1 |
Kumari S, Kumar S, Muthuswamy S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 2023;149:1621-33. [PMID: 35796777 DOI: 10.1007/s00432-022-04158-z] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
2 |
Ji D, Hu C, Ning J, Ying X, Zhang H, Zhang B, Liu B, Liu Q, Ji W, Zhang R. N(6)-methyladenosine mediates Nrf2 protein expression involved in PM2.5-induced pulmonary fibrosis. Ecotoxicol Environ Saf 2023;254:114755. [PMID: 36917877 DOI: 10.1016/j.ecoenv.2023.114755] [Reference Citation Analysis]
|
3 |
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023;13. [DOI: 10.3389/fonc.2023.1153463] [Reference Citation Analysis]
|
4 |
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1162607] [Reference Citation Analysis]
|
5 |
Li R, Wu X, Xue K, Feng D, Li J, Li J. RNA demethylase ALKBH5 promotes tumorigenesis of t (8;21) acute myeloid leukemia via ITPA m6A modification. Biomark Res 2023;11:30. [PMID: 36899424 DOI: 10.1186/s40364-023-00464-x] [Reference Citation Analysis]
|
6 |
Liu P, Ju M, Zheng X, Jiang Y, Yu X, Pan B, Luo R, Jia W, Zheng M. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an N6-methyladenosine-dependent manner. Cancer Sci 2023;114:837-54. [PMID: 36382580 DOI: 10.1111/cas.15658] [Reference Citation Analysis]
|
7 |
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. Wiley Interdiscip Rev RNA 2023;14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
8 |
Sarraf G, Chhabra R. Emerging role of mRNA methylation in regulating the hallmarks of cancer. Biochimie 2023;206:61-72. [PMID: 36244577 DOI: 10.1016/j.biochi.2022.10.005] [Reference Citation Analysis]
|
9 |
Lin K, Xu D, Wang X, Shi J, Gao W. Development of a basement membrane gene signature and identification of the potential candidate therapeutic targets for pancreatic cancer. Gland Surg 2023;12:263-81. [PMID: 36915817 DOI: 10.21037/gs-23-24] [Reference Citation Analysis]
|
10 |
Huang P, Liu M, Zhang J, Zhong X, Zhong C. YTHDF1 Attenuates TBI-Induced Brain-Gut Axis Dysfunction in Mice. Int J Mol Sci 2023;24. [PMID: 36835655 DOI: 10.3390/ijms24044240] [Reference Citation Analysis]
|
11 |
Meng W, Xiao H, Mei P, Chen J, Wang Y, Zhao R, Liao Y. Critical Roles of METTL3 in Translation Regulation of Cancer. Biomolecules 2023;13. [PMID: 36830614 DOI: 10.3390/biom13020243] [Reference Citation Analysis]
|
12 |
Zou Z, Sepich-Poore C, Zhou X, Wei J, He C. The mechanism underlying redundant functions of the YTHDF proteins. Genome Biol 2023;24:17. [PMID: 36694229 DOI: 10.1186/s13059-023-02862-8] [Reference Citation Analysis]
|
13 |
Li X, Zhang K, Hu Y, Luo N. YTH Domain Family 2 (YTHDF2) Regulates Cell Growth and Cycle by Facilitating KDM1A mRNA Stability. Am J Pathol 2023:S0002-9440(23)00026-3. [PMID: 36681189 DOI: 10.1016/j.ajpath.2022.12.010] [Reference Citation Analysis]
|
14 |
Shang QX, Kong WL, Huang WH, Xiao X, Hu WP, Yang YS, Zhang H, Yang L, Yuan Y, Chen LQ. Identification of m6a-related signature genes in esophageal squamous cell carcinoma by machine learning method. Front Genet 2023;14:1079795. [PMID: 36733344 DOI: 10.3389/fgene.2023.1079795] [Reference Citation Analysis]
|
15 |
Ren W, Yuan Y, Li Y, Mutti L, Peng J, Jiang X. The function and clinical implication of YTHDF1 in the human system development and cancer. Biomark Res 2023;11:5. [PMID: 36650570 DOI: 10.1186/s40364-023-00452-1] [Reference Citation Analysis]
|
16 |
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023;238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Reference Citation Analysis]
|
17 |
Haiyun Luo, Wenjing Liu, Yachuan Zhou, Yanli Zhang, Junrong Wu, Ruolan Wang, Longquan Shao. Stage-specific requirement for METTL3-dependent m6A modification during dental pulp stem cell differentiation. J Transl Med 2022;20:605. [PMID: 36527141 DOI: 10.1186/s12967-022-03814-9] [Reference Citation Analysis]
|
18 |
Zaoqu Liu, Haijiao Zou, Qin Dang, Hui Xu, Long Liu, Yuyuan Zhang, Jinxiang Lv, Huanyun Li, Zhaokai Zhou, Xinwei Han. Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol Cancer 2022;21:220. [PMID: 36517820 DOI: 10.1186/s12943-022-01680-z] [Reference Citation Analysis]
|
19 |
Zhang TP, Li R, Wang LJ, Huang Q, Li HM. Roles of the m6A methyltransferases METTL3, METTL14, and WTAP in pulmonary tuberculosis. Front Immunol 2022;13:992628. [PMID: 36569923 DOI: 10.3389/fimmu.2022.992628] [Reference Citation Analysis]
|
20 |
Huang J, Zhou W, Hao C, He Q, Tu X. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet 2022;18:e1010366. [PMID: 36288387 DOI: 10.1371/journal.pgen.1010366] [Reference Citation Analysis]
|
21 |
Kong J, Lu S, Zhang L, Yao Y, Zhang J, Shen Z, Luo M, Liu B, Zheng J, Lin T. m6A methylation regulators as predictors for treatment of advanced urothelial carcinoma with anti-PDL1 agent. Front Immunol 2022;13:1014861. [DOI: 10.3389/fimmu.2022.1014861] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
22 |
Niu X, Yang Y, Ren Y, Zhou S, Mao Q, Wang Y. Crosstalk between m6A regulators and mRNA during cancer progression. Oncogene 2022. [PMID: 36008465 DOI: 10.1038/s41388-022-02441-4] [Reference Citation Analysis]
|
23 |
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022;21:163. [PMID: 35974338 DOI: 10.1186/s12943-022-01634-5] [Reference Citation Analysis]
|
24 |
Yang H, Chiang C, Luo Q, Chen C, Huang J, Zhu L, Zheng D. YT521-B homology domain family proteins as N6-methyladenosine readers in tumors. Front Genet 2022;13:934223. [DOI: 10.3389/fgene.2022.934223] [Reference Citation Analysis]
|
25 |
Zhang Z, Wang L, Zhao L, Wang Q, Yang C, Zhang M, Wang B, Jiang K, Ye Y, Wang S, Shen Z. N6-methyladenosine demethylase ALKBH5 suppresses colorectal cancer progression potentially by decreasing PHF20 mRNA methylation. Clin Transl Med 2022;12:e940. [PMID: 35979628 DOI: 10.1002/ctm2.940] [Reference Citation Analysis]
|
26 |
Hu C, Liu J, Li Y, Jiang W, Ji D, Liu W, Ma T. Multifaceted Roles of the N6-Methyladenosine RNA Methyltransferase METTL3 in Cancer and Immune Microenvironment. Biomolecules 2022;12:1042. [DOI: 10.3390/biom12081042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022;18:4432-51. [PMID: 35864970 DOI: 10.7150/ijbs.73093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
28 |
Fan J, Zhuo Z, Chen G, Niu H, Yang Z, Zhang J, Li Y, Li S, Cheng J, Li L, He J, Wang X. FTO gene polymorphisms and hepatoblastoma susceptibility among Chinese children. Cell Cycle 2022;21:1512-8. [PMID: 35311451 DOI: 10.1080/15384101.2022.2054635] [Reference Citation Analysis]
|
29 |
Zhou Z, Zhou Y, Zhou X, Huang Y, Cui Y, Zhang Y, Zhuo Z. Downregulation of PTCD1 in Bladder Urothelial Carcinoma Predicts Poor Prognosis and Levels of Immune Infiltration. Journal of Oncology 2022;2022:1-16. [DOI: 10.1155/2022/1146186] [Reference Citation Analysis]
|
30 |
Liu H, Gu J, Huang Z, Han Z, Xin J, Yuan L, Du M, Chu H, Wang M, Zhang Z. Fine Particulate Matter Induces METTL3-mediated m6A Modification of BIRC5 mRNA in Bladder Cancer. Journal of Hazardous Materials 2022. [DOI: 10.1016/j.jhazmat.2022.129310] [Reference Citation Analysis]
|
31 |
Xiong Q, Liu C, Zheng X, Zhou X, Lei K, Zhang X, Wang Q, Lin W, Tong R, Xu R, Yuan Q. METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis. Int J Oral Sci 2022;14:26. [PMID: 35581183 DOI: 10.1038/s41368-022-00176-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
32 |
Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, Zheng Z, Zhou X, Zheng Y, Chen B, Liu C. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med 2022;12:e738. [PMID: 35522942 DOI: 10.1002/ctm2.738] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
33 |
Zou Z, Sepich-poore C, Zhou X, Wei J, He C. The mechanism underlying redundant functions of the YTHDF proteins.. [DOI: 10.1101/2022.05.05.490669] [Reference Citation Analysis]
|
34 |
Wu S, Liu H, Zhou M, Shang Y, Luo L, Chen J, Yang J. The miR-410-5p /ITGA6 axis participates in the pathogenesis of recurrent abortion by regulating the biological function of trophoblast. Journal of Reproductive Immunology 2022. [DOI: 10.1016/j.jri.2022.103647] [Reference Citation Analysis]
|
35 |
Xue C, Chu Q, Zheng Q, Jiang S, Bao Z, Su Y, Lu J, Li L. Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022;7:142. [PMID: 35484099 DOI: 10.1038/s41392-022-01003-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|
36 |
Li W, Deng X, Chen J. RNA-binding Proteins in Regulating mRNA Stability and Translation: Roles and Mechanisms in Cancer. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.03.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
37 |
Liao J, Wei Y, Liang J, Wen J, Chen X, Zhang B, Chu L. Insight into the structure, physiological function, and role in cancer of m6A readers—YTH domain-containing proteins. Cell Death Discov 2022;8. [DOI: 10.1038/s41420-022-00947-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
38 |
Zhang X, Xia D, Wang R, Zhang Y, Zhang S, Yang C, Pan X, Tong J. Identification of potential biomarkers for digestive system cancers from serum-derived extracellular vesicle RNA. Clinica Chimica Acta 2022. [DOI: 10.1016/j.cca.2022.03.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
39 |
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022;15:13. [PMID: 35115038 DOI: 10.1186/s13045-022-01231-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
|
40 |
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2021;12:825109. [PMID: 35087575 DOI: 10.3389/fgene.2021.825109] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
41 |
Chen K, Zhu S, Yu W, Xia Y, Xing J, Geng J, Cheng F. Comprehensive Analysis of N6-Methylandenosine-Related Long Non-Coding RNAs Signature in Prognosis and Tumor Microenvironment of Bladder Cancer. Front Oncol 2022;12:774307. [DOI: 10.3389/fonc.2022.774307] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
42 |
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01224-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
43 |
Yue Z, Cao M, Hong A, Zhang Q, Zhang G, Jin Z, Zhao L, Wang Q, Fang F, Wang Y, Sun J. m6A Methyltransferase METTL3 Promotes the Progression of Primary Acral Melanoma via Mediating TXNDC5 Methylation. Front Oncol 2022;11:770325. [DOI: 10.3389/fonc.2021.770325] [Reference Citation Analysis]
|
44 |
Ye F, Dai Y, Wang T, Liang J, Wu X, Lan K, Sheng W. Trans-omics analyses revealed key epigenetic genes associated with overall survival in secondary progressive multiple sclerosis. J Neuroimmunol 2022;364:577809. [PMID: 35026432 DOI: 10.1016/j.jneuroim.2022.577809] [Reference Citation Analysis]
|
45 |
Li M, Ye J, Xia Y, Li M, Li G, Hu X, Su X, Wang D, Zhao X, Lu F, Li J, Ma D, Sun T, Ji C. METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia 2022;36:2586-95. [PMID: 36266324 DOI: 10.1038/s41375-022-01696-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
46 |
Ying X, Liu B, Yuan Z, Huang Y, Chen C, Jiang X, Zhang H, Qi D, Yang S, Lin S, Luo J, Ji W. METTL1-m7 G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med 2021;11:e675. [PMID: 34936728 DOI: 10.1002/ctm2.675] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 9.5] [Reference Citation Analysis]
|
47 |
Ye S, Liu Q, Huang K, Jiang X, Zhang X. The comprehensive analysis based study of perfluorinated compounds-Environmental explanation of bladder cancer progression. Ecotoxicol Environ Saf 2021;229:113059. [PMID: 34894427 DOI: 10.1016/j.ecoenv.2021.113059] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
48 |
Hou S, Wang J, Li W, Hao X, Hang Q. Roles of Integrins in Gastrointestinal Cancer Metastasis. Front Mol Biosci 2021;8:708779. [PMID: 34869579 DOI: 10.3389/fmolb.2021.708779] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Li A, Gan Y, Cao C, Ma B, Zhang Q, Zhang Q, Yao L. Transcriptome-Wide Map of N6-Methyladenosine Methylome Profiling in Human Bladder Cancer. Front Oncol 2021;11:717622. [PMID: 34868913 DOI: 10.3389/fonc.2021.717622] [Reference Citation Analysis]
|
50 |
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids 2021;26:1270-9. [PMID: 34853726 DOI: 10.1016/j.omtn.2021.10.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
51 |
Han H, Yang C, Zhang S, Cheng M, Guo S, Zhu Y, Ma J, Liang Y, Wang L, Zheng S, Wang Z, Chen D, Jiang YZ, Lin S. METTL3-mediated m6A mRNA modification promotes esophageal cancer initiation and progression via Notch signaling pathway. Mol Ther Nucleic Acids 2021;26:333-46. [PMID: 34513313 DOI: 10.1016/j.omtn.2021.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
52 |
Fan S, Wang L. N6-Methyladenosine-regulated LINC00675 Suppress the Proliferation, Migration and Invasion of Breast Cancer cells via Inhibiting miR-513b-5p. Bioengineered 2021. [PMID: 34738869 DOI: 10.1080/21655979.2021.2001905] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Ye F, Hu Y, Gao J, Liang Y, Liu Y, Ou Y, Cheng Z, Jiang H. Radiogenomics Map Reveals the Landscape of m6A Methylation Modification Pattern in Bladder Cancer. Front Immunol 2021;12:722642. [PMID: 34733275 DOI: 10.3389/fimmu.2021.722642] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
54 |
Wang X, Yu J, Chen J, Hou Y, Du Z, Huang H, Tang S, Han Y, Ding C, Xue Z. Copy number variation analysis of m6 A regulators identified METTL3 as a prognostic and immune-related biomarker in bladder cancer. Cancer Med 2021;10:7804-15. [PMID: 34668652 DOI: 10.1002/cam4.3981] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
55 |
Zhu H, Jia X, Wang Y, Song Z, Wang N, Yang Y, Shi X. M6A Classification Combined With Tumor Microenvironment Immune Characteristics Analysis of Bladder Cancer. Front Oncol 2021;11:714267. [PMID: 34604051 DOI: 10.3389/fonc.2021.714267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
56 |
Zhang Z, Zhang C, Luo Y, Zhang G, Wu P, Sun N, He J. RNA N6 -methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clin Transl Med 2021;11:e525. [PMID: 34586737 DOI: 10.1002/ctm2.525] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
57 |
Liu X, Huang L, Huang K, Yang L, Yang X, Luo A, Cai M, Wu X, Liu X, Yan Y, Wen J, Cai Y, Xu L, Jiang H. Novel Associations Between METTL3 Gene Polymorphisms and Pediatric Acute Lymphoblastic Leukemia: A Five-Center Case-Control Study. Front Oncol 2021;11:635251. [PMID: 34568001 DOI: 10.3389/fonc.2021.635251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
58 |
Yi W, Yu Y, Li Y, Yang J, Gao S, Xu L. The tumor-suppressive effects of alpha-ketoglutarate-dependent dioxygenase FTO via N6-methyladenosine RNA methylation on bladder cancer patients. Bioengineered 2021;12:5323-33. [PMID: 34499008 DOI: 10.1080/21655979.2021.1964893] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
59 |
Zhang Y, Zhu B, He M, Cai Y, Ying X, Jiang C, Ji W, Zeng J. N6-Methylandenosine-Related lncRNAs Predict Prognosis and Immunotherapy Response in Bladder Cancer. Front Oncol 2021;11:710767. [PMID: 34458149 DOI: 10.3389/fonc.2021.710767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
60 |
Zhang Y, Liu S, Zhao T, Dang C. METTL3‑mediated m6A modification of Bcl‑2 mRNA promotes non‑small cell lung cancer progression. Oncol Rep 2021;46:163. [PMID: 34132367 DOI: 10.3892/or.2021.8114] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
61 |
Hua RX, Fu W, Lin A, Zhou H, Cheng J, Zhang J, Li S, Liu G, Xia H, Zhuo Z, He J. Role of FTO gene polymorphisms in Wilms tumor predisposition: A five-center case-control study. J Gene Med 2021;23:e3348. [PMID: 33894035 DOI: 10.1002/jgm.3348] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
62 |
Cui J, Tian J, Wang W, He T, Li X, Gu C, Wang L, Wu J, Shang A. IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism. Cancer Sci 2021;112:4087-99. [PMID: 34309973 DOI: 10.1111/cas.15083] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
|
63 |
Maldonado López A, Capell BC. The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes (Basel) 2021;12:1019. [PMID: 34209046 DOI: 10.3390/genes12071019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
64 |
Khan RIN, Malla WA. m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics 2021;113:2860-9. [PMID: 34118382 DOI: 10.1016/j.ygeno.2021.06.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
65 |
Hu J, Qiu D, Yu A, Hu J, Deng H, Li H, Yi Z, Chen J, Zu X. YTHDF1 Is a Potential Pan-Cancer Biomarker for Prognosis and Immunotherapy. Front Oncol 2021;11:607224. [PMID: 34026603 DOI: 10.3389/fonc.2021.607224] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
|
66 |
Tan F, Zhao M, Xiong F, Wang Y, Zhang S, Gong Z, Li X, He Y, Shi L, Wang F, Xiang B, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Guo C. N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. J Exp Clin Cancer Res 2021;40:146. [PMID: 33926508 DOI: 10.1186/s13046-021-01952-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
67 |
Cai Y, Feng R, Lu T, Chen X, Zhou X, Wang X. Novel insights into the m6A-RNA methyltransferase METTL3 in cancer. Biomark Res 2021;9:27. [PMID: 33879256 DOI: 10.1186/s40364-021-00278-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
68 |
Dai XY, Shi L, Li Z, Yang HY, Wei JF, Ding Q. Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers. Front Oncol 2021;11:635329. [PMID: 33928028 DOI: 10.3389/fonc.2021.635329] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
69 |
Zheng B, Wang J, Zhao G, Chen X, Yao Z, Niu Z, He W. A new m6A methylation-related gene signature for prognostic value in patient with urothelial carcinoma of the bladder. Biosci Rep 2021;41:BSR20204456. [PMID: 33779704 DOI: 10.1042/BSR20204456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
70 |
Guo JC, Liu Z, Yang YJ, Guo M, Zhang JQ, Zheng JF. KDM5B promotes self-renewal of hepatocellular carcinoma cells through the microRNA-448-mediated YTHDF3/ITGA6 axis. J Cell Mol Med 2021. [PMID: 33829656 DOI: 10.1111/jcmm.16342] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
71 |
Shi R, Ying S, Li Y, Zhu L, Wang X, Jin H. Linking the YTH domain to cancer: the importance of YTH family proteins in epigenetics. Cell Death Dis 2021;12:346. [PMID: 33795663 DOI: 10.1038/s41419-021-03625-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
|
72 |
Han SH, Choe J. Deciphering the molecular mechanisms of epitranscriptome regulation in cancer. BMB Rep 2021;54:89-97. [DOI: 10.5483/bmbrep.2021.54.2.212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
73 |
Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai S, Sun X, Huang J, Guo Q. YTH Domain Proteins: A Family of m6A Readers in Cancer Progression. Front Oncol 2021;11:629560. [PMID: 33692959 DOI: 10.3389/fonc.2021.629560] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
74 |
Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, Ling RS, Peng L, Chen D. Deficiency of Mettl3 in Bladder Cancer Stem Cells Inhibits Bladder Cancer Progression and Angiogenesis. Front Cell Dev Biol 2021;9:627706. [PMID: 33681207 DOI: 10.3389/fcell.2021.627706] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
75 |
Di Fazio P. The epitranscriptome: At the crossroad of cancer prognosis. EBioMedicine 2021;64:103231. [PMID: 33517076 DOI: 10.1016/j.ebiom.2021.103231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
76 |
Liao Y, Yuan L, Zhang Z, Lin A, Zhou J, Zhuo Z, Zhao J. No Association Between FTO Gene Polymorphisms and Central Nervous System Tumor Susceptibility in Chinese Children. Pharmgenomics Pers Med 2021;14:109-15. [PMID: 33500652 DOI: 10.2147/PGPM.S289345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
77 |
Nombela P, Miguel-López B, Blanco S. The role of m6A, m5C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer 2021;20:18. [PMID: 33461542 DOI: 10.1186/s12943-020-01263-w] [Cited by in Crossref: 93] [Cited by in F6Publishing: 100] [Article Influence: 46.5] [Reference Citation Analysis]
|
78 |
Bayoumi M, Munir M. Structural Insights Into m6A-Erasers: A Step Toward Understanding Molecule Specificity and Potential Antiviral Targeting. Front Cell Dev Biol 2020;8:587108. [PMID: 33511112 DOI: 10.3389/fcell.2020.587108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
79 |
Pan X, Hong X, Li S, Meng P, Xiao F. METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m6A-dependent manner. Exp Mol Med 2021;53:91-102. [PMID: 33420414 DOI: 10.1038/s12276-020-00510-w] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 18.5] [Reference Citation Analysis]
|
80 |
Huang J, Chen Z, Chen X, Chen J, Cheng Z, Wang Z. The role of RNA N 6-methyladenosine methyltransferase in cancers. Mol Ther Nucleic Acids 2021;23:887-96. [PMID: 33614237 DOI: 10.1016/j.omtn.2020.12.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
|
81 |
Uddin MB, Wang Z, Yang C. Roles of m6A RNA Modification in Normal Development and Disease. Epitranscriptomics 2021. [DOI: 10.1007/978-3-030-71612-7_10] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
82 |
Zhang B, Gu Y, Jiang G. Expression and Prognostic Characteristics of m6 A RNA Methylation Regulators in Breast Cancer. Front Genet 2020;11:604597. [PMID: 33362863 DOI: 10.3389/fgene.2020.604597] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 5.7] [Reference Citation Analysis]
|
83 |
Gong PJ, Shao YC, Yang Y, Song WJ, He X, Zeng YF, Huang SR, Wei L, Zhang JW. Analysis of N6-Methyladenosine Methyltransferase Reveals METTL14 and ZC3H13 as Tumor Suppressor Genes in Breast Cancer. Front Oncol 2020;10:578963. [PMID: 33363011 DOI: 10.3389/fonc.2020.578963] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 11.3] [Reference Citation Analysis]
|
84 |
Ying X, Jiang X, Zhang H, Liu B, Huang Y, Zhu X, Qi D, Yuan G, Luo J, Ji W. Programmable N6-methyladenosine modification of CDCP1 mRNA by RCas9-methyltransferase like 3 conjugates promotes bladder cancer development. Mol Cancer 2020;19:169. [PMID: 33267838 DOI: 10.1186/s12943-020-01289-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
|
85 |
Li B, Jiang J, Assaraf YG, Xiao H, Chen Z, Huang C. Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resistance Updates 2020;53:100720. [DOI: 10.1016/j.drup.2020.100720] [Cited by in Crossref: 57] [Cited by in F6Publishing: 62] [Article Influence: 19.0] [Reference Citation Analysis]
|
86 |
Feng C, Jin X, Han Y, Guo R, Zou J, Li Y, Wang Y. Expression and Prognostic Analyses of ITGA3, ITGA5, and ITGA6 in Head and Neck Squamous Cell Carcinoma. Med Sci Monit 2020;26:e926800. [PMID: 33099569 DOI: 10.12659/MSM.926800] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
87 |
Yu H, Yang X, Tang J, Si S, Zhou Z, Lu J, Han J, Yuan B, Wu Q, Lu Q, Yang H. ALKBH5 Inhibited Cell Proliferation and Sensitized Bladder Cancer Cells to Cisplatin by m6A-CK2α-Mediated Glycolysis. Mol Ther Nucleic Acids 2021;23:27-41. [PMID: 33376625 DOI: 10.1016/j.omtn.2020.10.031] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
|
88 |
Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z, Yan Y. N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol 2020;182:114258. [PMID: 33017575 DOI: 10.1016/j.bcp.2020.114258] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
|
89 |
Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N, Zhu X. Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 2020;131:110731. [PMID: 32920520 DOI: 10.1016/j.biopha.2020.110731] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 13.0] [Reference Citation Analysis]
|
90 |
Li Y, Ge YZ, Xu L, Xu Z, Dou Q, Jia R. The Potential Roles of RNA N6-Methyladenosine in Urological Tumors. Front Cell Dev Biol 2020;8:579919. [PMID: 33015074 DOI: 10.3389/fcell.2020.579919] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
91 |
Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J, Peng J. m6 A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol 2021;236:2649-58. [PMID: 32892348 DOI: 10.1002/jcp.30023] [Cited by in Crossref: 55] [Cited by in F6Publishing: 60] [Article Influence: 18.3] [Reference Citation Analysis]
|
92 |
Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 2020;13:117. [PMID: 32854717 DOI: 10.1186/s13045-020-00951-w] [Cited by in Crossref: 95] [Cited by in F6Publishing: 103] [Article Influence: 31.7] [Reference Citation Analysis]
|
93 |
Wang X, Xie H, Ying Y, Chen D, Li J. Roles of N6 -methyladenosine (m6 A) RNA modifications in urological cancers. J Cell Mol Med 2020;24:10302-10. [PMID: 32808488 DOI: 10.1111/jcmm.15750] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
94 |
Tao Z, Zhao Y, Chen X. Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ 2020;8:e9589. [PMID: 32765970 DOI: 10.7717/peerj.9589] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
95 |
Wang E, Zhang X, Zheng L, Chen G. The liquid of aloe extract with shear-thinning Carreau fluids. Journal of Molecular Liquids 2020;309:113011. [DOI: 10.1016/j.molliq.2020.113011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
96 |
Shen H, Lan Y, Zhao Y, Shi Y, Jin J, Xie W. The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomark Res 2020;8:24. [PMID: 32612834 DOI: 10.1186/s40364-020-00203-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
|
97 |
Xiang M, Liu W, Tian W, You A, Deng D. RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics 2020;12:801-9. [PMID: 32515221 DOI: 10.2217/epi-2019-0358] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
|
98 |
Han SH, Choe J. Diverse molecular functions of m6A mRNA modification in cancer. Exp Mol Med 2020;52:738-49. [PMID: 32404927 DOI: 10.1038/s12276-020-0432-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
|
99 |
Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020;13:35. [PMID: 32276589 DOI: 10.1186/s13045-020-00872-8] [Cited by in Crossref: 83] [Cited by in F6Publishing: 92] [Article Influence: 27.7] [Reference Citation Analysis]
|
100 |
Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell 2020;37:270-88. [PMID: 32183948 DOI: 10.1016/j.ccell.2020.02.004] [Cited by in Crossref: 434] [Cited by in F6Publishing: 382] [Article Influence: 144.7] [Reference Citation Analysis]
|
101 |
Yang J, Liu J, Zhao S, Tian F. N6-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. Mol Ther Nucleic Acids 2020;20:111-6. [PMID: 32163892 DOI: 10.1016/j.omtn.2020.02.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 13.3] [Reference Citation Analysis]
|
102 |
Huang T, Liu Z, Zheng Y, Feng T, Gao Q, Zeng W. YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m6A/mRNA pathway. Cell Death Dis 2020;11:37. [PMID: 31959747 DOI: 10.1038/s41419-020-2235-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
|
103 |
Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M, Zheng X, Gu M. Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Front Oncol 2019;9:1403. [PMID: 31921660 DOI: 10.3389/fonc.2019.01403] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
|
104 |
Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic Regulation of m6A Modifications in Human Cancer. Mol Ther Nucleic Acids 2020;19:405-12. [PMID: 31887551 DOI: 10.1016/j.omtn.2019.11.022] [Cited by in Crossref: 100] [Cited by in F6Publishing: 112] [Article Influence: 25.0] [Reference Citation Analysis]
|
105 |
Chao Y, Shang J, Ji W. ALKBH5-m6A-FOXM1 signaling axis promotes proliferation and invasion of lung adenocarcinoma cells under intermittent hypoxia. Biochem Biophys Res Commun 2020;521:499-506. [PMID: 31677788 DOI: 10.1016/j.bbrc.2019.10.145] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 16.0] [Reference Citation Analysis]
|