BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021;213:113056. [PMID: 33280899 DOI: 10.1016/j.ejmech.2020.113056] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Singh R, Sagar NA, Kumar N. Bio-inspired green fabrication of silver nanoparticles (AgNPs) using aqueous leaves extract of Ipomoea carnea Jacq. To tackle multiple drug resistance MTCC bacterial strains. European Journal of Medicinal Chemistry Reports 2022;6:100066. [DOI: 10.1016/j.ejmcr.2022.100066] [Reference Citation Analysis]
2 Moradi M, Mohabatkar H, Behbahani M, Dini G. Application of G-quadruplex aptamer conjugated MSNs to deliver ampicillin for suppressing S. aureus biofilm on mice bone. Arabian Journal of Chemistry 2022;15:104274. [DOI: 10.1016/j.arabjc.2022.104274] [Reference Citation Analysis]
3 Hosseini M, Besheli NH, Deng D, Lievens C, Zuo Y, Leeuwenburgh SC, Yang F. Facile post modification synthesis of copper-doped mesoporous bioactive glass with high antibacterial performance to fight bone infection. Biomaterials Advances 2022. [DOI: 10.1016/j.bioadv.2022.213198] [Reference Citation Analysis]
4 Dastneshan A, Rahiminezhad S, Naderi Mezajin M, Nouri Jevinani H, Akbarzadeh I, Abdihaji M, qahremani R, Jahanbakhshi M, Asghari Lalami Z, Heydari H, Noorbazargan H, Mostafavi E. Cefazolin encapsulated UiO-66-NH2 nanoparticles enhance the antibacterial activity and biofilm inhibition against drug-resistant S. aureus: in vitro and in vivo studies. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140544] [Reference Citation Analysis]
5 Alqarni MH, Foudah AI, Alam A, Salkini MA, Muharram MM, Labrou NE, Rawat P. Coumarin-Encapsulated Solid Lipid Nanoparticles as an Effective Therapy against Methicillin-Resistant Staphylococcus aureus. Bioengineering 2022;9:484. [DOI: 10.3390/bioengineering9100484] [Reference Citation Analysis]
6 Samir M, Ramadan M, Abdelrahman MH, Elbastawesy MAI, Halby HM, Abdel-Aziz M, Abuo-Rahma GEA. New potent ciprofloxacin-uracil conjugates as DNA gyrase and topoisomerase IV inhibitors against methicillin-resistant Staphylococcus aureus. Bioorg Med Chem 2022;73:117004. [PMID: 36148773 DOI: 10.1016/j.bmc.2022.117004] [Reference Citation Analysis]
7 Yu H, Liu J, Wang L, Guan S, Jin Y, Zheng J, Xiang H, Wang D, Liu D. 2,3-Dehydrokievitone combats methicillin-resistant Staphylococcus aureus infection by reducing alpha-hemolysin expression. Front Microbiol 2022;13:969215. [DOI: 10.3389/fmicb.2022.969215] [Reference Citation Analysis]
8 Alavi SE, Bakht U, Koohi Moftakhari Esfahani M, Adelnia H, Abdollahi SH, Ebrahimi Shahmabadi H, Raza A. A PEGylated Nanostructured Lipid Carrier for Enhanced Oral Delivery of Antibiotics. Pharmaceutics 2022;14:1668. [DOI: 10.3390/pharmaceutics14081668] [Reference Citation Analysis]
9 Yu D, Xu B, Chen G, Zhang X, Quan Y, Qi D, Wu J. AuNP-composited multilayers with pH-regulated near-infrared photothermal effect for intelligent and synergistic antibacterial performance. J Mater Sci. [DOI: 10.1007/s10853-022-07592-z] [Reference Citation Analysis]
10 Zhu T, Huang Z, Shu X, Zhang C, Dong Z, Peng Q. Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112761] [Reference Citation Analysis]
11 Chen H, Zhang J, He Y, Lv Z, Liang Z, Chen J, Li P, Liu J, Yang H, Tao A, Liu X. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins 2022;14:464. [DOI: 10.3390/toxins14070464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Xu Y, Xiao L, Chen J, Wu Q, Yu W, Zeng W, Shi Y, Lu Y, Liu Y. α-Fe2O3 based nanotherapeutics for near-infrared/dihydroartemisinin dual-augmented chemodynamic antibacterial therapy. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.07.047] [Reference Citation Analysis]
13 Yang K, Xiu W, Li Y, Wang D, Wen Q, Yuwen L, Li X, Yin Z, Liang B, Wang L. NIR-responsive MoS2-Cu2WS4 nanosheets for catalytic/photothermal therapy of methicillin-resistant Staphylococcus aureus infections. Nanoscale 2022. [PMID: 35770918 DOI: 10.1039/d2nr01597h] [Reference Citation Analysis]
14 Yu C, Sui S, Yu X, Huang W, Wu Y, Zeng X, Chen Q, Wang J, Peng Q. Ti3C2Tx MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf B Biointerfaces 2022;217:112663. [PMID: 35785716 DOI: 10.1016/j.colsurfb.2022.112663] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Alves MM, Batista C, Mil-Homens D, Grenho L, Fernandes MH, Santos CF. Enhanced antibacterial activity of Rosehip extract-functionalized Mg(OH)2 nanoparticles: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2022;217:112643. [PMID: 35759895 DOI: 10.1016/j.colsurfb.2022.112643] [Reference Citation Analysis]
16 Trousil J, Dal NK, Fenaroli F, Schlachet I, Kubíčková P, Janoušková O, Pavlova E, Škorič M, Trejbalová K, Pavliš O, Sosnik A. Antibiotic-Loaded Amphiphilic Chitosan Nanoparticles Target Macrophages and Kill an Intracellular Pathogen. Small 2022;:e2201853. [PMID: 35691939 DOI: 10.1002/smll.202201853] [Reference Citation Analysis]
17 Anali Bazán Henostroza M, Diniz Tavares G, Nishitani Yukuyama M, De Souza A, José Barbosa E, Carlos Avino V, Dos Santos Neto E, Rebello Lourenço F, Löbenberg R, Araci Bou-Chacra N. Antibiotic-loaded lipid-based nanocarrier: a promising strategy to overcome bacterial infection. Int J Pharm 2022;:121782. [PMID: 35489605 DOI: 10.1016/j.ijpharm.2022.121782] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725. [PMID: 35929205 DOI: 10.1016/j.bioadv.2022.212725] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022;:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
20 Gao Y, Dong Y, Yang S, Mo A, Zeng X, Chen Q, Peng Q. Size-dependent photothermal antibacterial activity of Ti3C2Tx MXene nanosheets against methicillin-resistant Staphylococcus aureus. J Colloid Interface Sci 2022;617:533-41. [PMID: 35299127 DOI: 10.1016/j.jcis.2022.03.032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
21 Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022;140:102-15. [PMID: 34896632 DOI: 10.1016/j.actbio.2021.12.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
22 Peng H, Xie B, Cen X, Dai J, Dai Y, Yang X, He Y. Glutathione-responsive multifunctional nanoparticles based on mannose-modified pillar[5]arene for targeted antibiotic delivery against intracellular methicillin-resistant S. aureus. Mater Chem Front . [DOI: 10.1039/d1qm01459e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Alavi SE, Esfahani MKM, Raza A, Adelnia H, Shahmabadi HE. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: An in vivo study. NanoImpact 2022. [DOI: 10.1016/j.impact.2022.100384] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
24 Deb Adhikari M, Saha T, Tiwary BK. Quest for Alternatives to Antibiotics: An Urgent Need of the Twenty-First Century. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_1] [Reference Citation Analysis]
25 Mihai MM, Holban A, Ion A, Bălăceanu B, Gurău C, Lazăr V. Nano-targeted drug delivery approaches for biofilm-associated infections. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00008-7] [Reference Citation Analysis]
26 Berini F, Orlandi VT, Gamberoni F, Martegani E, Armenia I, Gornati R, Bernardini G, Marinelli F. Antimicrobial Activity of Nanoconjugated Glycopeptide Antibiotics and Their Effect on Staphylococcus aureus Biofilm. Front Microbiol 2021;12:657431. [PMID: 34925248 DOI: 10.3389/fmicb.2021.657431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Baker A, Iram S, Syed A, Elgorban AM, Bahkali AH, Ahmad K, Sajid Khan M, Kim J. Fruit Derived Potentially Bioactive Bioengineered Silver Nanoparticles. Int J Nanomedicine 2021;16:7711-26. [PMID: 34848956 DOI: 10.2147/IJN.S330763] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
28 Wang Y, Zhou X, Wang W, Wu Y, Qian Z, Peng Q. Sodium bicarbonate, an inorganic salt and a potential active agent for cancer therapy. Chinese Chemical Letters 2021;32:3687-95. [DOI: 10.1016/j.cclet.2021.06.032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Bafghi MH, Darroudi M, Zargar M, Zarrinfar H, Nazari R. Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro & Nano Letters 2021;16:656-69. [DOI: 10.1049/mna2.12096] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
30 Milewska S, Niemirowicz-Laskowska K, Siemiaszko G, Nowicki P, Wilczewska AZ, Car H. Current Trends and Challenges in Pharmacoeconomic Aspects of Nanocarriers as Drug Delivery Systems for Cancer Treatment. Int J Nanomedicine 2021;16:6593-644. [PMID: 34611400 DOI: 10.2147/IJN.S323831] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
31 Ved Prakash G, Pallavi S, Ashutosh T, Navinit K, Priya V, Shipra P, Aradhana M. A Short Review on Advances in Nanosystems Emerging as an Effective Approaches to Control Pathogenesis of Staphylococcus spp. Glob J Infect Dis Clin Res 2021. [DOI: 10.17352/2455-5363.000046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Huang R, Cai GQ, Li J, Li XS, Liu HT, Shang XL, Zhou JD, Nie XM, Gui R. Platelet membrane-camouflaged silver metal-organic framework drug system against infections caused by methicillin-resistant Staphylococcus aureus. J Nanobiotechnology 2021;19:229. [PMID: 34348721 DOI: 10.1186/s12951-021-00978-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
33 Li H, Wang Y, Tang Q, Yin D, Tang C, He E, Zou L, Peng Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater 2021;129:57-72. [PMID: 34048973 DOI: 10.1016/j.actbio.2021.05.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 28.0] [Reference Citation Analysis]
34 Mamun MM, Sorinolu AJ, Munir M, Vejerano EP. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat Antibiotic Resistance. Front Chem 2021;9:687660. [PMID: 34055750 DOI: 10.3389/fchem.2021.687660] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 21.0] [Reference Citation Analysis]
35 Li W, Song P, Xin Y, Kuang Z, Liu Q, Ge F, Zhu L, Zhang X, Tao Y, Zhang W. The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism. Int J Nanomedicine 2021;16:1849-67. [PMID: 33707943 DOI: 10.2147/IJN.S295928] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]