and Technology 2020;60:101961. [DOI: 10.1016/j.jddst.2020.101961] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
76 Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010;27:286-98. [PMID: 21028937 DOI: 10.3109/09687688.2010.521200] [Cited by in Crossref: 170] [Cited by in F6Publishing: 155] [Article Influence: 15.5] [Reference Citation Analysis]
77 Oliveira MF, Guimarães PP, Gomes AD, Suárez D, Sinisterra RD. Strategies to target tumors using nanodelivery systems based on biodegradable polymers, aspects of intellectual property, and market. J Chem Biol 2012;6:7-23. [PMID: 24294318 DOI: 10.1007/s12154-012-0086-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
78 Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I, Babes L, Reinheckel T, Peters C, Zeiser R, Bogyo M, Turk V, Psakhye SG, Turk B, Vasiljeva O. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 2011;6:594-602. [PMID: 21822252 DOI: 10.1038/nnano.2011.112] [Cited by in Crossref: 273] [Cited by in F6Publishing: 249] [Article Influence: 24.8] [Reference Citation Analysis]
79 Roy Chowdhury M, Schumann C, Bhakta-guha D, Guha G. Cancer nanotheranostics: Strategies, promises and impediments. Biomedicine & Pharmacotherapy 2016;84:291-304. [DOI: 10.1016/j.biopha.2016.09.035] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 7.3] [Reference Citation Analysis]
80 Gao Y, Zhang C, Zhou Y, Li J, Zhao L, Li Y, Liu Y, Li X. Endosomal pH-Responsive Polymer-Based Dual-Ligand-Modified Micellar Nanoparticles for Tumor Targeted Delivery and Facilitated Intracellular Release of Paclitaxel. Pharm Res 2015;32:2649-62. [PMID: 25676595 DOI: 10.1007/s11095-015-1650-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
81 Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release 2011;152:2-12. [DOI: 10.1016/j.jconrel.2011.01.030] [Cited by in Crossref: 914] [Cited by in F6Publishing: 845] [Article Influence: 83.1] [Reference Citation Analysis]
82 Bastakoti BP, Bentley J, Mclaurin D, Yusa S, Shaji S, Mucha NR, Kumar D, Ahamad T. Synthesis of magnetite loaded fluorescence micelles of triblock copolymer. Journal of Molecular Liquids 2020;305:112785. [DOI: 10.1016/j.molliq.2020.112785] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Cruz MEM, Corvo ML, Martins MB, Simões S, Gaspar MM. Liposomes as Tools to Improve Therapeutic Enzyme Performance. Pharmaceutics 2022;14:531. [DOI: 10.3390/pharmaceutics14030531] [Reference Citation Analysis]
84 Viard M, Puri A. Stimuli-Sensitive Liposomes. Elsevier; 2015. pp. 1-41. [DOI: 10.1016/bs.adplan.2015.06.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
85 Vahabi S, Eatemadi A. Nanoliposome encapsulated anesthetics for local anesthesia application. Biomedicine & Pharmacotherapy 2017;86:1-7. [DOI: 10.1016/j.biopha.2016.11.137] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
86 Gaikwad VL, Choudhari PB, Bhatia NM, Bhatia MS. Characterization of pharmaceutical nanocarriers: in vitro and in vivo studies. Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. pp. 33-58. [DOI: 10.1016/b978-0-12-816505-8.00016-3] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
87 Koshkaryev A, Sawant R, Deshpande M, Torchilin V. Immunoconjugates and long circulating systems: origins, current state of the art and future directions. Adv Drug Deliv Rev 2013;65:24-35. [PMID: 22964425 DOI: 10.1016/j.addr.2012.08.009] [Cited by in Crossref: 95] [Cited by in F6Publishing: 86] [Article Influence: 9.5] [Reference Citation Analysis]
88 Cavallaro G, Craparo EF, Sardo C, Lamberti G, Barba AA, Dalmoro A. PHEA–PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. International Journal of Pharmaceutics 2015;495:719-27. [DOI: 10.1016/j.ijpharm.2015.09.050] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
89 Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 2014;35:3365-83. [PMID: 24439402 DOI: 10.1016/j.biomaterials.2013.12.090] [Cited by in Crossref: 496] [Cited by in F6Publishing: 452] [Article Influence: 62.0] [Reference Citation Analysis]
90 Feng ST, Li J, Luo Y, Yin T, Cai H, Wang Y, Dong Z, Shuai X, Li ZP. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One 2014;9:e100732. [PMID: 24964012 DOI: 10.1371/journal.pone.0100732] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
91 Ouahab A, Cheraga N, Onoja V, Shen Y, Tu J. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery: in vitro study. Int J Pharm 2014;466:233-45. [PMID: 24614579 DOI: 10.1016/j.ijpharm.2014.03.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
92 Nguyen CT, Tran TH, Amiji M, Lu X, Kasi RM. Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nanomedicine 2015;11:2071-82. [PMID: 26169153 DOI: 10.1016/j.nano.2015.06.011] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
93 Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. Adv Mater 2018;30:1707351. [DOI: 10.1002/adma.201707351] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
94 Cao Z, Ziener U, Landfester K. Synthesis of Narrowly Size-Distributed Thermosensitive Poly( N -isopropylacrylamide) Nanocapsules in Inverse Miniemulsion. Macromolecules 2010;43:6353-60. [DOI: 10.1021/ma101115t] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
95 Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics 2013;85:427-43. [DOI: 10.1016/j.ejpb.2013.07.002] [Cited by in Crossref: 326] [Cited by in F6Publishing: 293] [Article Influence: 36.2] [Reference Citation Analysis]
96 Jin CS, Zheng G. Liposomal nanostructures for photosensitizer delivery: PHOTOSENSITIZER DELIVERY. Lasers Surg Med 2011;43:734-48. [DOI: 10.1002/lsm.21101] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 5.8] [Reference Citation Analysis]
97 Kim DK, Dobson J. Nanomedicine for targeted drug delivery. J Mater Chem 2009;19:6294. [DOI: 10.1039/b902711b] [Cited by in Crossref: 103] [Cited by in F6Publishing: 73] [Article Influence: 7.9] [Reference Citation Analysis]
98 Ducat E, Brion M, Lecomte F, Evrard B, Piel G. The experimental design as practical approach to develop and optimize a formulation of peptide-loaded liposomes. AAPS PharmSciTech 2010;11:966-75. [PMID: 20512433 DOI: 10.1208/s12249-010-9463-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
99 Manzanares-Guevara LA, Licea-Claverie A, Oroz-Parra I, Bernaldez-Sarabia J, Diaz-Castillo F, Licea-Navarro AF. Smart Nanoformulation Based on Stimuli-Responsive Nanogels and Curcumin: Promising Therapy against Colon Cancer. ACS Omega 2020;5:9171-84. [PMID: 32363269 DOI: 10.1021/acsomega.9b04390] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
100 Ngwa W, Kumar R, Moreau M, Dabney R, Herman A. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids. Front Oncol 2017;7:208. [PMID: 28971063 DOI: 10.3389/fonc.2017.00208] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
101 Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mater Chem B 2013;1:2324. [DOI: 10.1039/c3tb20100g] [Cited by in Crossref: 53] [Cited by in F6Publishing: 37] [Article Influence: 5.9] [Reference Citation Analysis]
102 Verma G, Shetake NG, Barick KC, Pandey BN, Hassan PA, Priyadarsini KI. Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release. New J Chem 2018;42:6283-92. [DOI: 10.1039/c7nj04706a] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
103 Li Y, Lin J, Zhi X, Li P, Jiang X, Yuan J. Triple stimuli-responsive keratin nanoparticles as carriers for drug and potential nitric oxide release. Materials Science and Engineering: C 2018;91:606-14. [DOI: 10.1016/j.msec.2018.05.073] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
104 Ducat E, Deprez J, Gillet A, Noël A, Evrard B, Peulen O, Piel G. Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: Benefits over classical vesicles. International Journal of Pharmaceutics 2011;420:319-32. [DOI: 10.1016/j.ijpharm.2011.08.034] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
105 Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release. 2018;269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
106 Sawant RR, Torchilin VP. Multifunctionality of lipid-core micelles for drug delivery and tumour targeting. Molecular Membrane Biology 2010;27:232-46. [DOI: 10.3109/09687688.2010.516276] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 4.9] [Reference Citation Analysis]
107 Marianecci C, Di Marzio L, Del Favero E, Cantù L, Brocca P, Rondelli V, Rinaldi F, Dini L, Serra A, Decuzzi P, Celia C, Paolino D, Fresta M, Carafa M. Niosomes as Drug Nanovectors: Multiscale pH-Dependent Structural Response. Langmuir 2016;32:1241-9. [DOI: 10.1021/acs.langmuir.5b04111] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
108 Yu X, Pishko MV. Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules 2011;12:3205-12. [PMID: 21786828 DOI: 10.1021/bm200681m] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
109 Fan X, Zhao Y, Xu W, Li L. Linear-dendritic block copolymer for drug and gene delivery. Mater Sci Eng C Mater Biol Appl 2016;62:943-59. [PMID: 26952501 DOI: 10.1016/j.msec.2016.01.044] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
110 Huang X, Huang G, Zhang S, Sagiyama K, Togao O, Ma X, Wang Y, Li Y, Soesbe TC, Sumer BD, Takahashi M, Sherry AD, Gao J. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew Chem Int Ed Engl 2013;52:8074-8. [PMID: 23788453 DOI: 10.1002/anie.201301135] [Cited by in Crossref: 88] [Cited by in F6Publishing: 77] [Article Influence: 9.8] [Reference Citation Analysis]
111 Sarisozen C, Torchilin VP. Intracellular Delivery of Proteins and Peptides. In: Wang B, Hu L, Siahaan TJ, editors. Drug Delivery. Hoboken: John Wiley & Sons, Inc; 2016. pp. 576-622. [DOI: 10.1002/9781118833322.ch23] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
112 Li P, Liu D, Miao L, Liu C, Sun X, Liu Y, Zhang N. A pH-sensitive multifunctional gene carrier assembled via layer-by-layer technique for efficient gene delivery. Int J Nanomedicine 2012;7:925-39. [PMID: 22393290 DOI: 10.2147/IJN.S26955] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
113 Yang YQ, Zhao B, Li ZD, Lin WJ, Zhang CY, Guo XD, Wang JF, Zhang LJ. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Acta Biomaterialia 2013;9:7679-90. [DOI: 10.1016/j.actbio.2013.05.006] [Cited by in Crossref: 105] [Cited by in F6Publishing: 83] [Article Influence: 11.7] [Reference Citation Analysis]
114 Schrade A, Cao Z, Landfester K, Ziener U. Preparation of raspberry-like nanocapsules by the combination of Pickering emulsification and solvent displacement technique. Langmuir 2011;27:6689-700. [PMID: 21563812 DOI: 10.1021/la201170w] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
115 Avaji PG, Jadhav VB, Cui JX, Jun YJ, Lee HJ, Sohn YS. Synthesis and physicochemical properties of new tripodal amphiphiles bearing fatty acids as a hydrophobic group. Bioorganic & Medicinal Chemistry Letters 2013;23:1763-7. [DOI: 10.1016/j.bmcl.2013.01.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
116 Sharma G, Parchur AK, Jagtap JM, Hansen CP, Joshi A. Hybrid Nanostructures in Targeted Drug Delivery. Hybrid Nanostructures for Cancer Theranostics. Elsevier; 2019. pp. 139-58. [DOI: 10.1016/b978-0-12-813906-6.00008-1] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
117 Shah T, Halacheva S. Drug-releasing textiles. Advances in Smart Medical Textiles. Elsevier; 2016. pp. 119-54. [DOI: 10.1016/b978-1-78242-379-9.00006-2] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
118 Amin M, Mansourian M, Koning GA, Badiee A, Jaafari MR, Ten Hagen TLM. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region. J Control Release 2015;220:308-15. [PMID: 26526970 DOI: 10.1016/j.jconrel.2015.10.039] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 6.7] [Reference Citation Analysis]
119 Sawant RR, Torchilin VP. Liposomes as ‘smart’ pharmaceutical nanocarriers. Soft Matter 2010;6:4026. [DOI: 10.1039/b923535n] [Cited by in Crossref: 172] [Cited by in F6Publishing: 110] [Article Influence: 14.3] [Reference Citation Analysis]
120 Zhao W, Hu X, Duan J, Liu T, Liu M, Dong Y. Oxygen release from nanobubbles adsorbed on hydrophobic particles. Chemical Physics Letters 2014;608:224-8. [DOI: 10.1016/j.cplett.2014.05.079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
121 Jarai BM, Kolewe EL, Stillman ZS, Raman N, Fromen CA. Polymeric Nanoparticles. Nanoparticles for Biomedical Applications. Elsevier; 2020. pp. 303-24. [DOI: 10.1016/b978-0-12-816662-8.00018-7] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
122 Kundu P, Das S, Chattopadhyay N. Managing efficacy and toxicity of drugs: Targeted delivery and excretion. International Journal of Pharmaceutics 2019;565:378-90. [DOI: 10.1016/j.ijpharm.2019.04.058] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
123 Yang KN, Zhang CQ, Wang W, Wang PC, Zhou JP, Liang XJ. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med 2014;11:34-43. [PMID: 24738037 DOI: 10.7497/j.issn.2095-3941.2014.01.003] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
124 Muratov A, Baulin VA. Degradation versus Self-Assembly of Block Co-polymer Micelles. Langmuir 2012;28:3071-6. [DOI: 10.1021/la204625p] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
125 Patnaik S, Gorain B, Padhi S, Choudhury H, Gabr GA, Md S, Kumar Mishra D, Kesharwani P. Recent update of toxicity aspects of nanoparticulate systems for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2021;161:100-19. [DOI: 10.1016/j.ejpb.2021.02.010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
126 Sawant RR, Jhaveri AM, Torchilin VP. Immunomicelles for advancing personalized therapy. Advanced Drug Delivery Reviews 2012;64:1436-46. [DOI: 10.1016/j.addr.2012.08.003] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
127 Kenien R, Shen W, Zaro JL. Vesicle-to-cytosol transport of disulfide-linked cargo mediated by an amphipathic cell-penetrating peptide. Journal of Drug Targeting 2012;20:793-800. [DOI: 10.3109/1061186x.2012.719899] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
128 Mirahadi M, Ghanbarzadeh S, Ghorbani M, Gholizadeh A, Hamishehkar H. A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Therapeutic Delivery 2018;9:557-69. [DOI: 10.4155/tde-2018-0020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
129 Gao Y, Li Y, Li Y, Yuan L, Zhou Y, Li J, Zhao L, Zhang C, Li X, Liu Y. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale 2015;7:597-612. [DOI: 10.1039/c4nr05738d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
130 Li H, Yu Y, Faraji Dana S, Li B, Lee CY, Kang L. Novel engineered systems for oral, mucosal and transdermal drug delivery. J Drug Target 2013;21:611-29. [PMID: 23869879 DOI: 10.3109/1061186X.2013.805335] [Cited by in Crossref: 31] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
131 Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. Functional liposomes in the cancer-targeted drug delivery. J Biomater Appl 2015;30:3-16. [PMID: 25823898 DOI: 10.1177/0885328215578111] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 5.7] [Reference Citation Analysis]
132 Ng SL, Best JP, Kempe K, Liang K, Johnston APR, Such GK, Caruso F. Fundamental Studies of Hybrid Poly(2-(diisopropylamino)ethyl methacrylate)/Poly( N -vinylpyrrolidone) Films and Capsules. Biomacromolecules 2014;15:2784-92. [DOI: 10.1021/bm500640t] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
133 Zhong W, Zhang X, Zhao M, Wu J, Lin D. Advancements in nanotechnology for the diagnosis and treatment of multiple myeloma. Biomater Sci 2020;8:4692-711. [PMID: 32779645 DOI: 10.1039/d0bm00772b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
134 Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2018;6:645. [PMID: 30671429 DOI: 10.3389/fchem.2018.00645] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
135 Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 2013;172:1020-34. [PMID: 24140748 DOI: 10.1016/j.jconrel.2013.10.012] [Cited by in Crossref: 153] [Cited by in F6Publishing: 133] [Article Influence: 17.0] [Reference Citation Analysis]
136 Quaglia F, Sortino S. Polymer Nanoparticles for Cancer Photodynamic Therapy Combined with Nitric Oxide Photorelease and Chemotherapy. In: Bergamini G, Silvi S, editors. Applied Photochemistry. Cham: Springer International Publishing; 2016. pp. 397-426. [DOI: 10.1007/978-3-319-31671-0_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
137 Mittal NK, Bhattacharjee H, Mandal B, Balabathula P, Thoma LA, Wood GC. Targeted liposomal drug delivery systems for the treatment of B cell malignancies. J Drug Target 2014;22:372-86. [PMID: 24433007 DOI: 10.3109/1061186X.2013.878942] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
138 Soliman GM, Sharma A, Maysinger D, Kakkar A. Dendrimers and miktoarm polymers based multivalent nanocarriers for efficient and targeted drug delivery. Chem Commun 2011;47:9572. [DOI: 10.1039/c1cc11981h] [Cited by in Crossref: 106] [Cited by in F6Publishing: 90] [Article Influence: 9.6] [Reference Citation Analysis]
139 Hansen SF, Nielsen KN, Knudsen N, Grieger KD, Baun A. Operationalization and application of “early warning signs” to screen nanomaterials for harmful properties. Environ Sci : Processes Impacts 2013;15:190-203. [DOI: 10.1039/c2em30571b] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
140 Barreto JA, O’malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv Mater 2011;23:H18-40. [DOI: 10.1002/adma.201100140] [Cited by in Crossref: 664] [Cited by in F6Publishing: 603] [Article Influence: 60.4] [Reference Citation Analysis]
141 Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew Chem Int Ed Engl 2011;50:6109-14. [PMID: 21495146 DOI: 10.1002/anie.201100884] [Cited by in Crossref: 389] [Cited by in F6Publishing: 362] [Article Influence: 35.4] [Reference Citation Analysis]
142 Zhang X, Liu K, Huang Y, Xu J, Li J, Ma X, Li S. Reduction-sensitive dual functional nanomicelles for improved delivery of paclitaxel. Bioconjug Chem 2014;25:1689-96. [PMID: 25121577 DOI: 10.1021/bc500292j] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
143 Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2014;15:69-80. [PMID: 24145298 DOI: 10.4161/cbt.26609] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
144 Paleos CM, Tsiourvas D, Sideratou Z, Pantos A. Formation of artificial multicompartment vesosome and dendrosome as prospected drug and gene delivery carriers. Journal of Controlled Release 2013;170:141-52. [DOI: 10.1016/j.jconrel.2013.05.011] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
145 Fernandes RS, Silva JO, Mussi SV, Lopes SCA, Leite EA, Cassali GD, Cardoso VN, Townsend DM, Colletti PM, Ferreira LAM, Rubello D, de Barros ALB. Nanostructured Lipid Carrier Co-loaded with Doxorubicin and Docosahexaenoic Acid as a Theranostic Agent: Evaluation of Biodistribution and Antitumor Activity in Experimental Model. Mol Imaging Biol 2018;20:437-47. [PMID: 29043471 DOI: 10.1007/s11307-017-1133-3] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
146 Ahmed SE, Martins AM, Husseini GA. The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes. J Drug Target 2015;23:16-42. [PMID: 25203857 DOI: 10.3109/1061186X.2014.954119] [Cited by in Crossref: 43] [Cited by in F6Publishing: 9] [Article Influence: 5.4] [Reference Citation Analysis]
147 Yang B, Geng S, Liu X, Wang J, Chen Y, Wang Y, Wang J. Positively charged cholesterol derivative combined with liposomes as an efficient drug delivery system, in vitro and in vivo study. Soft Matter 2012;8:518-25. [DOI: 10.1039/c1sm06087b] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 2.1] [Reference Citation Analysis]
148 Palange AL, Palomba R, Rizzuti IF, Ferreira M, Decuzzi P. Deformable Discoidal Polymeric Nanoconstructs for the Precise Delivery of Therapeutic and Imaging Agents. Mol Ther 2017;25:1514-21. [PMID: 28341562 DOI: 10.1016/j.ymthe.2017.02.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 4.4] [Reference Citation Analysis]
149 Shi S, Zhu X, Guo Q, Wang Y, Zuo T, Luo F, Qian Z. Self-assembled mPEG-PCL-g-PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: synthesis and characterization in vitro. Int J Nanomedicine 2012;7:1749-59. [PMID: 22619525 DOI: 10.2147/IJN.S28932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 0.5] [Reference Citation Analysis]
150 Wang J, Zhao D, Wang Y, Wu G. Imine bond cross-linked poly(ethylene glycol)-block-poly(aspartamide) complex micelle as a carrier to deliver anticancer drugs. RSC Adv 2014;4:11244. [DOI: 10.1039/c3ra46160b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
151 Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015;200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Cited by in Crossref: 979] [Cited by in F6Publishing: 877] [Article Influence: 122.4] [Reference Citation Analysis]
152 Zhou X, Qi Y, Zhang Z, Nie J, Huang Y, Du B. Novel Engineered Microgels with Amphipathic Network Structures for Simultaneous Tumor and Inflammation Depression. ACS Appl Mater Interfaces 2018;10:10501-12. [DOI: 10.1021/acsami.8b02382] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
153 Durbin EW, Buxton GA. A coarse-grained model of targeted drug delivery from responsive polymer nanoparticles. Soft Matter 2010;6:762. [DOI: 10.1039/b918476g] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
154 Zhou K, Wang Y, Huang X, Luby-phelps K, Sumer BD, Gao J. Tunable, Ultrasensitive pH-Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells. Angew Chem 2011;123:6233-8. [DOI: 10.1002/ange.201100884] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 4.5] [Reference Citation Analysis]
155 Zakharova L, Pashirova T, Kashapov R, Gabdrakhmanov D, Sinyashin O. Drug delivery mediated by confined nanosystems: structure-activity relations and factors responsible for the efficacy of formulations. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 749-806. [DOI: 10.1016/b978-0-323-46143-6.00024-5] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
156 Zhang X, Yang P, Dai Y, Ma P, Li X, Cheng Z, Hou Z, Kang X, Li C, Lin J. Multifunctional Up-Converting Nanocomposites with Smart Polymer Brushes Gated Mesopores for Cell Imaging and Thermo/pH Dual-Responsive Drug Controlled Release. Adv Funct Mater 2013;23:4067-78. [DOI: 10.1002/adfm.201300136] [Cited by in Crossref: 174] [Cited by in F6Publishing: 125] [Article Influence: 19.3] [Reference Citation Analysis]
157 Siyawamwaya M, Choonara YE, Bijukumar D, Kumar P, Du Toit LC, Pillay V. A Review: Overview of Novel Polyelectrolyte Complexes as Prospective Drug Bioavailability Enhancers. International Journal of Polymeric Materials and Polymeric Biomaterials 2015;64:955-68. [DOI: 10.1080/00914037.2015.1038816] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 5.9] [Reference Citation Analysis]
158 Mohammed L, Gomaa HG, Ragab D, Zhu J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 2017;30:1-14. [DOI: 10.1016/j.partic.2016.06.001] [Cited by in Crossref: 326] [Cited by in F6Publishing: 114] [Article Influence: 65.2] [Reference Citation Analysis]
159 Caldeira de Araújo Lopes S, Vinícius Melo Novais M, Salviano Teixeira C, Honorato-Sampaio K, Tadeu Pereira M, Ferreira LA, Braga FC, Cristina Oliveira M. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid. Biomed Res Int 2013;2013:467147. [PMID: 23984367 DOI: 10.1155/2013/467147] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 2.1] [Reference Citation Analysis]
160 Aryasomayajula B, Salzano G, Torchilin VP. Multifunctional Liposomes. Methods Mol Biol 2017;1530:41-61. [PMID: 28150195 DOI: 10.1007/978-1-4939-6646-2_3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
161 Doss CG, Debottam S, Debajyoti C. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras. Protoplasma 2013;250:787-92. [PMID: 22968632 DOI: 10.1007/s00709-012-0451-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
162 Guimarães PP, Oliveira SR, de Castro Rodrigues G, Gontijo SM, Lula IS, Cortés ME, Denadai ÂM, Sinisterra RD. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability. Molecules 2015;20:879-99. [PMID: 25580685 DOI: 10.3390/molecules20010879] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
163 Ostróżka-cieślik A, Sarecka-hujar B. The Use of Nanotechnology in Modern Pharmacotherapy. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics. Elsevier; 2017. pp. 139-58. [DOI: 10.1016/b978-0-323-52725-5.00007-1] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
164 Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, Kesharwani P. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm 2017;529:506-22. [PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018] [Cited by in Crossref: 68] [Cited by in F6Publishing: 54] [Article Influence: 13.6] [Reference Citation Analysis]
165 Huynh NT, Roger E, Lautram N, Benoît J, Passirani C. The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine 2010;5:1415-33. [DOI: 10.2217/nnm.10.113] [Cited by in Crossref: 114] [Cited by in F6Publishing: 103] [Article Influence: 9.5] [Reference Citation Analysis]
166 Afzal M, Ghosh S, Das S, Chattopadhyay N. Endogenous Activation-Induced Delivery of a Bioactive Photosensitizer from a Micellar Carrier to Natural DNA. J Phys Chem B 2016;120:11492-501. [DOI: 10.1021/acs.jpcb.6b08283] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
167 Curcio M, Blanco-Fernández B, Costoya A, Concheiro A, Puoci F, Alvarez-Lorenzo C. Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles. Eur J Pharm Biopharm 2015;93:281-92. [PMID: 25917641 DOI: 10.1016/j.ejpb.2015.04.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
168 Peng Y, Lu J, Li R, Zhao Y, Hai L, Guo L, Wu Y. Glucose and Triphenylphosphonium Co-Modified Redox-Sensitive Liposomes to Synergistically Treat Glioma with Doxorubicin and Lonidamine. ACS Appl Mater Interfaces 2021;13:26682-93. [PMID: 34061501 DOI: 10.1021/acsami.1c02404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
169 Mu B, Zhong W, Dong Y, Du P, Liu P. Encapsulation of drug microparticles with self-assembled Fe3O4/alginate hybrid multilayers for targeted controlled release. J Biomed Mater Res 2012;100B:825-31. [DOI: 10.1002/jbm.b.32646] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
170 Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021;11:358. [PMID: 34221822 DOI: 10.1007/s13205-021-02905-6] [Reference Citation Analysis]
171 Mezghrani O, Tang Y, Ke X, Chen Y, Hu D, Tu J, Zhao L, Bourkaib N. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. International Journal of Pharmaceutics 2015;478:553-68. [DOI: 10.1016/j.ijpharm.2014.10.041] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 7.4] [Reference Citation Analysis]
172 Ghaz-jahanian MA, Abbaspour-aghdam F, Anarjan N, Berenjian A, Jafarizadeh-malmiri H. Application of Chitosan-Based Nanocarriers in Tumor-Targeted Drug Delivery. Mol Biotechnol 2015;57:201-18. [DOI: 10.1007/s12033-014-9816-3] [Cited by in Crossref: 76] [Cited by in F6Publishing: 58] [Article Influence: 9.5] [Reference Citation Analysis]
173 Xu H, Deng YH, Wang KQ, Chen DW. Preparation and characterization of stable pH-sensitive vesicles composed of α-tocopherol hemisuccinate. AAPS PharmSciTech 2012;13:1377-85. [PMID: 23054989 DOI: 10.1208/s12249-012-9863-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
174 Cheng S, Chen N, Wu C, Chung C, Hwu Y, Mou C, Yang C, Lo L. Recent Advances in Dynamic Monitoring of Drug Release of Nanoparticle Using Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging. Jnl Chinese Chemical Soc 2011;58:798-804. [DOI: 10.1002/jccs.201190124] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
175 de Cogan F, Gough JE, Webb SJ. Adhesive interactions between cells and biotinylated phospholipid vesicles in alginate: towards new responsive biomaterials. J Mater Sci: Mater Med 2011;22:1045-51. [DOI: 10.1007/s10856-011-4271-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
176 Sun L, Zhou Y, Zhou X, Ma L, Wang B, Yu C, Wei H. Synthesis of a Triple-Responsive Double Hydrophilic Block Copolymer Prodrug Using a Reducible RAFT–ATRP Double-Head Agent. ACS Appl Polym Mater 2020;2:2126-33. [DOI: 10.1021/acsapm.0c00083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
177 Alsehli M. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm J 2020;28:255-65. [PMID: 32194326 DOI: 10.1016/j.jsps.2020.01.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
178 Liao C, Sun Q, Liang B, Shen J, Shuai X. Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 2011;80:699-705. [PMID: 20810233 DOI: 10.1016/j.ejrad.2010.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 27] [Article Influence: 0.8] [Reference Citation Analysis]
179 Husseini GA, Pitt WG, Martins AM. Ultrasonically triggered drug delivery: breaking the barrier. Colloids Surf B Biointerfaces 2014;123:364-86. [PMID: 25454759 DOI: 10.1016/j.colsurfb.2014.07.051] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 6.4] [Reference Citation Analysis]
180 Mendonça L, Pedroso de Lima M, Simões S. Targeted lipid-based systems for siRNA delivery. Journal of Drug Delivery Science and Technology 2012;22:65-73. [DOI: 10.1016/s1773-2247(12)50006-7] [Cited by in Crossref: 3] [Article Influence: 0.3] [Reference Citation Analysis]
181 Nayak R, Meerovich I, Dash AK. Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment. AAPS PharmSciTech 2019;20. [DOI: 10.1208/s12249-019-1367-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
182 Li J, Zhou Y, Li C, Wang D, Gao Y, Zhang C, Zhao L, Li Y, Liu Y, Li X. Poly(2-ethyl-2-oxazoline)–Doxorubicin Conjugate-Based Dual Endosomal pH-Sensitive Micelles with Enhanced Antitumor Efficacy. Bioconjugate Chem 2015;26:110-9. [DOI: 10.1021/bc5004718] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 5.0] [Reference Citation Analysis]
183 Okuda T, Kidoaki S; Division of Biomolecular Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. Development of Time-Programmed, Dual-Release System Using Multilayered Fiber Mesh Sheet by Sequential Electrospinning. J Robot Mechatron 2010;22:579-86. [DOI: 10.20965/jrm.2010.p0579] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
184 Du J, Sun T, Song W, Wu J, Wang J. A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie 2010;122:3703-8. [DOI: 10.1002/ange.200907210] [Cited by in Crossref: 109] [Cited by in F6Publishing: 86] [Article Influence: 9.1] [Reference Citation Analysis]
185 Goldenbogen B, Brodersen N, Gramatica A, Loew M, Liebscher J, Herrmann A, Egger H, Budde B, Arbuzova A. Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake. Langmuir 2011;27:10820-9. [PMID: 21819046 DOI: 10.1021/la201160y] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 4.2] [Reference Citation Analysis]
186 Boyd BJ, Fong W. Stimuli-Responsive Lipid-Based Self-Assembled Systems. In: Garti N, Somasundaran P, Mezzenga R, editors. Self-Assembled Supramolecular Architectures. Hoboken: John Wiley & Sons, Inc.; 2012. pp. 257-88. [DOI: 10.1002/9781118336632.ch9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
187 Forbes N, Shin JE, Ogunyankin M, Zasadzinski JA. Inside-outside self-assembly of light-activated fast-release liposomes. Phys Chem Chem Phys 2015;17:15569-78. [PMID: 25729792 DOI: 10.1039/c4cp05881j] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
188 Ahmed A, Sarwar S, Hu Y, Munir MU, Nisar MF, Ikram F, Asif A, Rahman SU, Chaudhry AA, Rehman IU. Surface-modified polymeric nanoparticles for drug delivery to cancer cells. Expert Opin Drug Deliv 2021;18:1-24. [PMID: 32905714 DOI: 10.1080/17425247.2020.1822321] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
189 Xiong S, Wang Z, Liu J, Deng X, Xiong R, Cao X, Xie Z, Lei X, Chen Y, Tang G. A pH-sensitive prodrug strategy to co-deliver DOX and TOS in TPGS nanomicelles for tumor therapy. Colloids Surf B Biointerfaces 2019;173:346-55. [PMID: 30316081 DOI: 10.1016/j.colsurfb.2018.10.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
190 Sadasivam M, Avci P, Gupta GK, Lakshmanan S, Chandran R, Huang YY, Kumar R, Hamblin MR. Self-assembled liposomal nanoparticles in photodynamic therapy. Eur J Nanomed 2013;5. [PMID: 24348377 DOI: 10.1515/ejnm-2013-0010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
191 Kumari P, Rompicharla SVK, Bhatt H, Ghosh B, Biswas S. Development of chlorin e6-conjugated poly(ethylene glycol)-poly( d , l -lactide) nanoparticles for photodynamic therapy. Nanomedicine 2019;14:819-34. [DOI: 10.2217/nnm-2018-0255] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
192 Bajaj G, Yeo Y. Tumor-Targeted Nanoparticles: State-of-the-Art and Remaining Challenges. Pharmaceutical Sciences Encyclopedia. Hoboken: John Wiley & Sons, Inc.; 2010. [DOI: 10.1002/9780470571224.pse488] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
193 Sadeghi N, Deckers R, Ozbakir B, Akthar S, Kok RJ, Lammers T, Storm G. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int J Pharm 2018;548:778-82. [PMID: 29126907 DOI: 10.1016/j.ijpharm.2017.11.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
194 Ghaffarian R, Muro S. Models and methods to evaluate transport of drug delivery systems across cellular barriers. J Vis Exp 2013;:e50638. [PMID: 24192611 DOI: 10.3791/50638] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
195 Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016;116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Cited by in Crossref: 834] [Cited by in F6Publishing: 700] [Article Influence: 139.0] [Reference Citation Analysis]
196 Wang Y, Lv S, Deng M, Tang Z, Chen X. A charge-conversional intracellular-activated polymeric prodrug for tumor therapy. Polym Chem 2016;7:2253-63. [DOI: 10.1039/c5py01618e] [Cited by in Crossref: 26] [Article Influence: 4.3] [Reference Citation Analysis]
197 Ding D, Li K, Zhu Z, Pu K, Hu Y, Jiang X, Liu B. Conjugated polyelectrolyte–cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale 2011;3:1997. [DOI: 10.1039/c0nr00950d] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 7.8] [Reference Citation Analysis]
198 Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev 2015;115:10637-89. [PMID: 26250431 DOI: 10.1021/acs.chemrev.5b00112] [Cited by in Crossref: 583] [Cited by in F6Publishing: 487] [Article Influence: 83.3] [Reference Citation Analysis]
199 Skorb EV, Möhwald H. “Smart” Surface Capsules for Delivery Devices. Adv Mater Interfaces 2014;1:1400237. [DOI: 10.1002/admi.201400237] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
200 Chen W, Chen X, Liang Y, Lai J, Xia L, Wen L, Chen G. Dimension-shifting multifunctional biocompatible nanocomposites. Soft Matter 2019;15:6626-9. [PMID: 31389962 DOI: 10.1039/c9sm01222b] [Reference Citation Analysis]
201 Kong M, Park H, Cheng X, Chen X. Spatial-temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. J Control Release 2013;172:281-91. [PMID: 24004884 DOI: 10.1016/j.jconrel.2013.08.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
202 Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. Journal of Controlled Release 2012;161:307-16. [DOI: 10.1016/j.jconrel.2012.04.040] [Cited by in Crossref: 67] [Cited by in F6Publishing: 55] [Article Influence: 6.7] [Reference Citation Analysis]
203 Ding D, Zhu Z, Liu Q, Wang J, Hu Y, Jiang X, Liu B. Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: Synthesis, antitumor efficiency in vivo and penetration in tumors. European Journal of Pharmaceutics and Biopharmaceutics 2011;79:142-9. [DOI: 10.1016/j.ejpb.2011.01.008] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 5.2] [Reference Citation Analysis]
204 Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF. Nanotechnology based approaches in cancer therapeutics. Adv Nat Sci: Nanosci Nanotechnol 2014;5:043001. [DOI: 10.1088/2043-6262/5/4/043001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 15] [Article Influence: 4.9] [Reference Citation Analysis]
205 Ghiasi B, Mehdipour G, Safari N, Behboudi H, Hashemi M, Omidi M, Sefidbakht Y, Yadegari A, Hamblin MR. Theranostic applications of stimulus-responsive systems based on carbon dots. Int J Polym Mater 2021;70:117-30. [PMID: 33967355 DOI: 10.1080/00914037.2019.1695207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
206 Xu H, Zhang W, Li Y, Ye FF, Yin PP, Yu X, Hu MN, Fu YS, Wang C, Shang DJ. The Bifunctional Liposomes Constructed by Poly(2-ethyl-oxazoline)-cholesteryl Methyl Carbonate: an Effectual Approach to Enhance Liposomal Circulation Time, pH-Sensitivity and Endosomal Escape. Pharm Res 2014;31:3038-50. [DOI: 10.1007/s11095-014-1397-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
207 Soliman GM, Choi AO, Maysinger D, Winnik FM. Minocycline block copolymer micelles and their anti-inflammatory effects on microglia. Macromol Biosci 2010;10:278-88. [PMID: 19937662 DOI: 10.1002/mabi.200900259] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
208 Ungaro F, Conte C, Quaglia F, Tornesello ML, Buonaguro FM, Buonaguro L. VLPs and particle strategies for cancer vaccines. Expert Review of Vaccines 2014;12:1173-93. [DOI: 10.1586/14760584.2013.836909] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
209 Gaspar RS, Florindo HF, Silva LC, Videira MA, Corvo ML, Martins BF, Silva-lima B. Regulatory Aspects of Oncologicals: Nanosystems Main Challenges. In: Alonso MJ, Garcia-fuentes M, editors. Nano-Oncologicals. Cham: Springer International Publishing; 2014. pp. 425-52. [DOI: 10.1007/978-3-319-08084-0_15] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
210 Naz S, Shahzad H, Ali A, Zia M. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. Artif Cells Nanomed Biotechnol 2018;46:899-916. [PMID: 28914553 DOI: 10.1080/21691401.2017.1375937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
211 Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2015;22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 8.6] [Reference Citation Analysis]
212 Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater 2012;24:840-53. [PMID: 22707853 DOI: 10.1021/cm2031569] [Cited by in Crossref: 394] [Cited by in F6Publishing: 338] [Article Influence: 39.4] [Reference Citation Analysis]
213 Mane V, Muro S. Biodistribution and endocytosis of ICAM-1-targeting antibodies versus nanocarriers in the gastrointestinal tract in mice. Int J Nanomedicine 2012;7:4223-37. [PMID: 22915850 DOI: 10.2147/IJN.S34105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 0.8] [Reference Citation Analysis]
214 Panda AK. Nanotechnology in Vaccine Development. Proc Natl Acad Sci , India, Sect B Biol Sci 2012;82:13-27. [DOI: 10.1007/s40011-012-0073-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
215 Zhang J, Liu J, Zhao Y, Wang G, Zhou F. Plasma and cellular pharmacokinetic considerations for the development and optimization of antitumor block copolymer micelles. Expert Opin Drug Deliv 2015;12:263-81. [PMID: 25217414 DOI: 10.1517/17425247.2014.945417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
216 Chen YC, Huang XC, Luo YL, Chang YC, Hsieh YZ, Hsu HY. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater 2013;14:044407. [PMID: 27877592 DOI: 10.1088/1468-6996/14/4/044407] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
217 Lee S, Trinh THT, Yoo M, Shin J, Lee H, Kim J, Hwang E, Lim YB, Ryou C. Self-Assembling Peptides and Their Application in the Treatment of Diseases. Int J Mol Sci 2019;20:E5850. [PMID: 31766475 DOI: 10.3390/ijms20235850] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 11.3] [Reference Citation Analysis]
218 Liu X, Yu D, Jin C, Song X, Cheng J, Zhao X, Qi X, Zhang G. A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J Chem 2014;38:4830-6. [DOI: 10.1039/c4nj00579a] [Cited by in Crossref: 45] [Article Influence: 5.6] [Reference Citation Analysis]
219 Tran VA, Lee S. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs). Journal of Colloid and Interface Science 2018;510:345-56. [DOI: 10.1016/j.jcis.2017.09.072] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
220 Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013;8:1509-28. [PMID: 23914966 DOI: 10.2217/nnm.13.118] [Cited by in Crossref: 339] [Cited by in F6Publishing: 285] [Article Influence: 42.4] [Reference Citation Analysis]
221 Gogoi M, Kumar N, Patra S. Multifunctional Magnetic Liposomes for Cancer Imaging and Therapeutic Applications. Nanoarchitectonics for Smart Delivery and Drug Targeting. Elsevier; 2016. pp. 743-82. [DOI: 10.1016/b978-0-323-47347-7.00027-6] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
222 Tsolou A, Angelou E, Didaskalou S, Bikiaris D, Avgoustakis K, Agianian B, Koffa MD. Folate and Pegylated Aliphatic Polyester Nanoparticles for Targeted Anticancer Drug Delivery. Int J Nanomedicine 2020;15:4899-918. [PMID: 32764924 DOI: 10.2147/IJN.S244712] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
223 Zhang X, Huang Y, Li S. Nanomicellar carriers for targeted delivery of anticancer agents. Ther Deliv 2014;5:53-68. [PMID: 24341817 DOI: 10.4155/tde.13.135] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.5] [Reference Citation Analysis]
224 Wen L, Huang S, Du W, Zhu C, Xu H. Effects of the molecular weight and molar ratio of poly(2-ethyl-2-oxazoline)-based lipid on the pH sensitivity, stability, and antitumor efficacy of liposomes. Drug Dev Ind Pharm 2020;46:283-95. [PMID: 31944130 DOI: 10.1080/03639045.2020.1717514] [Reference Citation Analysis]
225 Cao Z, Dong L, Li L, Shang Y, Qi D, Lv Q, Shan G, Ziener U, Landfester K. Preparation of Mesoporous Submicrometer Silica Capsules via an Interfacial Sol–Gel Process in Inverse Miniemulsion. Langmuir 2012;28:7023-32. [DOI: 10.1021/la300531b] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
226 Werengowska-ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System. Advances in Condensed Matter Physics 2015;2015:1-27. [DOI: 10.1155/2015/198175] [Cited by in Crossref: 41] [Cited by in F6Publishing: 23] [Article Influence: 5.9] [Reference Citation Analysis]
227 Jang B, Kwon H, Katila P, Lee SJ, Lee H. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Advanced Drug Delivery Reviews 2016;98:113-33. [DOI: 10.1016/j.addr.2015.10.023] [Cited by in Crossref: 58] [Cited by in F6Publishing: 57] [Article Influence: 9.7] [Reference Citation Analysis]
228 Lee Y, Kischuk E, Crist S, Ratliff TL, Thompson DH. Targeting and Internalization of Liposomes by Bladder Tumor Cells Using a Fibronectin Attachment Protein-Derived Peptide-Lipopolymer Conjugate. Bioconjug Chem 2017;28:1481-90. [PMID: 28475311 DOI: 10.1021/acs.bioconjchem.7b00153] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
229 MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:31-48. [PMID: 22977001 DOI: 10.1002/wnan.1197] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
230 Wang D, Yu D, Liu X, Wang Q, Chen X, Hu X, Wang Q, Jin C, Wen L, Zhang L. Targeting laryngeal cancer cells with 5-fluorouracil and curcumin using mesoporous silica nanoparticles. Technol Cancer Res Treat 2020;19:1533033820962114. [PMID: 33267716 DOI: 10.1177/1533033820962114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
231 Khan S, Imran M, Butt TT, Ali Shah SW, Sohail M, Malik A, Das S, Thu HE, Adam A, Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends in Food Science & Technology 2018;80:8-22. [DOI: 10.1016/j.tifs.2018.07.026] [Cited by in Crossref: 37] [Cited by in F6Publishing: 20] [Article Influence: 9.3] [Reference Citation Analysis]
232 Yang J, Katagiri D, Mao S, Zeng H, Nakajima H, Kato S, Uchiyama K. Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. J Mater Chem B 2016;4:4156-63. [DOI: 10.1039/c6tb00424e] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
233 Yaroslavov A, Efimova A, Smirnova N, Erzunov D, Lukashev N, Grozdova I, Melik-nubarov N. A novel approach to a controlled opening of liposomes. Colloids and Surfaces B: Biointerfaces 2020;190:110906. [DOI: 10.1016/j.colsurfb.2020.110906] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
234 Li W, Du J, Zheng K, Zhang P, Hu Q, Wang Y. Multifunctional nanoparticles via host–guest interactions: a universal platform for targeted imaging and light-regulated gene delivery. Chem Commun 2014;50:1579. [DOI: 10.1039/c3cc48098d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
235 Cao Z, Schrade A, Landfester K, Ziener U. Synthesis of raspberry-like organic-inorganic hybrid nanocapsules via pickering miniemulsion polymerization: Colloidal stability and morphology. J Polym Sci A Polym Chem 2011;49:2382-94. [DOI: 10.1002/pola.24668] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 4.8] [Reference Citation Analysis]
236 Wang L, Li Y, Xu Y, Wang C. A facile construction method for pH and oxidation dual-responsive assembly based on ferrocene-modified chitooligosaccharide. Reactive and Functional Polymers 2014;76:1-7. [DOI: 10.1016/j.reactfunctpolym.2013.12.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
237 Brodersen N, Arbuzova A, Herrmann A, Egger H, Liebscher J. Synthesis of novel amphiphilic conjugates with a biological recognition function for developing targeted triggered liposomal delivery systems. Tetrahedron 2011;67:7763-74. [DOI: 10.1016/j.tet.2011.07.089] [Cited by in Crossref: 10] [Article Influence: 0.9] [Reference Citation Analysis]
238 Paleos CM, Tsiourvas D, Sideratou Z. Triphenylphosphonium Decorated Liposomes and Dendritic Polymers: Prospective Second Generation Drug Delivery Systems for Targeting Mitochondria. Mol Pharm 2016;13:2233-41. [PMID: 27280339 DOI: 10.1021/acs.molpharmaceut.6b00237] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
239 Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. Journal of Controlled Release 2019;315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 15.7] [Reference Citation Analysis]
240 Yan T, He J, Liu R, Liu Z, Cheng J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydrate Polymers 2020;231:115706. [DOI: 10.1016/j.carbpol.2019.115706] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 17.5] [Reference Citation Analysis]
241 Gheybi H, Sattari S, Bodaghi A, Soleimani K, Dadkhah A, Adeli M. Polyglycerols. Engineering of Biomaterials for Drug Delivery Systems. Elsevier; 2018. pp. 103-71. [DOI: 10.1016/b978-0-08-101750-0.00005-2] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
242 Metaxa A, Efthimiadou EK, Boukos N, Fragogeorgi EA, Loudos G, Kordas G. Hollow microspheres based on – Folic acid modified – Hydroxypropyl Cellulose and synthetic multi-responsive bio-copolymer for targeted cancer therapy: Controlled release of daunorubicin, in vitro and in vivo studies. Journal of Colloid and Interface Science 2014;435:171-81. [DOI: 10.1016/j.jcis.2014.08.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
243 Balasubramanian V, Onaca O, Enea R, Hughes DW, Palivan CG. Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opinion on Drug Delivery 2009;7:63-78. [DOI: 10.1517/17425240903394520] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 3.7] [Reference Citation Analysis]
244 Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018;19:E731. [PMID: 29510526 DOI: 10.3390/ijms19030731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
245 Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021;178:113992. [PMID: 34597748 DOI: 10.1016/j.addr.2021.113992] [Reference Citation Analysis]
246 Brullo C, Villa C, Tasso B, Russo E, Spallarossa A. Btk Inhibitors: A Medicinal Chemistry and Drug Delivery Perspective. Int J Mol Sci 2021;22:7641. [PMID: 34299259 DOI: 10.3390/ijms22147641] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
247 Fischer NO, Blanchette CD, Segelke BW, Corzett M, Chromy BA, Kuhn EA, Bench G, Hoeprich PD. Isolation, characterization, and stability of discretely-sized nanolipoprotein particles assembled with apolipophorin-III. PLoS One 2010;5:e11643. [PMID: 20657844 DOI: 10.1371/journal.pone.0011643] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
248 Cho H, Stuart JM, Magid R, Danila DC, Hunsaker T, Pinkhassik E, Hasty KA. Theranostic immunoliposomes for osteoarthritis. Nanomedicine 2014;10:619-27. [PMID: 24096032 DOI: 10.1016/j.nano.2013.09.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
249 de la Puente P, Azab AK. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. Eur J Haematol 2017;98:529-41. [PMID: 28208215 DOI: 10.1111/ejh.12870] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
250 Jérôme C. Macromolecular engineering and stimulus response in the design of advanced drug delivery systems. MRS Bull 2010;35:665-72. [DOI: 10.1557/mrs2010.678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
251 Kumar R, Ohulchanskyy TY, Roy I, Gupta SK, Borek C, Thompson ME, Prasad PN. Near-infrared phosphorescent polymeric nanomicelles: efficient optical probes for tumor imaging and detection. ACS Appl Mater Interfaces 2009;1:1474-81. [PMID: 20355951 DOI: 10.1021/am9001293] [Cited by in Crossref: 67] [Cited by in F6Publishing: 62] [Article Influence: 5.6] [Reference Citation Analysis]
252 Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 2011;21:9239. [DOI: 10.1039/c1jm10631g] [Cited by in Crossref: 221] [Cited by in F6Publishing: 169] [Article Influence: 20.1] [Reference Citation Analysis]
253 Alavizadeh SH, Soltani F, Ramezani M. Recent Advances in Immunoliposome-Based Cancer Therapy. Curr Pharmacol Rep 2016;2:129-41. [DOI: 10.1007/s40495-016-0056-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
254 Ravazzolo E, Salmaso S, Mastrotto F, Bersani S, Gallon E, Caliceti P. pH-responsive lipid core micelles for tumour targeting. European Journal of Pharmaceutics and Biopharmaceutics 2013;83:346-57. [DOI: 10.1016/j.ejpb.2012.11.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
255 Costa DF, Torchilin VP. Micelle-like nanoparticles as siRNA and miRNA carriers for cancer therapy. Biomed Microdevices 2018;20:59. [PMID: 29998417 DOI: 10.1007/s10544-018-0298-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
256 Fleming JM, Yeyeodu ST, Mclaughlin A, Schuman D, Taylor DK. In Situ Drug Delivery to Breast Cancer-Associated Extracellular Matrix. ACS Chem Biol 2018;13:2825-40. [DOI: 10.1021/acschembio.8b00396] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
257 Smith DA, Vaidya SS, Kopechek JA, Huang SL, Klegerman ME, McPherson DD, Holland CK. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 2010;36:145-57. [PMID: 19900755 DOI: 10.1016/j.ultrasmedbio.2009.08.009] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 4.9] [Reference Citation Analysis]
258 Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers and Polymers 2012;15:465-521. [DOI: 10.1080/1385772x.2012.688328] [Cited by in Crossref: 92] [Article Influence: 9.2] [Reference Citation Analysis]
259 Yaroslavov AA, Sybachin AV, Zaborova OV, Migulin VA, Samoshin VV, Ballauff M, Kesselman E, Schmidt J, Talmon Y, Menger FM. Capacious and programmable multi-liposomal carriers. Nanoscale 2015;7:1635-41. [DOI: 10.1039/c4nr06037g] [Cited by in Crossref: 27] [Cited by in F6Publishing: 2] [Article Influence: 3.9] [Reference Citation Analysis]
260 Mittal A, Chitkara D. Structural modifications in polymeric micelles to impart multifunctionality for improved drug delivery. Ther Deliv 2016;7:73-87. [PMID: 26769002 DOI: 10.4155/tde.15.90] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
261 Ferreira DDS, Lopes SCDA, Franco MS, Oliveira MC. pH-sensitive liposomes for drug delivery in cancer treatment. Therapeutic Delivery 2013;4:1099-123. [DOI: 10.4155/tde.13.80] [Cited by in Crossref: 78] [Cited by in F6Publishing: 70] [Article Influence: 8.7] [Reference Citation Analysis]
262 Porfire A, Achim M, Tefas L, Sylvester B. Liposomal Nanoformulations as Current Tumor-Targeting Approach to Cancer Therapy. In: Catala A, editor. Liposomes. InTech; 2017. [DOI: 10.5772/intechopen.68160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
263 Mendes T, Gaspar MM, Simöes S, Ascenso A. Chapter 8: Lipid Vesicles for Skin Delivery: Evolution from First Generation. In: Ascenso A, Simões S, Ribeiro H, editors. Carrier‒Mediated Dermal Delivery. 6000 Broken Sound Parkway NW: CRC Press; 2017. pp. 281-322. [DOI: 10.1201/9781315364476-11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
264 Ghaffarian R, Herrero EP, Oh H, Raghavan SR, Muro S. Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo. Adv Funct Mater 2016;26:3382-93. [PMID: 27375374 DOI: 10.1002/adfm.201600084] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 10.2] [Reference Citation Analysis]
265 Singh A, Talekar M, Tran T, Samanta A, Sundaram R, Amiji M. Combinatorial approach in the design of multifunctional polymeric nano-delivery systems for cancer therapy. J Mater Chem B 2014;2:8069-84. [DOI: 10.1039/c4tb01083c] [Cited by in Crossref: 44] [Cited by in F6Publishing: 1] [Article Influence: 5.5] [Reference Citation Analysis]
266 Visani G, Loscocco F, Isidori A. Nanomedicine strategies for hematological malignancies: what is next? Nanomedicine 2014;9:2415-28. [DOI: 10.2217/nnm.14.128] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
267 He Y, Zhang L, Zhu D, Song C. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. Int J Nanomedicine 2014;9:4055-66. [PMID: 25187709 DOI: 10.2147/IJN.S61880] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
268 Tian H, Chen J, Chen X. Nanoparticles for Gene Delivery. Small 2013;9:2034-44. [DOI: 10.1002/smll.201202485] [Cited by in Crossref: 101] [Cited by in F6Publishing: 89] [Article Influence: 11.2] [Reference Citation Analysis]
269 Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016;83:184-202. [PMID: 26747018 DOI: 10.1016/j.ejps.2015.12.031] [Cited by in Crossref: 273] [Cited by in F6Publishing: 238] [Article Influence: 39.0] [Reference Citation Analysis]
270 Lim SB, Banerjee A, Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release 2012;163:34-45. [PMID: 22698939 DOI: 10.1016/j.jconrel.2012.06.002] [Cited by in Crossref: 153] [Cited by in F6Publishing: 144] [Article Influence: 15.3] [Reference Citation Analysis]
271 Soliman M, Allen S, Davies MC, Alexander C. Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics. Chem Commun 2010;46:5421. [DOI: 10.1039/c0cc00794c] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 3.8] [Reference Citation Analysis]
272 Loew M, Forsythe JC, McCarley RL. Lipid nature and their influence on opening of redox-active liposomes. Langmuir 2013;29:6615-23. [PMID: 23698020 DOI: 10.1021/la304340e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
273 Hasnain MS, Nayak AK. Recent progress in responsive polymer-based drug delivery systems. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Elsevier; 2019. pp. 569-95. [DOI: 10.1016/b978-0-08-101995-5.00024-6] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
274 Kim CH, Lee SG, Kang MJ, Lee S, Choi YW. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation 2017;47:203-27. [DOI: 10.1007/s40005-017-0329-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 29] [Article Influence: 11.4] [Reference Citation Analysis]
275 Jiang T, Jin K, Liu X, Pang Z. Nanoparticles for tumor targeting. Biopolymer-Based Composites. Elsevier; 2017. pp. 221-67. [DOI: 10.1016/b978-0-08-101914-6.00008-9] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
276 Upponi JR, Torchilin VP. Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. In: Alonso MJ, Garcia-fuentes M, editors. Nano-Oncologicals. Cham: Springer International Publishing; 2014. pp. 3-45. [DOI: 10.1007/978-3-319-08084-0_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
277 Jiang X, Li L, Liu J, Hennink WE, Zhuo R. Facile Fabrication of Thermo-Responsive and Reduction-Sensitive Polymeric Micelles for Anticancer Drug Delivery. Macromol Biosci 2012;12:703-11. [DOI: 10.1002/mabi.201100459] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
278 Sánchez-purrà M, Ramos V, Petrenko V, Torchilin V, Borrós S. Double-targeted polymersomes and liposomes for multiple barrier crossing. International Journal of Pharmaceutics 2016;511:946-56. [DOI: 10.1016/j.ijpharm.2016.08.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
279 Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G, Kiessling F. HPMA-based polymer therapeutics improve the efficacy of surgery, of radiotherapy and of chemotherapy combinations. Nanomedicine (Lond) 2010;5:1501-23. [PMID: 21143030 DOI: 10.2217/nnm.10.130] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.3] [Reference Citation Analysis]
280 Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T. Iodinated blood pool contrast media for preclinical X-ray imaging applications – A review. Biomaterials 2010;31:6249-68. [DOI: 10.1016/j.biomaterials.2010.04.066] [Cited by in Crossref: 176] [Cited by in F6Publishing: 145] [Article Influence: 14.7] [Reference Citation Analysis]
281 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13:813-827. [PMID: 25287120 DOI: 10.1016/j.addr.2012.09.031] [Cited by in Crossref: 244] [Cited by in F6Publishing: 159] [Article Influence: 30.5] [Reference Citation Analysis]
282 Xu Y, Lu Y, Wang L, Lu W, Huang J, Muir B, Yu J. Nanomicelles based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake. Colloids and Surfaces B: Biointerfaces 2016;141:318-26. [DOI: 10.1016/j.colsurfb.2016.01.044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
283 Ogier J, Arnauld T, Doris E. Recent advances in the field of nanometric drug carriers. Future Medicinal Chemistry 2009;1:693-711. [DOI: 10.4155/fmc.09.48] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
284 Cavalcanti IM, Mendonça EA, Lira MC, Honrato SB, Camara CA, Amorim RV, Filho JM, Rabello MM, Hernandes MZ, Ayala AP, Santos-magalhães NS. The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: A physicochemical evaluation and molecular modeling approach. European Journal of Pharmaceutical Sciences 2011;44:332-40. [DOI: 10.1016/j.ejps.2011.08.011] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
285 Accardo A, Mansi R, Morisco A, Mangiapia G, Paduano L, Tesauro D, Radulescu A, Aurilio M, Aloj L, Arra C, Morelli G. Peptide modified nanocarriers for selective targeting of bombesin receptors. Mol BioSyst 2010;6:878. [DOI: 10.1039/b923147a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 2.2] [Reference Citation Analysis]
286 Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin Nanoformulations for Colorectal Cancer: A Review. Front Pharmacol 2019;10:152. [PMID: 30890933 DOI: 10.3389/fphar.2019.00152] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 23.3] [Reference Citation Analysis]
287 Pérez RA, Won JE, Knowles JC, Kim HW. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013;65:471-96. [PMID: 22465488 DOI: 10.1016/j.addr.2012.03.009] [Cited by in Crossref: 237] [Cited by in F6Publishing: 201] [Article Influence: 23.7] [Reference Citation Analysis]
288 Frascione D, Diwoky C, Almer G, Opriessnig P, Vonach C, Gradauer K, Leitinger G, Mangge H, Stollberger R, Prassl R. Ultrasmall superparamagnetic iron oxide (USPIO)-based liposomes as magnetic resonance imaging probes. Int J Nanomedicine. 2012;7:2349-2359. [PMID: 22661890 DOI: 10.2147/IJN.S30617] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
289 Gagliardi M, Bardi G, Bifone A. Polymeric nanocarriers for controlled and enhanced delivery of therapeutic agents to the CNS. Therapeutic Delivery 2012;3:875-87. [DOI: 10.4155/tde.12.55] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
290 Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016;85:152-67. [PMID: 26871891 DOI: 10.1016/j.biomaterials.2016.01.061] [Cited by in Crossref: 519] [Cited by in F6Publishing: 465] [Article Influence: 86.5] [Reference Citation Analysis]
291 Malugin A, Ghandehari H; Arnida. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010;30:212-7. [PMID: 19902477 DOI: 10.1002/jat.1486] [Cited by in Crossref: 42] [Cited by in F6Publishing: 85] [Article Influence: 3.5] [Reference Citation Analysis]
292 Quan C, Wu D, Chang C, Zhang G, Cheng S, Zhang X, Zhuo R. Synthesis of Thermo-Sensitive Micellar Aggregates Self-Assembled from Biotinylated PNAS- b -PNIPAAm- b -PCL Triblock Copolymers for Tumor Targeting. J Phys Chem C 2009;113:11262-7. [DOI: 10.1021/jp902637n] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
293 Du P, Liu P. Novel Smart Yolk/Shell Polymer Microspheres as a Multiply Responsive Cargo Delivery System. Langmuir 2014;30:3060-8. [DOI: 10.1021/la500731v] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
294 Ghaffarian R, Muro S. Distinct subcellular trafficking resulting from monomeric vs multimeric targeting to endothelial ICAM-1: implications for drug delivery. Mol Pharm 2014;11:4350-62. [PMID: 25301142 DOI: 10.1021/mp500409y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
295 Masjedi M, Montahaei T. An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. Journal of Drug Delivery Science and Technology 2021;61:102234. [DOI: 10.1016/j.jddst.2020.102234] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
296 Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 28198148 DOI: 10.1002/wnan.1450] [Cited by in Crossref: 123] [Cited by in F6Publishing: 92] [Article Influence: 24.6] [Reference Citation Analysis]
297 Guo X, Wei X, Chen Z, Zhang X, Yang G, Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Progress in Materials Science 2020;107:100599. [DOI: 10.1016/j.pmatsci.2019.100599] [Cited by in Crossref: 66] [Cited by in F6Publishing: 40] [Article Influence: 33.0] [Reference Citation Analysis]
298 Guo M, Que C, Wang C, Liu X, Yan H, Liu K. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 2011;32:185-94. [DOI: 10.1016/j.biomaterials.2010.09.077] [Cited by in Crossref: 115] [Cited by in F6Publishing: 99] [Article Influence: 10.5] [Reference Citation Analysis]
299 Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 2019;3:011502. [PMID: 31069332 DOI: 10.1063/1.5079943] [Cited by in Crossref: 68] [Cited by in F6Publishing: 54] [Article Influence: 22.7] [Reference Citation Analysis]
300 Weyland M, Griveau A, Bejaud J, Benoit JP, Coursaget P, Garcion E. Lipid nanocapsule functionalization by lipopeptides derived from human papillomavirus type-16 capsid for nucleic acid delivery into cancer cells. Int J Pharm 2013;454:756-64. [PMID: 23769994 DOI: 10.1016/j.ijpharm.2013.06.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
301 Tabatabaei Rezaei SJ, Nabid MR, Niknejad H, Entezami AA. Multifunctional and thermoresponsive unimolecular micelles for tumor-targeted delivery and site-specifically release of anticancer drugs. Polymer 2012;53:3485-97. [DOI: 10.1016/j.polymer.2012.05.056] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 6.4] [Reference Citation Analysis]
302 Wang Q, Huang L, Zhu X, Zhou Y, Wang J, Su D, Liu L. MR/NIRF Dual-Mode Imaging of αvβ3 Integrin-Overexpressing Tumors Using a Lipopeptide-Based Contrast Agent. Mol Pharm 2021;18:4543-52. [PMID: 34677979 DOI: 10.1021/acs.molpharmaceut.1c00749] [Reference Citation Analysis]
303 Koren E, Apte A, Jani A, Torchilin VP. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 2012;160:264-73. [PMID: 22182771 DOI: 10.1016/j.jconrel.2011.12.002] [Cited by in Crossref: 194] [Cited by in F6Publishing: 192] [Article Influence: 17.6] [Reference Citation Analysis]
304 Metaxa AF, Efthimiadou EK, Boukos N, Kordas G. Polysaccharides as a source of advanced materials: cellulose hollow microspheres for drug delivery in cancer therapy. J Colloid Interface Sci 2012;384:198-206. [PMID: 22795041 DOI: 10.1016/j.jcis.2012.04.073] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
305 Wang Y, Lei B, Sun M, Han X, Xu S, Liu H. Accurate Targeting and Controllable Release of Hybrid Liposome Containing a Stretchable Copolymer. Macromol Chem Phys 2020;221:1900536. [DOI: 10.1002/macp.201900536] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
306 Zhu LJ, Gu LS, Shi TY, Zhang XY, Sun BW. Enhanced treatment effect of nanoparticles containing cisplatin and a GSH-reactive probe compound. Mater Sci Eng C Mater Biol Appl 2019;96:635-41. [PMID: 30606575 DOI: 10.1016/j.msec.2018.11.039] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
307 Gu L, Shi T, Sun Y, You C, Wang S, Wen G, Chen L, Zhang X, Zhu J, Sun B. Folate-modified, indocyanine green-loaded lipid-polymer hybrid nanoparticles for targeted delivery of cisplatin. J Biomater Sci Polym Ed 2017;28:690-702. [PMID: 28277002 DOI: 10.1080/09205063.2017.1296347] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
308 Christ GJ, Chen AF. The grand challenge for integrative and regenerative pharmacology. Front Pharmacol 2011;2:5. [PMID: 21687500 DOI: 10.3389/fphar.2011.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
309 Barbosa MV, Monteiro LO, Carneiro G, Malagutti AR, Vilela JM, Andrade MS, Oliveira MC, Carvalho-Junior AD, Leite EA. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf B Biointerfaces 2015;136:553-61. [PMID: 26454545 DOI: 10.1016/j.colsurfb.2015.09.055] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
310 Lembo D, Cavalli R. Nanoparticulate Delivery Systems for Antiviral Drugs. Antivir Chem Chemother 2010;21:53-70. [DOI: 10.3851/imp1684] [Cited by in Crossref: 97] [Cited by in F6Publishing: 18] [Article Influence: 8.1] [Reference Citation Analysis]
311 Papagiannaros A, Upponi J, Hartner W, Mongayt D, Levchenko T, Torchilin V. Quantum dot loaded immunomicelles for tumor imaging. BMC Med Imaging 2010;10:22. [PMID: 20955559 DOI: 10.1186/1471-2342-10-22] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
312 Gao Y, Zhou Y, Zhao L, Zhang C, Li Y, Li J, Li X, Liu Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomaterialia 2015;23:127-35. [DOI: 10.1016/j.actbio.2015.05.021] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 7.1] [Reference Citation Analysis]
313 Oliveira MF, Suarez D, Rocha JC, de Carvalho Teixeira AV, Cortés ME, De Sousa FB, Sinisterra RD. Electrospun nanofibers of polyCD/PMAA polymers and their potential application as drug delivery system. Mater Sci Eng C Mater Biol Appl 2015;54:252-61. [PMID: 26046289 DOI: 10.1016/j.msec.2015.04.042] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
314 Posocco B, Dreussi E, de Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B. Polysaccharides for the Delivery of Antitumor Drugs. Materials 2015;8:2569-615. [DOI: 10.3390/ma8052569] [Cited by in Crossref: 67] [Cited by in F6Publishing: 31] [Article Influence: 9.6] [Reference Citation Analysis]
315 Gagliardi M, Bertero A, Bardi G, Bifone A. A poly(ether-ester) copolymer for the preparation of nanocarriers with improved degradation and drug delivery kinetics. Materials Science and Engineering: C 2016;59:488-99. [DOI: 10.1016/j.msec.2015.10.054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
316 Hadorn M, Eggenberger Hotz P. Multivesicular Assemblies as Real-World Testbeds for Embryogenic Evolutionary Systems. In: Korb K, Randall M, Hendtlass T, editors. Artificial Life: Borrowing from Biology. Berlin: Springer Berlin Heidelberg; 2009. pp. 169-78. [DOI: 10.1007/978-3-642-10427-5_17] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
317 Hanafy NAN, Quarta A, Ferraro MM, Dini L, Nobile C, De Giorgi ML, Carallo S, Citti C, Gaballo A, Cannazza G, Rinaldi R, Giannelli G, Leporatti S. Polymeric Nano-Micelles as Novel Cargo-Carriers for LY2157299 Liver Cancer Cells Delivery. Int J Mol Sci 2018;19:E748. [PMID: 29509706 DOI: 10.3390/ijms19030748] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
318 Tila D, Yazdani-Arazi SN, Ghanbarzadeh S, Arami S, Pourmoazzen Z. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI J 2015;14:21-32. [PMID: 26417350 DOI: 10.17179/excli2013-609] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
319 Xu C, Xu J, Xiao L, Li Z, Xiao Y, Dargusch M, Lei C, He Y, Ye Q. Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Adv 2018;8:16503-12. [DOI: 10.1039/c8ra02072h] [Cited by in Crossref: 10] [Article Influence: 2.5] [Reference Citation Analysis]
320 del Mercato LL, Rivera-gil P, Abbasi AZ, Ochs M, Ganas C, Zins I, Sönnichsen C, Parak WJ. LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale 2010;2:458. [DOI: 10.1039/b9nr00341j] [Cited by in Crossref: 186] [Cited by in F6Publishing: 163] [Article Influence: 15.5] [Reference Citation Analysis]
321 Porfire A, Tomuta I, Muntean D, Luca L, Licarete E, Alupei MC, Achim M, Vlase L, Banciu M. Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells. Journal of Liposome Research 2014;25:261-9. [DOI: 10.3109/08982104.2014.987787] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
322 Qin W, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ. Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Adv Funct Mater 2012;22:771-9. [DOI: 10.1002/adfm.201102191] [Cited by in Crossref: 521] [Cited by in F6Publishing: 412] [Article Influence: 47.4] [Reference Citation Analysis]
323 Sawant RR, Torchilin VP. Multifunctional nanocarriers and intracellular drug delivery. Current Opinion in Solid State and Materials Science 2012;16:269-75. [DOI: 10.1016/j.cossms.2012.09.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
324 Puri A. Phototriggerable liposomes: current research and future perspectives. Pharmaceutics 2013;6:1-25. [PMID: 24662363 DOI: 10.3390/pharmaceutics6010001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
325 Arshinova OY, Sanarova EV, Lantsova AV, Oborotova NA. Lyophilization of liposomal drug forms (Review). Pharm Chem J 2012;46:228-33. [DOI: 10.1007/s11094-012-0768-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
326 Mu B, Liu P, Dong Y, Lu C, Wu X. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release: Multilayer Hybrid Hollow Microspheres. J Polym Sci A Polym Chem 2010;48:3135-44. [DOI: 10.1002/pola.24095] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 5.0] [Reference Citation Analysis]
327 Aragão Horoiwa T, Cortez M, Sauter IP, Migotto A, Bandeira CL, Cerize NN, de Oliveira AM. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. European Journal of Pharmaceutical Sciences 2020;147:105295. [DOI: 10.1016/j.ejps.2020.105295] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
328 Stigliano C, Key J, Ramirez M, Aryal S, Decuzzi P. Radiolabeled Polymeric Nanoconstructs Loaded with Docetaxel and Curcumin for Cancer Combinatorial Therapy and Nuclear Imaging. Adv Funct Mater 2015;25:3371-9. [DOI: 10.1002/adfm.201500627] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
329 Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. Journal of Controlled Release 2012;164:156-69. [DOI: 10.1016/j.jconrel.2012.05.042] [Cited by in Crossref: 172] [Cited by in F6Publishing: 155] [Article Influence: 17.2] [Reference Citation Analysis]
330 Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021;13:725. [PMID: 34069233 DOI: 10.3390/pharmaceutics13050725] [Reference Citation Analysis]
331 Baspinar Y, Üstündas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterisation. Saudi Pharm J 2018;26:323-34. [PMID: 29556123 DOI: 10.1016/j.jsps.2018.01.010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 12.3] [Reference Citation Analysis]
332 Li X, Guo J, Asong J, Wolfert MA, Boons GJ. Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions. J Am Chem Soc 2011;133:11147-53. [PMID: 21678979 DOI: 10.1021/ja2012164] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
333 Lin C, Kuan C, Wang L, Wu H, Chen Y, Chang C, Huang R, Wang T. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 2016;90:12-26. [DOI: 10.1016/j.biomaterials.2016.03.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 7.3] [Reference Citation Analysis]
334 Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. Journal of Controlled Release 2010;142:299-311. [DOI: 10.1016/j.jconrel.2009.10.024] [Cited by in Crossref: 270] [Cited by in F6Publishing: 236] [Article Influence: 22.5] [Reference Citation Analysis]
335 Ducat E, Evrard B, Peulen O, Piel G. Cellular uptake of liposomes monitored by confocal microscopy and flow cytometry. Journal of Drug Delivery Science and Technology 2011;21:469-77. [DOI: 10.1016/s1773-2247(11)50076-0] [Cited by in Crossref: 18] [Article Influence: 1.6] [Reference Citation Analysis]
336 Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 2014;5:77. [PMID: 24795633 DOI: 10.3389/fphar.2014.00077] [Cited by in Crossref: 202] [Cited by in F6Publishing: 173] [Article Influence: 25.3] [Reference Citation Analysis]
337 Ren S, Wang M, Wang C, Wang Y, Sun C, Zeng Z, Cui H, Zhao X. Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021;13:3307. [PMID: 34641123 DOI: 10.3390/polym13193307] [Reference Citation Analysis]
338 Kim JO, Sahay G, Kabanov AV, Bronich TK. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents. Biomacromolecules 2010;11:919-26. [PMID: 20307096 DOI: 10.1021/bm9013364] [Cited by in Crossref: 102] [Cited by in F6Publishing: 97] [Article Influence: 8.5] [Reference Citation Analysis]
339 Du F, Wang Y, Zhang R, Li Z. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 2010;6:835-48. [DOI: 10.1039/b915020j] [Cited by in Crossref: 76] [Article Influence: 6.3] [Reference Citation Analysis]
340 Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine 2012;18:385-93. [DOI: 10.1016/j.molmed.2012.04.012] [Cited by in Crossref: 459] [Cited by in F6Publishing: 444] [Article Influence: 45.9] [Reference Citation Analysis]
341 Ghaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM-1. J Control Release 2012;163:25-33. [PMID: 22698938 DOI: 10.1016/j.jconrel.2012.06.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
342 Perez RA, Seo S, Won J, Lee E, Jang J, Knowles JC, Kim H. Therapeutically relevant aspects in bone repair and regeneration. Materials Today 2015;18:573-89. [DOI: 10.1016/j.mattod.2015.06.011] [Cited by in Crossref: 68] [Cited by in F6Publishing: 44] [Article Influence: 9.7] [Reference Citation Analysis]
343 He T, Wang W, Chen B, Wang J, Liang Q, Chen B. 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 2020;236:116094. [PMID: 32172896 DOI: 10.1016/j.carbpol.2020.116094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
344 Wang M, Kim J. In vivo tumor-suppressing efficacy and cell internalization of doxorubicin loaded in liposomes bearing folate. Journal of Drug Delivery Science and Technology 2015;30:190-8. [DOI: 10.1016/j.jddst.2015.10.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
345 Wang Z, Deng X, Ding J, Zhou W, Zheng X, Tang G. Mechanisms of drug release in pH-sensitive micelles for tumour targeted drug delivery system: A review. International Journal of Pharmaceutics 2018;535:253-60. [DOI: 10.1016/j.ijpharm.2017.11.003] [Cited by in Crossref: 103] [Cited by in F6Publishing: 83] [Article Influence: 25.8] [Reference Citation Analysis]
346 Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. Journal of Controlled Release 2014;190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Cited by in Crossref: 234] [Cited by in F6Publishing: 209] [Article Influence: 29.3] [Reference Citation Analysis]
347 Kang YJ, Park DC, Shin H, Park J, Kang S. Incorporation of Thrombin Cleavage Peptide into a Protein Cage for Constructing a Protease-Responsive Multifunctional Delivery Nanoplatform. Biomacromolecules 2012;13:4057-64. [DOI: 10.1021/bm301339s] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
348 Tawfik SM, Azizov S, Elmasry MR, Sharipov M, Lee Y. Recent Advances in Nanomicelles Delivery Systems. Nanomaterials 2021;11:70. [DOI: 10.3390/nano11010070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
349 Prato M, Magnetto C, Jose J, Khadjavi A, Cavallo F, Quaglino E, Panariti A, Rivolta I, Benintende E, Varetto G, Argenziano M, Troia A, Cavalli R, Guiot C. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues. PLoS One 2015;10:e0119769. [PMID: 25781463 DOI: 10.1371/journal.pone.0119769] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
350 Mahlumba P, Kumar P, du Toit LC, Poka MS, Ubanako P, Choonara YE. Fabrication and Characterisation of a Photo-Responsive, Injectable Nanosystem for Sustained Delivery of Macromolecules. Int J Mol Sci 2021;22:3359. [PMID: 33805969 DOI: 10.3390/ijms22073359] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
351 Muzykantov VR, Radhakrishnan R, Eckmann DM. Dynamic factors controlling targeting nanocarriers to vascular endothelium. Curr Drug Metab 2012;13:70-81. [PMID: 22292809 DOI: 10.2174/138920012798356916] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
352 Chen Y, Pan Y, Hu D, Peng J, Hao Y, Pan M, Yuan L, Yu Y, Qian Z. Recent progress in nanoformulations of cabazitaxel. Biomed Mater 2021. [PMID: 33545700 DOI: 10.1088/1748-605X/abe396] [Reference Citation Analysis]
353 Muthu MS, Rajesh CV, Mishra A, Singh S. Stimulus-responsive targeted nanomicelles for effective cancer therapy. Nanomedicine 2009;4:657-67. [DOI: 10.2217/nnm.09.44] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 3.9] [Reference Citation Analysis]
354 Qu Q, Wang Y, Zhang L, Zhang X, Zhou S. A Nanoplatform with Precise Control over Release of Cargo for Enhanced Cancer Therapy. Small 2016;12:1378-90. [PMID: 26763197 DOI: 10.1002/smll.201503292] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 8.7] [Reference Citation Analysis]
355 Russo E, Spallarossa A, Tasso B, Villa C, Brullo C. Nanotechnology of Tyrosine Kinase Inhibitors in Cancer Therapy: A Perspective. Int J Mol Sci 2021;22:6538. [PMID: 34207175 DOI: 10.3390/ijms22126538] [Reference Citation Analysis]
356 Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 2012;5:87-100. [PMID: 24198499 DOI: 10.2147/NSA.S25515] [Cited by in Crossref: 57] [Cited by in F6Publishing: 71] [Article Influence: 5.7] [Reference Citation Analysis]
357 Zhu F, Yang Q, Zhuang Y, Zhang Y, Shao Z, Gong B, Shen Y. Self-assembled polymeric micelles based on THP and THF linkage for pH-responsive drug delivery. Polymer 2014;55:2977-85. [DOI: 10.1016/j.polymer.2014.05.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
358 Posocco P, Fermeglia M, Pricl S. Morphology prediction of block copolymers for drug delivery by mesoscale simulations. J Mater Chem 2010;20:7742. [DOI: 10.1039/c0jm01301c] [Cited by in Crossref: 45] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
359 de Paz E, Martín Á, Rodríguez-rojo S, Herreras J, Cocero MJ. Determination of Phase Equilibrium (Solid−Liquid−Gas) in Poly-(ε-caprolactone)−Carbon Dioxide Systems. J Chem Eng Data 2010;55:2781-5. [DOI: 10.1021/je900997t] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
360 Elzahhar P, Belal ASF, Elamrawy F, Helal NA, Nounou MI. Bioconjugation in Drug Delivery: Practical Perspectives and Future Perceptions. Methods Mol Biol 2019;2000:125-82. [PMID: 31148014 DOI: 10.1007/978-1-4939-9516-5_11] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
361 Malhaire H, Gimel JC, Roger E, Benoît JP, Lagarce F. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv Drug Deliv Rev 2016;106:320-36. [PMID: 27058155 DOI: 10.1016/j.addr.2016.03.011] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 9.3] [Reference Citation Analysis]
362 Bennett KM, Jo J, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews 2014;74:75-94. [DOI: 10.1016/j.addr.2014.04.007] [Cited by in Crossref: 45] [Cited by in F6Publishing: 37] [Article Influence: 5.6] [Reference Citation Analysis]
363 Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018;290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 15.8] [Reference Citation Analysis]
364 Sharma A, Kakkar A. Designing Dendrimer and Miktoarm Polymer Based Multi-Tasking Nanocarriers for Efficient Medical Therapy. Molecules 2015;20:16987-7015. [PMID: 26393546 DOI: 10.3390/molecules200916987] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]