BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020;188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Xu Z, Zhang X, Liu J, Zhao S, Liu J, Zhou W. Design, Synthesis, and Biological Evaluation of Novel Amyl Ester Tethered Dihydroartemisinin-Isatin Hybrids as Potent Anti-Breast Cancer Agents. Chem Biodivers 2023;20:e202201257. [PMID: 36808231 DOI: 10.1002/cbdv.202201257] [Reference Citation Analysis]
2 Shagufta, Ahmad I. Therapeutic significance of molecular hybrids for breast cancer research and treatment. RSC Med Chem 2023;14:218-38. [PMID: 36846377 DOI: 10.1039/d2md00356b] [Reference Citation Analysis]
3 Patil NP, Alegaon SG, Parchure PS, Kavalapure RS. Inverse Molecular Docking and Evaluation of Antitubercular Activities of Some Quinoline Based Heterocyclic Compounds. Chemistry Africa 2023;6:367-373. [DOI: 10.1007/s42250-022-00516-z] [Reference Citation Analysis]
4 Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. Journal of Molecular Structure 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Reference Citation Analysis]
5 Zhao S, Zhang X, Tang M, Liu X, Deng J, Zhou W, Xu Z. Design, synthesis and anti-breast cancer properties of butyric ester tethered dihydroartemisinin-isatin hybrids. Med Chem Res 2023;32:705-12. [PMID: 36816432 DOI: 10.1007/s00044-023-03030-0] [Reference Citation Analysis]
6 Wang R, Zhang Q, Chen M. Artemisinin‐isatin hybrids tethered via ethylene linker and their anti‐lung cancer activity. Archiv der Pharmazie 2022. [DOI: 10.1002/ardp.202200563] [Reference Citation Analysis]
7 Hua L, Liang S, Zhou Y, Wu X, Cai H, Liu Z, Ou Y, Chen Y, Chen X, Yan Y, Wu D, Sun P, Hu W, Yang Z. Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitis. International Immunopharmacology 2022;113:109431. [DOI: 10.1016/j.intimp.2022.109431] [Reference Citation Analysis]
8 Gaur A, Peerzada MN, Khan NS, Ali I, Azam A. Synthesis and Anticancer Evaluation of Novel Indole Based Arylsulfonylhydrazides against Human Breast Cancer Cells. ACS Omega 2022. [DOI: 10.1021/acsomega.2c03908] [Reference Citation Analysis]
9 Bai M, Li Y, Feng Y, Liu L, Liu Y, Zhang C, Meng M, Pan J. “Cobweb locking raindrops” inspired construction of bio-based 3D porous molecularly imprinted membrane with ultrahigh adsorption capacity and selectivity: Effectively avoiding imprinting sites embedment. Surfaces and Interfaces 2022;34:102348. [DOI: 10.1016/j.surfin.2022.102348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Alabugin IV, Terent'ev AO. Cascade Assembly of Bridged N-Substituted Azaozonides: The Counterintuitive Role of Nitrogen Source Nucleophilicity. Org Lett 2022. [PMID: 36070396 DOI: 10.1021/acs.orglett.2c02551] [Reference Citation Analysis]
11 Soni R, Shankar G, Mukhopadhyay P, Gupta V. A concise review on Artemisia annua L.: A major source of diverse medicinal compounds. Industrial Crops and Products 2022;184:115072. [DOI: 10.1016/j.indcrop.2022.115072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li B, Ding J, Zeng C, Song Y, Xia K, Ai Y, Zhu J, Zhong H, Zhou Z. Synthesis, X-ray crystal structure, DFT calculation and anti-tumor research of novel-configurational dihydroartemisinin purine hybrids. Molecular Crystals and Liquid Crystals. [DOI: 10.1080/15421406.2022.2111882] [Reference Citation Analysis]
13 Han X, Chai Y, Lv C, Chen Q, Liu J, Wang Y, Chou G. Sesquiterpenes from Artemisia annua and Their Cytotoxic Activities. Molecules 2022;27:5079. [DOI: 10.3390/molecules27165079] [Reference Citation Analysis]
14 Panda P, Chakroborty S, Unnamatla MB. Structure-Activity-Relationship (SAR) Studies of Novel Hybrid Quinoline and Quinolone Derivatives as Anticancer Agents. Key Heterocyclic Cores for Smart Anticancer Drug–Design Part I 2022. [DOI: 10.2174/9789815040074122010007] [Reference Citation Analysis]
15 Sharma P, Malhi DS, Sohal HS. Biological potencies of chalcones in medicinal chemistry. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.07.068] [Reference Citation Analysis]
16 Chen M, Wang L, Xing S, Yang Y, Rong R. Rapid screening of neuraminidase inhibitors with the benzoic acid skeleton from Paeonia suffruticosa Andrews by solid-phase extraction with an enzyme activity switch combined with mass spectrometry analysis. J Chromatogr A 2022;1676:463213. [PMID: 35717865 DOI: 10.1016/j.chroma.2022.463213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sun J, Wang J, Li T, Ma Y, Xue D, Chen J. Design and synthesis of ludartin derivatives as potential anticancer agents against hepatocellular carcinoma. Med Chem Res. [DOI: 10.1007/s00044-022-02890-2] [Reference Citation Analysis]
18 Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022;:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Reference Citation Analysis]
19 Feng LS, Cheng JB, Su WQ, Li HZ, Xiao T, Chen DA, Zhang ZL. Cinnamic acid hybrids as anticancer agents: A mini-review. Arch Pharm (Weinheim) 2022;:e2200052. [PMID: 35419808 DOI: 10.1002/ardp.202200052] [Reference Citation Analysis]
20 Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent Ev AO. Inverse α-Effect as the Ariadne's Thread on the Way to Tricyclic Aminoperoxides: Avoiding Thermodynamic Traps in the Labyrinth of Possibilities. J Am Chem Soc 2022. [PMID: 35418230 DOI: 10.1021/jacs.2c00406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tian R, Li Y, Wang X, Li J, Li Y, Bei S, Li H. A Pharmacoinformatics Analysis of Artemisinin Targets and de novo Design of Hits for Treating Ulcerative Colitis. Front Pharmacol 2022;13:843043. [DOI: 10.3389/fphar.2022.843043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Wang Y, Ding R, Tai Z, Hou H, Gao F, Sun X. Artemisinin-isatin hybrids with potential antiproliferative activity against breast cancer. Arabian Journal of Chemistry 2022;15:103639. [DOI: 10.1016/j.arabjc.2021.103639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lipaikin SY, Yaremenko IA, Terent’ev AO, Volova TG, Shishatskaya EI, Gualandi C. Development of Biodegradable Delivery Systems Containing Novel 1,2,4-Trioxolane Based on Bacterial Polyhydroxyalkanoates. Advances in Polymer Technology 2022;2022:1-14. [DOI: 10.1155/2022/6353909] [Reference Citation Analysis]
24 Dong M, Zheng G, Gao F, Li M, Zhong C. Three-Carbon Linked Dihydroartemisinin-Isatin Hybrids: Design, Synthesis and Their Antiproliferative Anticancer Activity. Front Pharmacol 2022;13:834317. [PMID: 35153798 DOI: 10.3389/fphar.2022.834317] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Hou H, Qu B, Su C, Hou G, Gao F. Design, Synthesis and Anti-Lung Cancer Evaluation of 1, 2, 3-Triazole Tethered Dihydroartemisinin-Isatin Hybrids. Front Pharmacol 2021;12:801580. [PMID: 34975498 DOI: 10.3389/fphar.2021.801580] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Zhang Z, Zhang D, Zhou Y, Wang F, Xin A, Gao F, Wang P, Zhang P. The anti-lung cancer activity of propylene tethered dihydroartemisinin-isatin hybrids. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103721] [Reference Citation Analysis]
27 Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. Advances in Heterocyclic Chemistry 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Reference Citation Analysis]
28 Wan Y, Fang G, Chen H, Deng X, Tang Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur J Med Chem 2021;226:113837. [PMID: 34530384 DOI: 10.1016/j.ejmech.2021.113837] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
29 Peter S, Jama S, Alven S, Aderibigbe BA. Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021;26:7521. [PMID: 34946603 DOI: 10.3390/molecules26247521] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Tang J, Zhang X, Cheng L, Liu Y, Chen Y, Jiang Z, Liu J. Multiple stimuli-responsive nanosystem for potent, ROS-amplifying, chemo-sonodynamic antitumor therapy. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Kavalapure RS, Alegaon SG, Venkatasubramanian U, Priya AS, Ranade SD, Khanal P, Mishra S, Patil D, Salve PS, Jalalpure SS. Design, synthesis, and molecular docking study of some 2-((7-chloroquinolin-4-yl) amino) benzohydrazide Schiff bases as potential Eg5 inhibitory agents. Bioorg Chem 2021;116:105381. [PMID: 34601297 DOI: 10.1016/j.bioorg.2021.105381] [Reference Citation Analysis]
32 Huo P, Han X, Zhang W, Zhang J, Kumar P, Liu B. Electrospun Nanofibers of Polycaprolactone/Collagen as a Sustained-Release Drug Delivery System for Artemisinin. Pharmaceutics 2021;13:1228. [PMID: 34452189 DOI: 10.3390/pharmaceutics13081228] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
33 Huang PW, Wang LR, Geng SS, Ye C, Sun XM, Huang H. Strategies for enhancing terpenoids accumulation in microalgae. Appl Microbiol Biotechnol 2021;105:4919-30. [PMID: 34125275 DOI: 10.1007/s00253-021-11368-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
34 Çapcı A, Herrmann L, Sampath Kumar HM, Fröhlich T, Tsogoeva SB. Artemisinin-derived dimers from a chemical perspective. Med Res Rev 2021. [PMID: 34114227 DOI: 10.1002/med.21814] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Botta L, Cesarini S, Zippilli C, Filippi S, Bizzarri BM, Baratto MC, Pogni R, Saladino R. Stereoselective Access to Antimelanoma Agents by Hybridization and Dimerization of Dihydroartemisinin and Artesunic acid. ChemMedChem 2021;16:2270-7. [PMID: 33792170 DOI: 10.1002/cmdc.202100196] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Yaremenko IA, Belyakova YY, Radulov PS, Novikov RA, Medvedev MG, Krivoshchapov NV, Korlyukov AA, Alabugin IV, Terent'ev AO. Marriage of Peroxides and Nitrogen Heterocycles: Selective Three-Component Assembly, Peroxide-Preserving Rearrangement, and Stereoelectronic Source of Unusual Stability of Bridged Azaozonides. J Am Chem Soc 2021;143:6634-48. [PMID: 33877842 DOI: 10.1021/jacs.1c02249] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
37 Khanal P. Antimalarial and anticancer properties of artesunate and other artemisinins: current development. Monatsh Chem 2021;:1-14. [PMID: 33814617 DOI: 10.1007/s00706-021-02759-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
38 Kadela-tomanek M, Jastrzębska M, Chrobak E, Bębenek E, Boryczka S. Chromatographic and Computational Screening of Lipophilicity and Pharmacokinetics of Newly Synthesized Betulin-1,4-quinone Hybrids. Processes 2021;9:376. [DOI: 10.3390/pr9020376] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
39 Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021;26:686. [PMID: 33525706 DOI: 10.3390/molecules26030686] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
40 Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021;213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
41 Klochkov S, Neganova M. Unique indolizidine alkaloid securinine is a promising scaffold for the development of neuroprotective and antitumor drugs. RSC Adv 2021;11:19185-19195. [DOI: 10.1039/d1ra02558a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Dorababu A. Report on Recently (2017–20) Designed Quinoline‐Based Human Cancer Cell Growth Inhibitors. ChemistrySelect 2020;5:13902-15. [DOI: 10.1002/slct.202003888] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
43 Mohammed HHH, Abbas SH, Hayallah AM, Abuo-Rahma GEA, Mostafa YA. Novel urea linked ciprofloxacin-chalcone hybrids having antiproliferative topoisomerases I/II inhibitory activities and caspases-mediated apoptosis. Bioorg Chem 2021;106:104422. [PMID: 33248713 DOI: 10.1016/j.bioorg.2020.104422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
44 Panda P, Chakroborty S. Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents. ChemistrySelect 2020;5:10187-99. [DOI: 10.1002/slct.202002790] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
45 Fröhlich T, Mai C, Bogautdinov RP, Morozkina SN, Shavva AG, Friedrich O, Gilbert DF, Tsogoeva SB. Synthesis of Tamoxifen-Artemisinin and Estrogen-Artemisinin Hybrids Highly Potent Against Breast and Prostate Cancer. ChemMedChem 2020;15:1473-9. [PMID: 32374071 DOI: 10.1002/cmdc.202000174] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
46 Jia Y, Wen X, Gong Y, Wang X. Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. Eur J Med Chem 2020;200:112359. [PMID: 32531682 DOI: 10.1016/j.ejmech.2020.112359] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 10.7] [Reference Citation Analysis]
47 Moujir L, Callies O, Sousa PMC, Sharopov F, Seca AML. Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. Applied Sciences 2020;10:3001. [DOI: 10.3390/app10093001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
48 Ren G, Chen P, Tang J, Guo W, Wang R, Li N, Li Y, Zhang G, Wang R, Zhang S. In vivo and in vitro evaluation of dihydroartemisinin prodrug nanocomplexes as a nano-drug delivery system: characterization, pharmacokinetics and pharmacodynamics. RSC Adv 2020;10:17270-9. [DOI: 10.1039/d0ra02150d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]