BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Tellingen O, Yetkin-arik B, de Gooijer M, Wesseling P, Wurdinger T, de Vries H. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resistance Updates 2015;19:1-12. [DOI: 10.1016/j.drup.2015.02.002] [Cited by in Crossref: 422] [Cited by in F6Publishing: 373] [Article Influence: 60.3] [Reference Citation Analysis]
Number Citing Articles
1 Al Rihani SB, Darakjian LI, Deodhar M, Dow P, Turgeon J, Michaud V. Disease-Induced Modulation of Drug Transporters at the Blood-Brain Barrier Level. Int J Mol Sci 2021;22:3742. [PMID: 33916769 DOI: 10.3390/ijms22073742] [Reference Citation Analysis]
2 Kim W, Kim J, Lee S, Kim H, Jung H, Joo KM, Nam D. Functional validation of the simplified in vitro 3D Co-culture based BBB model. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.07.107] [Reference Citation Analysis]
3 de Gooijer MC, Zhang P, Thota N, Mayayo-Peralta I, Buil LC, Beijnen JH, van Tellingen O. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib. Invest New Drugs 2015;33:1012-9. [PMID: 26123925 DOI: 10.1007/s10637-015-0266-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
4 Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev 2018;118:6844-92. [PMID: 29957926 DOI: 10.1021/acs.chemrev.8b00199] [Cited by in Crossref: 427] [Cited by in F6Publishing: 325] [Article Influence: 106.8] [Reference Citation Analysis]
5 Chen C, Duan Z, Yuan Y, Li R, Pang L, Liang J, Xu X, Wang J. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. ACS Appl Mater Interfaces 2017;9:5864-73. [PMID: 28128553 DOI: 10.1021/acsami.6b15831] [Cited by in Crossref: 96] [Cited by in F6Publishing: 86] [Article Influence: 19.2] [Reference Citation Analysis]
6 Zhang DY, Dmello C, Chen L, Arrieta VA, Gonzalez-Buendia E, Kane JR, Magnusson LP, Baran A, James CD, Horbinski C, Carpentier A, Desseaux C, Canney M, Muzzio M, Stupp R, Sonabend AM. Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clin Cancer Res 2020;26:477-86. [PMID: 31831565 DOI: 10.1158/1078-0432.CCR-19-2182] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
7 Wang S, Zhao C, Liu P, Wang Z, Ding J, Zhou W. Facile construction of dual-targeting delivery system by using lipid capped polymer nanoparticles for anti-glioma therapy. RSC Adv 2018;8:444-53. [DOI: 10.1039/c7ra12376k] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
8 Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019;88:422-47. [PMID: 30711662 DOI: 10.1016/j.actbio.2019.01.064] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
9 Pellosi DS, Paula LB, de Melo MT, Tedesco AC. Targeted and Synergic Glioblastoma Treatment: Multifunctional Nanoparticles Delivering Verteporfin as Adjuvant Therapy for Temozolomide Chemotherapy. Mol Pharm 2019;16:1009-24. [PMID: 30698450 DOI: 10.1021/acs.molpharmaceut.8b01001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
10 Tournier N, Goutal S, Auvity S, Traxl A, Mairinger S, Wanek T, Helal OB, Buvat I, Soussan M, Caillé F, Langer O. Strategies to Inhibit ABCB1- and ABCG2-Mediated Efflux Transport of Erlotinib at the Blood-Brain Barrier: A PET Study on Nonhuman Primates. J Nucl Med 2017;58:117-22. [PMID: 27493269 DOI: 10.2967/jnumed.116.178665] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
11 Huang R, Boltze J, Li S. Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: a Systematic Review. Front Oncol 2020;10:1443. [PMID: 32983974 DOI: 10.3389/fonc.2020.01443] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. Journal of Drug Delivery Science and Technology 2020;57:101636. [DOI: 10.1016/j.jddst.2020.101636] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Mir M, Palma-Florez S, Lagunas A, López-Martínez MJ, Samitier J. Biosensors Integration in Blood-Brain Barrier-on-a-Chip: Emerging Platform for Monitoring Neurodegenerative Diseases. ACS Sens 2022;7:1237-47. [PMID: 35559649 DOI: 10.1021/acssensors.2c00333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kopa P, Macieja A, Gulbas I, Pastwa E, Poplawski T. Inhibition of DNA-PK potentiates the synergistic effect of NK314 and etoposide combination on human glioblastoma cells. Mol Biol Rep 2020;47:67-76. [PMID: 31583565 DOI: 10.1007/s11033-019-05105-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
15 Chen H, Luo Q, Wang J, He H, Luo W, Zhang L, Xiao Q, Chen T, Xu X, Niu W, Ke Y, Wang Y. Response of pH-Sensitive Doxorubicin Nanoparticles on Complex Tumor Microenvironments by Tailoring Multiple Physicochemical Properties. ACS Appl Mater Interfaces 2020;12:22673-86. [PMID: 32337980 DOI: 10.1021/acsami.0c05724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Bellotti E, Schilling AL, Little SR, Decuzzi P. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. J Control Release 2021;329:16-35. [PMID: 33259851 DOI: 10.1016/j.jconrel.2020.11.049] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
17 Silva EPO, Franchi LP, Tedesco AC. Chloro-aluminium phthalocyanine loaded in ultradeformable liposomes for photobiology studies on human glioblastoma. RSC Adv 2016;6:79631-40. [DOI: 10.1039/c6ra16015h] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
18 Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2017;12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 4.3] [Reference Citation Analysis]
19 Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021;287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Reference Citation Analysis]
20 Salem Ghahfarrokhi S, Khodadadi H. Human brain tumor diagnosis using the combination of the complexity measures and texture features through magnetic resonance image. Biomedical Signal Processing and Control 2020;61:102025. [DOI: 10.1016/j.bspc.2020.102025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022. [PMID: 35786935 DOI: 10.1021/acs.jmedchem.1c01946] [Reference Citation Analysis]
22 Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrasonics. [DOI: 10.1007/s10396-022-01201-x] [Reference Citation Analysis]
23 Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018;29:3937-66. [PMID: 30265523 DOI: 10.1021/acs.bioconjchem.8b00548] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
24 Khoshnevis M, Carozzo C, Brown R, Bardiès M, Bonnefont-Rebeix C, Belluco S, Nennig C, Marcon L, Tillement O, Gehan H, Louis C, Zahi I, Buronfosse T, Roger T, Ponce F. Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One 2020;15:e0234772. [PMID: 32555746 DOI: 10.1371/journal.pone.0234772] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Guo Y, Liu R, Zhou L, Zhao H, Lv F, Liu L, Huang Y, Zhang H, Yu C, Wang S. Blood-brain-barrier penetrable thiolated paclitaxel-oligo (p-phenylene vinylene) nanomedicine with increased drug efficiency for glioblastoma treatment. Nano Today 2020;35:100969. [DOI: 10.1016/j.nantod.2020.100969] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Kim DG, Kim KH, Seo YJ, Yang H, Marcusson EG, Son E, Lee K, Sa JK, Lee HW, Nam DH. Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy. Oncotarget 2016;7:29400-11. [PMID: 27102443 DOI: 10.18632/oncotarget.8837] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
27 Navarro-Bonnet J, Suarez-Meade P, Brown DA, Chaichana KL, Quinones-Hinojosa A. Following the light in glioma surgery: a comparison of sodium fluorescein and 5-aminolevulinic acid as surgical adjuncts in glioma resection. J Neurosurg Sci 2019;63:633-47. [PMID: 31961116 DOI: 10.23736/S0390-5616.19.04745-3] [Reference Citation Analysis]
28 Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021;22:6126. [PMID: 34200145 DOI: 10.3390/ijms22116126] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Abbas MN, Kausar S, Cui H. Therapeutic potential of natural products in glioblastoma treatment: targeting key glioblastoma signaling pathways and epigenetic alterations. Clin Transl Oncol 2020;22:963-77. [DOI: 10.1007/s12094-019-02227-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
30 Muhammad P, Hanif S, Li J, Guller A, Rehman FU, Ismail M, Zhang D, Yan X, Fan K, Shi B. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022;45:101530. [DOI: 10.1016/j.nantod.2022.101530] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Benyettou F, Das G, Nair AR, Prakasam T, Shinde DB, Sharma SK, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z, Motte L, Gándara F, Sadler KC, Trabolsi A. Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. J Am Chem Soc 2020;142:18782-94. [PMID: 33090806 DOI: 10.1021/jacs.0c05381] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
32 Chen Y, Pan L, Jiang M, Li D, Jin L. Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo. Drug Delivery 2016;23:1383-92. [DOI: 10.3109/10717544.2015.1049719] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 6.1] [Reference Citation Analysis]
33 Thibaudeau TA, Smith DM. A Practical Review of Proteasome Pharmacology. Pharmacol Rev 2019;71:170-97. [PMID: 30867233 DOI: 10.1124/pr.117.015370] [Cited by in Crossref: 98] [Cited by in F6Publishing: 84] [Article Influence: 32.7] [Reference Citation Analysis]
34 Saucier-sawyer JK, Deng Y, Seo Y, Cheng CJ, Zhang J, Quijano E, Saltzman WM. Systemic delivery of blood–brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue. Journal of Drug Targeting 2015;23:736-49. [DOI: 10.3109/1061186x.2015.1065833] [Cited by in Crossref: 41] [Cited by in F6Publishing: 14] [Article Influence: 5.9] [Reference Citation Analysis]
35 de Gooijer MC, de Vries NA, Buckle T, Buil LCM, Beijnen JH, Boogerd W, van Tellingen O. Improved Brain Penetration and Antitumor Efficacy of Temozolomide by Inhibition of ABCB1 and ABCG2. Neoplasia 2018;20:710-20. [PMID: 29852323 DOI: 10.1016/j.neo.2018.05.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 8.5] [Reference Citation Analysis]
36 Checa-Chavarria E, Rivero-Buceta E, Sanchez Martos MA, Martinez Navarrete G, Soto-Sánchez C, Botella P, Fernández E. Development of a Prodrug of Camptothecin for Enhanced Treatment of Glioblastoma Multiforme. Mol Pharm 2021;18:1558-72. [PMID: 33645231 DOI: 10.1021/acs.molpharmaceut.0c00968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zielke S, Meyer N, Mari M, Abou-El-Ardat K, Reggiori F, van Wijk SJL, Kögel D, Fulda S. Loperamide, pimozide, and STF-62247 trigger autophagy-dependent cell death in glioblastoma cells. Cell Death Dis 2018;9:994. [PMID: 30250198 DOI: 10.1038/s41419-018-1003-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
38 Zhang C, Zhang X, Wang J, Di F, Xue Y, Lin X, Zhang Y, Zhang H, Zhang Z, Gu Y. Lnc00462717 regulates the permeability of the blood-brain tumor barrier through interaction with PTBP1 to inhibit the miR-186-5p/Occludin signaling pathway. FASEB J 2020;34:9941-58. [PMID: 32623796 DOI: 10.1096/fj.202000045R] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Jabbarpour Z, Kiani J, Keshtkar S, Saidijam M, Ghahremani MH, Ahmadbeigi N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J Cell Biochem 2020;121:1362-73. [PMID: 31595570 DOI: 10.1002/jcb.29371] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
40 Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia 2018;34:1316-28. [PMID: 29353516 DOI: 10.1080/02656736.2018.1430867] [Cited by in Crossref: 120] [Cited by in F6Publishing: 91] [Article Influence: 30.0] [Reference Citation Analysis]
41 Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020;6:3762-77. [PMID: 33463324 DOI: 10.1021/acsbiomaterials.0c00477] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021;22:1831. [PMID: 33673213 DOI: 10.3390/ijms22041831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 McCarthy D, Starke RM, Sheinberg D, Connolly ES. Treatment Synergy for Glioblastoma Multiforme with SynergySeq. Neurosurgery 2019;85:E178-9. [PMID: 30809656 DOI: 10.1093/neuros/nyz030] [Reference Citation Analysis]
44 Li GF, Li L, Yao ZQ, Zhuang SJ. Hsa_circ_0007534/miR-761/ZIC5 regulatory loop modulates the proliferation and migration of glioma cells. Biochem Biophys Res Commun 2018;499:765-71. [PMID: 29605301 DOI: 10.1016/j.bbrc.2018.03.219] [Cited by in Crossref: 39] [Cited by in F6Publishing: 47] [Article Influence: 9.8] [Reference Citation Analysis]
45 Peng C, Gao X, Xu J, Du B, Ning X, Tang S, Bachoo RM, Yu M, Ge WP, Zheng J. Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Res 2017;10:1366-76. [PMID: 29034063 DOI: 10.1007/s12274-017-1472-z] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
46 Parrish KE, Cen L, Murray J, Calligaris D, Kizilbash S, Mittapalli RK, Carlson BL, Schroeder MA, Sludden J, Boddy AV, Agar NY, Curtin NJ, Elmquist WF, Sarkaria JN. Efficacy of PARP Inhibitor Rucaparib in Orthotopic Glioblastoma Xenografts Is Limited by Ineffective Drug Penetration into the Central Nervous System. Mol Cancer Ther 2015;14:2735-43. [PMID: 26438157 DOI: 10.1158/1535-7163.MCT-15-0553] [Cited by in Crossref: 50] [Cited by in F6Publishing: 31] [Article Influence: 7.1] [Reference Citation Analysis]
47 Caro C, Avasthi A, Paez-Muñoz JM, Pernia Leal M, García-Martín ML. Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? Biomater Sci 2021;9:7984-95. [PMID: 34710207 DOI: 10.1039/d1bm01398j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Cao SQ, Aman Y, Fang EF, Tencomnao T. P. edulis Extract Protects Against Amyloid-β Toxicity in Alzheimer's Disease Models Through Maintenance of Mitochondrial Homeostasis via the FOXO3/DAF-16 Pathway. Mol Neurobiol 2022. [PMID: 35739408 DOI: 10.1007/s12035-022-02904-5] [Reference Citation Analysis]
49 Choi C, Kim HM, Shon J, Park J, Kim HT, Kang SH, Oh SH, Kim NK, Kim OJ. The combination of mannitol and temozolomide increases the effectiveness of stem cell treatment in a chronic stroke model. Cytotherapy 2018;20:820-9. [PMID: 29776835 DOI: 10.1016/j.jcyt.2018.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
50 Mohammad AS, Adkins CE, Shah N, Aljammal R, Griffith JIG, Tallman RM, Jarrell KL, Lockman PR. Permeability changes and effect of chemotherapy in brain adjacent to tumor in an experimental model of metastatic brain tumor from breast cancer. BMC Cancer 2018;18:1225. [PMID: 30526520 DOI: 10.1186/s12885-018-5115-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
51 Zhu L, Nazeri A, Pacia CP, Yue Y, Chen H. Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS One 2020;15:e0234182. [PMID: 32492056 DOI: 10.1371/journal.pone.0234182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Kovalevich J, Cornec AS, Yao Y, James M, Crowe A, Lee VM, Trojanowski JQ, Smith AB 3rd, Ballatore C, Brunden KR. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies. J Pharmacol Exp Ther 2016;357:432-50. [PMID: 26980057 DOI: 10.1124/jpet.115.231175] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
53 Goutal S, Langer O, Auvity S, Andrieux K, Coulon C, Caillé F, Gervais P, Cisternino S, Declèves X, Tournier N. Intravenous infusion for the controlled exposure to the dual ABCB1 and ABCG2 inhibitor elacridar in nonhuman primates. Drug Deliv Transl Res 2018;8:536-42. [PMID: 29294257 DOI: 10.1007/s13346-017-0472-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
54 Moujalled D, Southon AG, Saleh E, Brinkmann K, Ke F, Iliopoulos M, Cross RS, Jenkins MR, Nhu D, Wang Z, Shi MX, Kluck RM, Lessene G, Grabow S, Bush AI, Strasser A. BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death Differ 2022;29:1335-48. [PMID: 35332309 DOI: 10.1038/s41418-022-00977-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019;12:E20. [PMID: 31878061 DOI: 10.3390/pharmaceutics12010020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
56 Huang W, Lu I, Chiang W, Lin Y, Tsai Y, Chen H, Chang C, Chiang C, Chiu H. Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and dual-modality therapy of orthotopic glioblastoma. Journal of Controlled Release 2017;254:119-30. [DOI: 10.1016/j.jconrel.2017.03.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
57 Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. Front Med Technol 2020;2:602236. [PMID: 35047884 DOI: 10.3389/fmedt.2020.602236] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019;10:362. [PMID: 30886620 DOI: 10.3389/fimmu.2019.00362] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 20.3] [Reference Citation Analysis]
59 de Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O. The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer 2018;142:381-91. [PMID: 28921565 DOI: 10.1002/ijc.31052] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 5.4] [Reference Citation Analysis]
60 Khaitan D, Reddy PL, Narayana DS, Ningaraj NS. Recent advances in understanding of blood–brain tumor barrier (BTB) permeability mechanisms that enable better detection and treatment of brain tumors. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier; 2018. pp. 673-88. [DOI: 10.1016/b978-0-12-813689-8.00017-3] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
61 Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022;51:6014-26. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Reference Citation Analysis]
62 Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021;13:4217-32. [PMID: 34079374 DOI: 10.2147/CMAR.S288720] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Song Z, Liu T, Chen T. Overcoming blood–brain barrier by HER2-targeted nanosystem to suppress glioblastoma cell migration, invasion and tumor growth. J Mater Chem B 2018;6:568-79. [DOI: 10.1039/c7tb02677c] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
64 Zhang Y, Warden AR, Ahmad KZ, Liu Y, He X, Zheng M, Huo X, Zhi X, Ke Y, Li H, Yan S, Su W, Cai D, Ding X. Single-Cell Microwell Platform Reveals Circulating Neural Cells as a Clinical Indicator for Patients with Blood-Brain Barrier Breakdown. Research (Wash D C) 2021;2021:9873545. [PMID: 34327332 DOI: 10.34133/2021/9873545] [Reference Citation Analysis]
65 Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021;9:693215. [PMID: 34211978 DOI: 10.3389/fcell.2021.693215] [Reference Citation Analysis]
66 Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020;25:E5294. [PMID: 33202839 DOI: 10.3390/molecules25225294] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
67 Arnesen VS, Gras Navarro A, Chekenya M. Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers (Basel) 2021;13:4986. [PMID: 34638471 DOI: 10.3390/cancers13194986] [Reference Citation Analysis]
68 Sasaki T, Katagi H, Goldman S, Becher OJ, Hashizume R. Convection-Enhanced Delivery of Enhancer of Zeste Homolog-2 (EZH2) Inhibitor for the Treatment of Diffuse Intrinsic Pontine Glioma. Neurosurgery 2020:nyaa301. [PMID: 32674144 DOI: 10.1093/neuros/nyaa301] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
69 Naziris N, Pippa N, Sereti E, Chrysostomou V, Kędzierska M, Kajdanek J, Ionov M, Miłowska K, Balcerzak Ł, Garofalo S, Limatola C, Pispas S, Dimas K, Bryszewska M, Demetzos C. Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34. Int J Mol Sci 2021;22:6271. [PMID: 34200955 DOI: 10.3390/ijms22126271] [Reference Citation Analysis]
70 Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharmaceutica Sinica B 2022;12:2658-71. [DOI: 10.1016/j.apsb.2022.02.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Kang S, Lee S, Park S. iRGD Peptide as a Tumor-Penetrating Enhancer for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020;12:E1906. [PMID: 32847045 DOI: 10.3390/polym12091906] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
72 Hegde MM, Prabhu S, Mutalik S, Chatterjee A, Goda JS, Satish Rao BS. Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. J Pharm Investig 2022;52:49-74. [DOI: 10.1007/s40005-021-00548-6] [Reference Citation Analysis]
73 Duwa R, Emami F, Lee S, Jeong J, Yook S. Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. Journal of Industrial and Engineering Chemistry 2019;79:261-73. [DOI: 10.1016/j.jiec.2019.06.050] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
74 Zhao J, Koay EJ, Li T, Wen X, Li C. A hindsight reflection on the clinical studies of poly(l-glutamic acid)-paclitaxel. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1497. [PMID: 28895304 DOI: 10.1002/wnan.1497] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
75 Marx S, Godicelj A, Wucherpfennig KW. A Conceptual Framework for Inducing T Cell-Mediated Immunity Against Glioblastoma. Semin Immunopathol 2022. [PMID: 35505129 DOI: 10.1007/s00281-022-00945-5] [Reference Citation Analysis]
76 Gandhi H, Sharma AK, Mahant S, Kapoor DN. Recent advancements in brain tumor targeting using magnetic nanoparticles. Ther Deliv 2020;11:97-112. [PMID: 31914859 DOI: 10.4155/tde-2019-0077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
77 Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential Therapeutic Effects of Exosomes Packed With a miR-21-Sponge Construct in a Rat Model of Glioblastoma. Front Oncol 2019;9:782. [PMID: 31482067 DOI: 10.3389/fonc.2019.00782] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
78 Tea MN, Poonnoose SI, Pitson SM. Targeting the Sphingolipid System as a Therapeutic Direction for Glioblastoma. Cancers (Basel) 2020;12:E111. [PMID: 31906280 DOI: 10.3390/cancers12010111] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
79 Mashouf LA, Wu JY, Shah P, Kannapadi N, Lim M. Applying Synthetic Biology with Rational Design to Nature’s Greatest Challenges: Bioengineering Immunotherapeutics for the Treatment of Glioblastoma. Immuno 2022;2:40-51. [DOI: 10.3390/immuno2010004] [Reference Citation Analysis]
80 Dong X. Current Strategies for Brain Drug Delivery. Theranostics 2018;8:1481-93. [PMID: 29556336 DOI: 10.7150/thno.21254] [Cited by in Crossref: 349] [Cited by in F6Publishing: 289] [Article Influence: 87.3] [Reference Citation Analysis]
81 Jacus MO, Daryani VM, Harstead KE, Patel YT, Throm SL, Stewart CF. Pharmacokinetic Properties of Anticancer Agents for the Treatment of Central Nervous System Tumors: Update of the Literature. Clin Pharmacokinet 2016;55:297-311. [PMID: 26293618 DOI: 10.1007/s40262-015-0319-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
82 Mallick S, Benson R, Hakim A, Rath GK. Management of glioblastoma after recurrence: A changing paradigm. J Egypt Natl Canc Inst 2016;28:199-210. [PMID: 27476474 DOI: 10.1016/j.jnci.2016.07.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
83 Tavener AM, Phelps MC, Daniels RL. Anthracycline-induced cytotoxicity in the GL261 glioma model system. Mol Biol Rep 2021;48:1017-23. [PMID: 33387196 DOI: 10.1007/s11033-020-06109-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
84 Gregory JV, Kadiyala P, Doherty R, Cadena M, Habeel S, Ruoslahti E, Lowenstein PR, Castro MG, Lahann J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat Commun 2020;11:5687. [PMID: 33173024 DOI: 10.1038/s41467-020-19225-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
85 Baghban R, Afarid M, Soleymani J, Rahimi M. Were magnetic materials useful in cancer therapy? Biomed Pharmacother 2021;144:112321. [PMID: 34656061 DOI: 10.1016/j.biopha.2021.112321] [Reference Citation Analysis]
86 Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020;20:26-41. [PMID: 31601988 DOI: 10.1038/s41568-019-0205-x] [Cited by in Crossref: 212] [Cited by in F6Publishing: 192] [Article Influence: 70.7] [Reference Citation Analysis]
87 Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 2017;11:325-35. [PMID: 28184152 DOI: 10.2147/DDDT.S100075] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 4.6] [Reference Citation Analysis]
88 Shergalis A, Bankhead A 3rd, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev. 2018;70:412-445. [PMID: 29669750 DOI: 10.1124/pr.117.014944] [Cited by in Crossref: 227] [Cited by in F6Publishing: 223] [Article Influence: 56.8] [Reference Citation Analysis]
89 Verheijen RB, Yaqub M, Sawicki E, van Tellingen O, Lammertsma AA, Nuijen B, Schellens JHM, Beijnen JH, Huitema ADR, Hendrikse NH, Steeghs N. Molecular Imaging of ABCB1 and ABCG2 Inhibition at the Human Blood-Brain Barrier Using Elacridar and 11C-Erlotinib PET. J Nucl Med 2018;59:973-9. [PMID: 29175983 DOI: 10.2967/jnumed.117.195800] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
90 Peyrl A, Frischer J, Hainfellner JA, Preusser M, Dieckmann K, Marosi C. Brain tumors – other treatment modalities. Neuropathology. Elsevier; 2018. pp. 547-60. [DOI: 10.1016/b978-0-12-802395-2.00034-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
91 Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Reference Citation Analysis]
92 Ye X, Schreck KC, Ozer BH, Grossman SA. High-grade glioma therapy: adding flexibility in trial design to improve patient outcomes. Expert Rev Anticancer Ther 2022. [PMID: 35130447 DOI: 10.1080/14737140.2022.2038138] [Reference Citation Analysis]
93 Di K, Lomeli N, Bota DA, Das BC. Magmas inhibition as a potential treatment strategy in malignant glioma. J Neurooncol 2019;141:267-76. [PMID: 30414099 DOI: 10.1007/s11060-018-03040-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
94 Khaddour K, Johanns TM, Ansstas G. The Landscape of Novel Therapeutics and Challenges in Glioblastoma Multiforme: Contemporary State and Future Directions. Pharmaceuticals (Basel) 2020;13:E389. [PMID: 33202642 DOI: 10.3390/ph13110389] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
95 Ozdemir-Kaynak E, Qutub AA, Yesil-Celiktas O. Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol 2018;9:170. [PMID: 29615917 DOI: 10.3389/fphys.2018.00170] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 16.8] [Reference Citation Analysis]
96 Kwon YM, Je JY, Cha SH, Oh Y, Cho WH. Synergistic combination of chemo‑phototherapy based on temozolomide/ICG‑loaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep 2019;42:1709-24. [PMID: 31436296 DOI: 10.3892/or.2019.7289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
97 Delač M, Motaln H, Ulrich H, Lah TT. Aptamer for imaging and therapeutic targeting of brain tumor glioblastoma. Cytometry A 2015;87:806-16. [PMID: 26189784 DOI: 10.1002/cyto.a.22715] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
98 Khan MA, Zafaryab M, Mehdi SH, Quadri J, Rizvi MMA. Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. International Journal of Biological Macromolecules 2017;97:115-22. [DOI: 10.1016/j.ijbiomac.2016.12.090] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 6.2] [Reference Citation Analysis]
99 Sawicki E, Verheijen RB, Huitema AD, van Tellingen O, Schellens JH, Nuijen B, Beijnen JH, Steeghs N. Clinical pharmacokinetics of an amorphous solid dispersion tablet of elacridar. Drug Deliv Transl Res 2017;7:125-31. [PMID: 27864786 DOI: 10.1007/s13346-016-0346-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
100 Terrell-Hall TB, Nounou MI, El-Amrawy F, Griffith JIG, Lockman PR. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer. Oncotarget 2017;8:83734-44. [PMID: 29137378 DOI: 10.18632/oncotarget.19634] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 6.4] [Reference Citation Analysis]
101 Kefayat A, Ghahremani F, Motaghi H, Amouheidari A. Ultra-small but ultra-effective: Folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors' radiation therapy efficacy. Nanomedicine 2019;16:173-84. [PMID: 30594659 DOI: 10.1016/j.nano.2018.12.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
102 Katagi H, Takata N, Aoi Y, Zhang Y, Rendleman EJ, Blyth GT, Eckerdt FD, Tomita Y, Sasaki T, Saratsis AM, Kondo A, Goldman S, Becher OJ, Smith E, Zou L, Shilatifard A, Hashizume R. Therapeutic targeting of transcriptional elongation in diffuse intrinsic pontine glioma. Neuro Oncol 2021;23:1348-59. [PMID: 33471107 DOI: 10.1093/neuonc/noab009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
103 Han Y, Park JH. Convection-enhanced delivery of liposomal drugs for effective treatment of glioblastoma multiforme. Drug Deliv Transl Res 2020;10:1876-87. [PMID: 32367425 DOI: 10.1007/s13346-020-00773-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
104 Mittal S, Ashhar MU, Qizilbash FF, Qamar Z, Narang JK, Kumar S, Ali J, Baboota S. Ligand Conjugated Targeted Nanotherapeutics for Treatment of Neurological Disorders. Curr Pharm Des 2020;26:2291-305. [PMID: 32303160 DOI: 10.2174/1381612826666200417141600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021:S0022-3549(21)00462-7. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Reference Citation Analysis]
106 Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2021;45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
107 Harder BG, Blomquist MR, Wang J, Kim AJ, Woodworth GF, Winkles JA, Loftus JC, Tran NL. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma. Front Oncol 2018;8:462. [PMID: 30406029 DOI: 10.3389/fonc.2018.00462] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 13.0] [Reference Citation Analysis]
108 Yasunaga M, Manabe S, Tsuji A, Furuta M, Ogata K, Koga Y, Saga T, Matsumura Y. Development of Antibody-Drug Conjugates Using DDS and Molecular Imaging. Bioengineering (Basel) 2017;4:E78. [PMID: 28952557 DOI: 10.3390/bioengineering4030078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
109 Triarico S, Maurizi P, Mastrangelo S, Attinà G, Capozza MA, Ruggiero A. Improving the Brain Delivery of Chemotherapeutic Drugs in Childhood Brain Tumors. Cancers (Basel) 2019;11:E824. [PMID: 31200562 DOI: 10.3390/cancers11060824] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
110 Mendes M, Cova T, Basso J, Ramos ML, Vitorino R, Sousa J, Pais A, Vitorino C. Hierarchical design of hyaluronic acid-peptide constructs for glioblastoma targeting: Combining insights from NMR and molecular dynamics simulations. Journal of Molecular Liquids 2020;315:113774. [DOI: 10.1016/j.molliq.2020.113774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
111 Meel MH, Kaspers GJL, Hulleman E. Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updat 2019;44:15-25. [PMID: 31202081 DOI: 10.1016/j.drup.2019.06.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
112 Patel JP, Spiller SE, Barker ED. Drug penetration in pediatric brain tumors: Challenges and opportunities. Pediatr Blood Cancer 2021;68:e28983. [PMID: 33719183 DOI: 10.1002/pbc.28983] [Reference Citation Analysis]
113 Kopylov AT, Myasoedov NF, Dadayan AK, Zgoda VG, Medvedev AE, Zolotarev YA. Use of deuterium labeling by high-temperature solid-state hydrogen-exchange reaction for mass spectrometric analysis of bradykinin biotransformation. Rapid Commun Mass Spectrom 2016;30:1283-94. [PMID: 27173110 DOI: 10.1002/rcm.7558] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
114 Ai X, Ye Z, Xiao C, Zhong J, Lancman JJ, Chen X, Pan X, Yang Y, Zhou L, Wang X, Shi H, Zhang D, Yao Y, Cao D, Zhao C. Clinically relevant orthotopic xenograft models of patient-derived glioblastoma in zebrafish. Dis Model Mech 2022;15:dmm049109. [PMID: 35199829 DOI: 10.1242/dmm.049109] [Reference Citation Analysis]
115 Omidi Y, Kianinejad N, Kwon Y, Omidian H. Drug delivery and targeting to brain tumors: considerations for crossing the blood-brain barrier. Expert Rev Clin Pharmacol 2021;14:357-81. [PMID: 33554678 DOI: 10.1080/17512433.2021.1887729] [Reference Citation Analysis]
116 Chen Z, Wang C, Li T, Li K, Yue Y, Liu X, Xu H, Wen Y, Zhang Q, Han M, Komatsu N, Xu Y, Zhao L, Chen X. Doxorubicin conjugated with nanodiamonds and in free form commit glioblastoma cells to heterodromous fates. Nanomedicine 2019;14:335-51. [DOI: 10.2217/nnm-2018-0330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
117 Jose S, Juna B, Cinu T, Jyoti H, Aleykutty N. Carboplatin loaded Surface modified PLGA nanoparticles: Optimization, characterization, and in vivo brain targeting studies. Colloids and Surfaces B: Biointerfaces 2016;142:307-14. [DOI: 10.1016/j.colsurfb.2016.02.026] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
118 Meneceur S, Linge A, Meinhardt M, Hering S, Löck S, Bütof R, Krex D, Schackert G, Temme A, Baumann M, Krause M, von Neubeck C. Establishment and Characterisation of Heterotopic Patient-Derived Xenografts for Glioblastoma. Cancers (Basel) 2020;12:E871. [PMID: 32260145 DOI: 10.3390/cancers12040871] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
119 Meng L, Wang C, Lu Y, Sheng G, Yang L, Wu Z, Xu H, Han C, Lu Y, Han F. Targeted Regulation of Blood-Brain Barrier for Enhanced Therapeutic Efficiency of Hypoxia-Modifier Nanoparticles and Immune Checkpoint Blockade Antibodies for Glioblastoma. ACS Appl Mater Interfaces 2021;13:11657-71. [PMID: 33684289 DOI: 10.1021/acsami.1c00347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
120 Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat Rev Mater 2019;4:651-68. [PMID: 32647587 DOI: 10.1038/s41578-019-0135-y] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
121 Jackson S, Weingart J, Nduom EK, Harfi TT, George RT, McAreavey D, Ye X, Anders NM, Peer C, Figg WD, Gilbert M, Rudek MA, Grossman SA. The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 2018;15:2. [PMID: 29332604 DOI: 10.1186/s12987-017-0088-8] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
122 Sharabi S, Bresler Y, Ravid O, Shemesh C, Atrakchi D, Schnaider-Beeri M, Gosselet F, Dehouck L, Last D, Guez D, Daniels D, Mardor Y, Cooper I. Transient blood-brain barrier disruption is induced by low pulsed electrical fields in vitro: an analysis of permeability and trans-endothelial electric resistivity. Drug Deliv 2019;26:459-69. [PMID: 30957567 DOI: 10.1080/10717544.2019.1571123] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
123 Lien VT, Celen S, Nuruddin S, Attili B, Doumont G, Van Simaeys G, Bormans G, Klaveness J, Olberg DE. Preclinical evaluation of [18F]cabozantinib as a PET imaging agent in a prostate cancer mouse model. Nucl Med Biol 2021;93:74-80. [PMID: 33422771 DOI: 10.1016/j.nucmedbio.2020.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
124 Estival A, Sanz C, Ramirez JL, Velarde JM, Domenech M, Carrato C, de Las Peñas R, Gil-Gil M, Sepúlveda J, Armengol R, Cardiel I, Berrocal A, Luque R, Herrero A, Balana C. Pyrosequencing versus methylation-specific PCR for assessment of MGMT methylation in tumor and blood samples of glioblastoma patients. Sci Rep 2019;9:11125. [PMID: 31366977 DOI: 10.1038/s41598-019-47642-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
125 Ndemazie NB, Inkoom A, Morfaw EF, Smith T, Aghimien M, Ebesoh D, Agyare E. Multi-disciplinary Approach for Drug and Gene Delivery Systems to the Brain. AAPS PharmSciTech 2021;23:11. [PMID: 34862567 DOI: 10.1208/s12249-021-02144-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
126 Jiang Y, Wang X, Liu X, Lv W, Zhang H, Zhang M, Li X, Xin H, Xu Q. Enhanced Antiglioma Efficacy of Ultrahigh Loading Capacity Paclitaxel Prodrug Conjugate Self-Assembled Targeted Nanoparticles. ACS Appl Mater Interfaces 2017;9:211-7. [PMID: 27976583 DOI: 10.1021/acsami.6b13805] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 6.5] [Reference Citation Analysis]
127 Rahn JJ, Lun X, Jorch SK, Hao X, Venugopal C, Vora P, Ahn BY, Babes L, Alshehri MM, Cairncross JG, Singh SK, Kubes P, Senger DL, Robbins SM. Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials 2020;252:120105. [DOI: 10.1016/j.biomaterials.2020.120105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
128 Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019;4:42. [PMID: 31637020 DOI: 10.1038/s41392-019-0075-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
129 Lu L, Chen H, Wang L, Zhao L, Cheng Y, Wang A, Wang F, Zhang X. A Dual Receptor Targeting- and BBB Penetrating- Peptide Functionalized Polyethyleneimine Nanocomplex for Secretory Endostatin Gene Delivery to Malignant Glioma. Int J Nanomedicine 2020;15:8875-92. [PMID: 33209022 DOI: 10.2147/IJN.S270208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
130 Shooli H, Nemati R, Ahmadzadehfar H, Aboian M, Jafari E, Jokar N, Nabipour I, Dadgar H, Gholamrezanezhad A, Larvie M, Assadi M. Theranostics in Brain Tumors. PET Clin 2021;16:397-418. [PMID: 34053584 DOI: 10.1016/j.cpet.2021.03.005] [Reference Citation Analysis]
131 Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. IJMS 2021;22:13431. [DOI: 10.3390/ijms222413431] [Reference Citation Analysis]
132 Wu SK, Tsai CL, Hynynen K. Novel Treatment Approaches for Brain Tumour from a Blood-Brain Barrier Perspective. Handb Exp Pharmacol 2021. [PMID: 33454856 DOI: 10.1007/164_2020_408] [Reference Citation Analysis]
133 Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC, Moura-Neto V. Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol 2019;58:130-41. [PMID: 30266571 DOI: 10.1016/j.semcancer.2018.09.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
134 Wang W, Swenson S, Cho H, Hofman FM, Schönthal AH, Chen TC. Efficient brain targeting and therapeutic intracranial activity of bortezomib through intranasal co-delivery with NEO100 in rodent glioblastoma models. Journal of Neurosurgery 2020;132:959-67. [DOI: 10.3171/2018.11.jns181161] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
135 Wang S, Meng Y, Li C, Qian M, Huang R. Receptor-Mediated Drug Delivery Systems Targeting to Glioma. Nanomaterials (Basel) 2015;6:E3. [PMID: 28344260 DOI: 10.3390/nano6010003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
136 Silvani G, Basirun C, Wu H, Mehner C, Poole K, Bradbury P, Chou J. A 3D‐Bioprinted Vascularized Glioblastoma‐on‐a‐Chip for Studying the Impact of Simulated Microgravity as a Novel Pre‐Clinical Approach in Brain Tumor Therapy. Adv Therap 2021;4:2100106. [DOI: 10.1002/adtp.202100106] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Bauer M, Karch R, Wulkersdorfer B, Philippe C, Nics L, Klebermass EM, Weber M, Poschner S, Haslacher H, Jäger W, Tournier N, Wadsak W, Hacker M, Zeitlinger M, Langer O. A Proof-of-Concept Study to Inhibit ABCG2- and ABCB1-Mediated Efflux Transport at the Human Blood-Brain Barrier. J Nucl Med 2019;60:486-91. [PMID: 30237210 DOI: 10.2967/jnumed.118.216432] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
138 Zhang C, Pan Y, Cai R, Guo S, Zhang X, Xue Y, Wang J, Huang J, Wang J, Gu Y, Zhang Z. Salvianolic acid A increases the accumulation of doxorubicin in brain tumors through Caveolae endocytosis. Neuropharmacology 2020;167:107980. [PMID: 32014448 DOI: 10.1016/j.neuropharm.2020.107980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
139 Dan N. Vesicle-based drug carriers. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 1-55. [DOI: 10.1016/b978-0-12-813627-0.00001-6] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
140 D'Costa NM, Lowerison MR, Raven PA, Tan Z, Roberts ME, Shrestha R, Urban MW, Monjaras-Avila CU, Oo HZ, Hurtado-Coll A, Chavez-Munoz C, So AI. Y-box binding protein-1 is crucial in acquired drug resistance development in metastatic clear-cell renal cell carcinoma. J Exp Clin Cancer Res 2020;39:33. [PMID: 32041631 DOI: 10.1186/s13046-020-1527-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
141 Hutter S, Bolin S, Weishaupt H, Swartling FJ. Modeling and Targeting MYC Genes in Childhood Brain Tumors. Genes (Basel) 2017;8:E107. [PMID: 28333115 DOI: 10.3390/genes8040107] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
142 Abadi B, Ahmadi-Zeidabadi M, Dini L, Vergallo C. Stem cell-based therapy treating glioblastoma multiforme. Hematol Oncol Stem Cell Ther 2021;14:1-15. [PMID: 32971031 DOI: 10.1016/j.hemonc.2020.08.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
143 Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019;5:2669-87. [DOI: 10.1021/acsbiomaterials.8b01173] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
144 Mansouri A, Beyn ME, Pancholi A, Chow CT, Wang R, Boutet A, Elias GJB, Germann J, Loh A, Voisin MR, Lozano AM, Chiocca EA, Vogelbaum MA, Zadeh G. Evolution of the Neurosurgeon's Role in Clinical Trials for Glioblastoma: A Systematic Overview of the Clinicaltrials.Gov Database. Neurosurgery 2021;89:196-203. [PMID: 33989408 DOI: 10.1093/neuros/nyab169] [Reference Citation Analysis]
145 Hosseini MM, Karimi A, Behroozaghdam M, Javidi MA, Ghiasvand S, Bereimipour A, Aryan H, Nassiri F, Jangholi E. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line. World Neurosurg 2017;108:94-100. [PMID: 28867321 DOI: 10.1016/j.wneu.2017.08.133] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
146 King JL, Benhabbour SR. Glioblastoma Multiforme-A Look at the Past and a Glance at the Future. Pharmaceutics 2021;13:1053. [PMID: 34371744 DOI: 10.3390/pharmaceutics13071053] [Reference Citation Analysis]
147 Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 2016;22:1177-93. [PMID: 26685681 DOI: 10.2174/1381612822666151221150733] [Cited by in Crossref: 125] [Cited by in F6Publishing: 105] [Article Influence: 20.8] [Reference Citation Analysis]
148 Li TF, Li K, Wang C, Liu X, Wen Y, Xu YH, Zhang Q, Zhao QY, Shao M, Li YZ, Han M, Komatsu N, Zhao L, Chen X. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J Control Release 2017;268:128-46. [PMID: 29051064 DOI: 10.1016/j.jconrel.2017.10.024] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 5.6] [Reference Citation Analysis]
149 Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts. Mol Cancer Ther 2018;17:1207-16. [PMID: 29549168 DOI: 10.1158/1535-7163.MCT-17-1267] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
150 Denner TC, Hoenke S, Kraft O, Deigner H, Al-harrasi A, Csuk R. Hydroxyethylamide substituted triterpenoic acids hold good cytotoxicity for human tumor cells. Results in Chemistry 2022. [DOI: 10.1016/j.rechem.2022.100371] [Reference Citation Analysis]
151 Guo J, Schlich M, Cryan JF, O'driscoll CM. Targeted Drug Delivery via Folate Receptors for the Treatment of Brain Cancer: Can the Promise Deliver? Journal of Pharmaceutical Sciences 2017;106:3413-20. [DOI: 10.1016/j.xphs.2017.08.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
152 Krętowski R, Kusaczuk M, Naumowicz M, Cechowska-Pasko M. The Pro-Apoptotic Effect of Silica Nanoparticles Depends on Their Size and Dose, as Well as the Type of Glioblastoma Cells. Int J Mol Sci 2021;22:3564. [PMID: 33808150 DOI: 10.3390/ijms22073564] [Reference Citation Analysis]
153 Curley CT, Mead BP, Negron K, Kim N, Garrison WJ, Miller GW, Kingsmore KM, Thim EA, Song J, Munson JM, Klibanov AL, Suk JS, Hanes J, Price RJ. Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Sci Adv 2020;6:eaay1344. [PMID: 32494662 DOI: 10.1126/sciadv.aay1344] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
154 Lyon JG, Mokarram N, Saxena T, Carroll SL, Bellamkonda RV. Engineering challenges for brain tumor immunotherapy. Adv Drug Deliv Rev 2017;114:19-32. [PMID: 28625831 DOI: 10.1016/j.addr.2017.06.006] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 8.4] [Reference Citation Analysis]
155 Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. Nanomaterials (Basel) 2019;9:E105. [PMID: 30654536 DOI: 10.3390/nano9010105] [Cited by in Crossref: 45] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
156 Hart E, Odé Z, Derieppe M, Groenink L, Heymans MW, Otten R, Lequin M, Janssens G, Hoving E, van Vuurden D. Blood-Brain Barrier Permeability Following Conventional Photon Radiotherapy - A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Clinical and Translational Radiation Oncology 2022. [DOI: 10.1016/j.ctro.2022.04.013] [Reference Citation Analysis]
157 Pituch KC, Miska J, Krenciute G, Panek WK, Li G, Rodriguez-Cruz T, Wu M, Han Y, Lesniak MS, Gottschalk S, Balyasnikova IV. Adoptive Transfer of IL13Rα2-Specific Chimeric Antigen Receptor T Cells Creates a Pro-inflammatory Environment in Glioblastoma. Mol Ther 2018;26:986-95. [PMID: 29503195 DOI: 10.1016/j.ymthe.2018.02.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
158 Song C, Ouyang Z, Gao Y, Guo H, Wang S, Wang D, Xia J, Shen M, Shi X. Modular design of multifunctional core-shell tecto dendrimers complexed with copper(II) for MR imaging-guided chemodynamic therapy of orthotopic glioma. Nano Today 2021;41:101325. [DOI: 10.1016/j.nantod.2021.101325] [Reference Citation Analysis]
159 Magalhães M, Manadas B, Efferth T, Cabral C. Chemoprevention and therapeutic role of essential oils and phenolic compounds: Modeling tumor microenvironment in glioblastoma. Pharmacol Res 2021;169:105638. [PMID: 33933637 DOI: 10.1016/j.phrs.2021.105638] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
160 Stephen ZR, Chiarelli PA, Revia RA, Wang K, Kievit F, Dayringer C, Jeon M, Ellenbogen R, Zhang M. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model. Cancer Res 2019;79:4776-86. [PMID: 31331912 DOI: 10.1158/0008-5472.CAN-18-2998] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
161 Usama SM, Park GK, Nomura S, Baek Y, Choi HS, Burgess K. Role of Albumin in Accumulation and Persistence of Tumor-Seeking Cyanine Dyes. Bioconjug Chem 2020;31:248-59. [PMID: 31909595 DOI: 10.1021/acs.bioconjchem.9b00771] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
162 Wang X, Tian Y, Liao X, Tang Y, Ni Q, Sun J, Zhao Y, Zhang J, Teng Z, Lu G. Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. J Colloid Interface Sci 2020;565:483-93. [PMID: 31982715 DOI: 10.1016/j.jcis.2020.01.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
163 Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of Cancer Stem Cells in Triple-Negative Breast Cancer and Brain Metastasis: Challenges and Solutions. Cancers (Basel) 2020;12:E2122. [PMID: 32751846 DOI: 10.3390/cancers12082122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
164 Miretti M, Tempesti TC, Prucca CG, Baumgartner MT. Zn phthalocyanines loaded into liposomes: Characterization and enhanced performance of photodynamic activity on glioblastoma cells. Bioorg Med Chem 2020;28:115355. [PMID: 32067893 DOI: 10.1016/j.bmc.2020.115355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
165 Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. Nanomaterials (Basel) 2020;11:E2. [PMID: 33374979 DOI: 10.3390/nano11010002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
166 Wang X, Zhang Q, Lv L, Fu J, Jiang Y, Xin H, Yao Q. Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Deliv 2017;24:1401-9. [PMID: 28933201 DOI: 10.1080/10717544.2017.1378940] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
167 Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020;10:739. [PMID: 32582530 DOI: 10.3389/fonc.2020.00739] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
168 Colclough N, Chen K, Johnström P, Fridén M, Mcginnity DF. Building on the success of osimertinib: achieving CNS exposure in oncology drug discovery. Drug Discovery Today 2019;24:1067-73. [DOI: 10.1016/j.drudis.2019.01.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
169 Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2021;330:1152-67. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
170 Wang P, Bao W, Liu X, Xi W. LncRNA miR143HG inhibits the proliferation of glioblastoma cells by sponging miR-504. Int J Neurosci 2021;:1-9. [PMID: 33461388 DOI: 10.1080/00207454.2020.1865950] [Reference Citation Analysis]
171 Helal DO, Rouatbi N, Han S, Tzu-Wen Wang J, Walters AA, Abdel-Mottaleb MMA, Kamel AO, Geneidi AS, Awad GAS, Al-Jamal KT. A Natural Protein Based Platform for the Delivery of Temozolomide Acid to Glioma Cells. Eur J Pharm Biopharm 2021:S0939-6411(21)00262-9. [PMID: 34678408 DOI: 10.1016/j.ejpb.2021.10.007] [Reference Citation Analysis]
172 Wang D, Wang C, Wang L, Chen Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. Drug Deliv 2019;26:551-65. [PMID: 31928355 DOI: 10.1080/10717544.2019.1616235] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 18.0] [Reference Citation Analysis]
173 Patel B, Yang PH, Kim AH. The effect of thermal therapy on the blood-brain barrier and blood-tumor barrier. Int J Hyperthermia 2020;37:35-43. [PMID: 32672118 DOI: 10.1080/02656736.2020.1783461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
174 Wang J, Xiao N, Zhang Y, Zhao C, Guo X, Lu L. Mfsd2a-based pharmacological strategies for drug delivery across the blood–brain barrier. Pharmacological Research 2016;104:124-31. [DOI: 10.1016/j.phrs.2015.12.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
175 Meng J, Agrahari V, Youm I. Advances in Targeted Drug Delivery Approaches for the Central Nervous System Tumors: The Inspiration of Nanobiotechnology. J Neuroimmune Pharmacol 2017;12:84-98. [DOI: 10.1007/s11481-016-9698-1] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
176 Randall EC, Lopez BGC, Peng S, Regan MS, Abdelmoula WM, Basu SS, Santagata S, Yoon H, Haigis MC, Agar JN, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR. Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Res 2020;80:1258-67. [PMID: 31767628 DOI: 10.1158/0008-5472.CAN-19-0638] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
177 Wulkersdorfer B, Bauer M, Karch R, Stefanits H, Philippe C, Weber M, Czech T, Menet MC, Declèves X, Hainfellner JA, Preusser M, Hacker M, Zeitlinger M, Müller M, Langer O. Assessment of brain delivery of a model ABCB1/ABCG2 substrate in patients with non-contrast-enhancing brain tumors with positron emission tomography. EJNMMI Res 2019;9:110. [PMID: 31832814 DOI: 10.1186/s13550-019-0581-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
178 Zeng A, Ye T, Cao D, Huang X, Yang Y, Chen X, Xie Y, Yao S, Zhao C. Identify a Blood-Brain Barrier Penetrating Drug-TNB using Zebrafish Orthotopic Glioblastoma Xenograft Model. Sci Rep 2017;7:14372. [PMID: 29085081 DOI: 10.1038/s41598-017-14766-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
179 Rechberger JS, Thiele F, Daniels DJ. Status Quo and Trends of Intra-Arterial Therapy for Brain Tumors: A Bibliometric and Clinical Trials Analysis. Pharmaceutics 2021;13:1885. [PMID: 34834300 DOI: 10.3390/pharmaceutics13111885] [Reference Citation Analysis]
180 Zwain T, Alder JE, Sabagh B, Shaw A, Burrow AJ, Singh KK. Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. Mater Sci Eng C Mater Biol Appl 2021;121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
181 Liu J, Zhang Y, Chen T, Chen H, He H, Jin T, Wang J, Ke Y. Environmentally Self-Adaptative Nanocarriers Suppress Glioma Proliferation and Stemness via Codelivery of shCD163 and Doxorubicin. ACS Appl Mater Interfaces 2020;12:52354-69. [PMID: 33196179 DOI: 10.1021/acsami.0c14288] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
182 Zhao X, Chen R, Liu M, Feng J, Chen J, Hu K. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy. Acta Pharm Sin B 2017;7:541-53. [PMID: 28924548 DOI: 10.1016/j.apsb.2017.07.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 8.2] [Reference Citation Analysis]
183 Smith DA, Rowland M. Intracellular and Intraorgan Concentrations of Small Molecule Drugs: Theory, Uncertainties in Infectious Diseases and Oncology, and Promise. Drug Metab Dispos 2019;47:665-72. [PMID: 30910784 DOI: 10.1124/dmd.118.085951] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
184 You Y, Yang L, He L, Chen T. Tailored mesoporous silica nanosystem with enhanced permeability of the blood-brain barrier to antagonize glioblastoma. J Mater Chem B 2016;4:5980-90. [PMID: 32263487 DOI: 10.1039/c6tb01329e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 3] [Article Influence: 3.8] [Reference Citation Analysis]
185 Shi G, Zhong M, Ye F, Zhang X. Low-frequency HIFU induced cancer immunotherapy: tempting challenges and potential opportunities. Cancer Biol Med 2019;16:714-28. [PMID: 31908890 DOI: 10.20892/j.issn.2095-3941.2019.0232] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
186 Mahmoud BS, AlAmri AH, McConville C. Polymeric Nanoparticles for the Treatment of Malignant Gliomas. Cancers (Basel) 2020;12:E175. [PMID: 31936740 DOI: 10.3390/cancers12010175] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
187 Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS Appl Mater Interfaces 2022. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Perez JG, Tran NL, Rosenblum MG, Schneider CS, Connolly NP, Kim AJ, Woodworth GF, Winkles JA. The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2016;35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
189 Mooney J, Bernstock JD, Ilyas A, Ibrahim A, Yamashita D, Markert JM, Nakano I. Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurg 2019;129:90-100. [PMID: 31152883 DOI: 10.1016/j.wneu.2019.05.205] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
190 Wu SK, Tsai CL, Huang Y, Hynynen K. Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics 2020;13:E15. [PMID: 33374205 DOI: 10.3390/pharmaceutics13010015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
191 Jena L, McErlean E, McCarthy H. Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res 2020;10:304-18. [PMID: 31728942 DOI: 10.1007/s13346-019-00679-2] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 16.5] [Reference Citation Analysis]
192 Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018;9:22194-219. [PMID: 29774132 DOI: 10.18632/oncotarget.25175] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
193 Li G, Mei S, Cheng J, Wu T, Luo J. Haliotis discus discus Sialic Acid-Binding Lectin Reduces the Oncolytic Vaccinia Virus Induced Toxicity in a Glioblastoma Mouse Model. Mar Drugs 2018;16:E141. [PMID: 29701680 DOI: 10.3390/md16050141] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
194 Peng Y, Lu J, Li R, Zhao Y, Hai L, Guo L, Wu Y. Glucose and Triphenylphosphonium Co-Modified Redox-Sensitive Liposomes to Synergistically Treat Glioma with Doxorubicin and Lonidamine. ACS Appl Mater Interfaces 2021;13:26682-93. [PMID: 34061501 DOI: 10.1021/acsami.1c02404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
195 Gao Z, Chen Y, Cai X, Xu R. Predict drug permeability to blood-brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics 2017;33:901-8. [PMID: 27993785 DOI: 10.1093/bioinformatics/btw713] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
196 Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021;26:2262. [PMID: 33919694 DOI: 10.3390/molecules26082262] [Reference Citation Analysis]
197 Llaguno-Munive M, Romero-Piña M, Serrano-Bello J, Medina LA, Uribe-Uribe N, Salazar AM, Rodríguez-Dorantes M, Garcia-Lopez P. Mifepristone Overcomes Tumor Resistance to Temozolomide Associated with DNA Damage Repair and Apoptosis in an Orthotopic Model of Glioblastoma. Cancers (Basel) 2018;11:E16. [PMID: 30583528 DOI: 10.3390/cancers11010016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
198 Gong Q, Gao X, Liu W, Hong T, Chen C. Drug-Loaded Microbubbles Combined with Ultrasound for Thrombolysis and Malignant Tumor Therapy. Biomed Res Int 2019;2019:6792465. [PMID: 31662987 DOI: 10.1155/2019/6792465] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
199 Niu W, Xiao Q, Wang X, Zhu J, Li J, Liang X, Peng Y, Wu C, Lu R, Pan Y, Luo J, Zhong X, He H, Rong Z, Fan JB, Wang Y. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy. Nano Lett 2021;21:1484-92. [PMID: 33475372 DOI: 10.1021/acs.nanolett.0c04753] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
200 Hu Y, Hammarlund-Udenaes M. Perspectives on Nanodelivery to the Brain: Prerequisites for Successful Brain Treatment. Mol Pharm 2020;17:4029-39. [PMID: 33064009 DOI: 10.1021/acs.molpharmaceut.0c00881] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
201 Li M, Luo Z, Xia Z, Shen X, Cai K. Time-sequenced drug delivery approaches towards effective chemotherapeutic treatment of glioma. Mater Horiz 2017;4:977-96. [DOI: 10.1039/c7mh00342k] [Cited by in Crossref: 10] [Article Influence: 2.0] [Reference Citation Analysis]
202 Guerit S, Liebner S. Blood Vessels in the Brain: A Signaling Hub in Brain Tumor Inflammation. In: Lyck R, Enzmann G, editors. The Blood Brain Barrier and Inflammation. Cham: Springer International Publishing; 2017. pp. 253-77. [DOI: 10.1007/978-3-319-45514-3_11] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
203 Kunigelis KE, Vogelbaum MA. Therapeutic Delivery to Central Nervous System. Neurosurg Clin N Am 2021;32:291-303. [PMID: 33781509 DOI: 10.1016/j.nec.2020.12.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
204 Simöes Da Gama C, Morin-Brureau M. Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood-Brain Barrier. Front Cell Neurosci 2022;16:863836. [PMID: 35755780 DOI: 10.3389/fncel.2022.863836] [Reference Citation Analysis]
205 Liguori L, Pastorino F, Rousset X, Alfano S, Cortes S, Emionite L, Daga A, Ponzoni M, Lenormand JL. Anti-Tumor Effects of Bak-Proteoliposomes against Glioblastoma. Molecules 2015;20:15893-909. [PMID: 26340616 DOI: 10.3390/molecules200915893] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
206 Bai Y, Wang T, Zhang S, Chen X, He C. Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. Sci China Technol Sci . [DOI: 10.1007/s11431-021-1961-y] [Reference Citation Analysis]
207 Arvold ND, Lee EQ, Mehta MP, Margolin K, Alexander BM, Lin NU, Anders CK, Soffietti R, Camidge DR, Vogelbaum MA, Dunn IF, Wen PY. Updates in the management of brain metastases. Neuro Oncol. 2016;18:1043-1065. [PMID: 27382120 DOI: 10.1093/neuonc/now127] [Cited by in Crossref: 118] [Cited by in F6Publishing: 99] [Article Influence: 23.6] [Reference Citation Analysis]
208 Di L, Maiseyeu A. Low-density lipoprotein nanomedicines: mechanisms of targeting, biology, and theranostic potential. Drug Deliv 2021;28:408-21. [PMID: 33594923 DOI: 10.1080/10717544.2021.1886199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
209 Lundy DJ, Lee KJ, Peng IC, Hsu CH, Lin JH, Chen KH, Tien YW, Hsieh PCH. Inducing a Transient Increase in Blood-Brain Barrier Permeability for Improved Liposomal Drug Therapy of Glioblastoma Multiforme. ACS Nano 2019;13:97-113. [PMID: 30532951 DOI: 10.1021/acsnano.8b03785] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
210 Thakor J, Ahadian S, Niakan A, Banton E, Nasrollahi F, Hasani-Sadrabadi MM, Khademhosseini A. Engineered Hydrogels for Brain Tumor Culture and Therapy. Biodes Manuf 2020;3:203-26. [PMID: 32754347 DOI: 10.1007/s42242-020-00084-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
211 Altshuler DB, Kadiyala P, Nuñez FJ, Nuñez FM, Carney S, Alghamri MS, Garcia-Fabiani MB, Asad AS, Nicola Candia AJ, Candolfi M, Lahann J, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opin Biol Ther 2020;20:305-17. [PMID: 31959027 DOI: 10.1080/14712598.2020.1713085] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
212 Schooneveldt G, Dobšíček Trefná H, Persson M, de Reijke TM, Blomgren K, Kok HP, Crezee H. Hyperthermia Treatment Planning Including Convective Flow in Cerebrospinal Fluid for Brain Tumour Hyperthermia Treatment Using a Novel Dedicated Paediatric Brain Applicator. Cancers (Basel) 2019;11:E1183. [PMID: 31443246 DOI: 10.3390/cancers11081183] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
213 Yu W, Ma Y, Hou W, Wang F, Cheng W, Qiu F, Wu P, Zhang G. Identification of Immune-Related lncRNA Prognostic Signature and Molecular Subtypes for Glioblastoma. Front Immunol 2021;12:706936. [PMID: 34899682 DOI: 10.3389/fimmu.2021.706936] [Reference Citation Analysis]
214 Strain SK, Groves MD, Olino KL, Emmett MR. Measurement of 2-hydroxyglutarate enantiomers in serum by chiral gas chromatography-tandem mass spectrometry and its application as a biomarker for IDH mutant gliomas. Clinical Mass Spectrometry 2020;15:16-24. [DOI: 10.1016/j.clinms.2019.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
215 Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. J Control Release 2016;227:23-37. [PMID: 26892752 DOI: 10.1016/j.jconrel.2016.02.026] [Cited by in Crossref: 130] [Cited by in F6Publishing: 121] [Article Influence: 21.7] [Reference Citation Analysis]
216 Zalles M, Smith N, Saunders D, Saran T, Thomas L, Gulej R, Lerner M, Fung KM, Chung J, Hwang K, Jin J, Battiste J, Towner RA. Assessment of an scFv Antibody Fragment Against ELTD1 in a G55 Glioblastoma Xenograft Model. Transl Oncol 2020;13:100737. [PMID: 32208341 DOI: 10.1016/j.tranon.2019.12.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
217 Liao KF, Chiu TL, Chang SF, Wang MJ, Chiu SC. Hispolon Induces Apoptosis, Suppresses Migration and Invasion of Glioblastoma Cells and Inhibits GBM Xenograft Tumor Growth In Vivo. Molecules 2021;26:4497. [PMID: 34361649 DOI: 10.3390/molecules26154497] [Reference Citation Analysis]
218 Baranyai Z, Biri-Kovács B, Krátký M, Szeder B, Debreczeni ML, Budai J, Kovács B, Horváth L, Pári E, Németh Z, Cervenak L, Zsila F, Méhes E, Kiss É, Vinšová J, Bősze S. Cellular Internalization and Inhibition Capacity of New Anti-Glioma Peptide Conjugates: Physicochemical Characterization and Evaluation on Various Monolayer- and 3D-Spheroid-Based in Vitro Platforms. J Med Chem 2021;64:2982-3005. [PMID: 33719423 DOI: 10.1021/acs.jmedchem.0c01399] [Reference Citation Analysis]
219 Wang S, An J, Dong W, Wang X, Sheng J, Jia Y, He Y, Ma X, Wang J, Yu D, Jia X, Wang B, Yu W, Liu K, Zhao Y, Wu Y, Zhu W, Pan Y. Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway. Int J Nanomedicine 2020;15:7951-65. [PMID: 33116511 DOI: 10.2147/IJN.S213079] [Reference Citation Analysis]
220 Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology 2022;20:284. [PMID: 35710493 DOI: 10.1186/s12951-022-01479-6] [Reference Citation Analysis]
221 Pandey S, Lee MC, Lim JW, Choung YH, Jang KJ, Park SB, Kim JE, Chung JH, Garg P. SHMT1 siRNA-Loaded hyperosmotic nanochains for blood-brain/tumor barrier post-transmigration therapy. Biomaterials 2021;281:121359. [PMID: 34998172 DOI: 10.1016/j.biomaterials.2021.121359] [Reference Citation Analysis]
222 Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020;10:1355-72. [PMID: 31938069 DOI: 10.7150/thno.38147] [Cited by in Crossref: 84] [Cited by in F6Publishing: 69] [Article Influence: 42.0] [Reference Citation Analysis]
223 Wu H, Wang C, Liu Y, Yang C, Liang X, Zhang X, Li X. miR-138-5p suppresses glioblastoma cell viability and leads to cell cycle arrest by targeting cyclin D3. Oncol Lett 2020;20:264. [PMID: 32989398 DOI: 10.3892/ol.2020.12127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
224 McCully M, Sanchez-Navarro M, Teixido M, Giralt E. Peptide Mediated Brain Delivery of Nano- and Submicroparticles: A Synergistic Approach. Curr Pharm Des 2018;24:1366-76. [PMID: 29205110 DOI: 10.2174/1381612824666171201115126] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
225 Sales TT, Resende FF, Chaves NL, Titze-De-Almeida SS, Báo SN, Brettas ML, Titze-De-Almeida R. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide. Oncol Lett 2016;12:2581-9. [PMID: 27698831 DOI: 10.3892/ol.2016.4992] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
226 Rodriguez A, Brown C, Badie B. Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res. 2017;187:93-102. [PMID: 28755873 DOI: 10.1016/j.trsl.2017.07.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
227 Khan MB, Ruggieri R, Jamil E, Tran NL, Gonzalez C, Mugridge N, Gao S, MacDiarmid J, Brahmbhatt H, Sarkaria JN, Boockvar J, Symons M. Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma. Mol Med 2021;27:28. [PMID: 33765907 DOI: 10.1186/s10020-021-00293-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
228 Pohl-Guimarães F, Yang C, Dyson KA, Wildes TJ, Drake J, Huang J, Flores C, Sayour EJ, Mitchell DA. RNA-Modified T Cells Mediate Effective Delivery of Immunomodulatory Cytokines to Brain Tumors. Mol Ther 2019;27:837-49. [PMID: 30448196 DOI: 10.1016/j.ymthe.2018.10.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
229 Papachristodoulou A, Signorell RD, Werner B, Brambilla D, Luciani P, Cavusoglu M, Grandjean J, Silginer M, Rudin M, Martin E, Weller M, Roth P, Leroux JC. Chemotherapy sensitization of glioblastoma by focused ultrasound-mediated delivery of therapeutic liposomes. J Control Release 2019;295:130-9. [PMID: 30537486 DOI: 10.1016/j.jconrel.2018.12.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
230 Theofanis TN, Rochani AK, Schmidt RF, Lang MJ, Stricsek GP, Rosenwasser RH, Sharan AD, Kaushal G, Iacovitti L. Sphenopalatine Ganglion Stimulation Upregulates Transport of Temozolomide across the Blood-Brain Barrier. Sci Pharm 2020;88:40. [DOI: 10.3390/scipharm88030040] [Reference Citation Analysis]
231 Green AL, Flannery P, Hankinson TC, O'Neill B, Amani V, DeSisto J, Knox A, Chatwin H, Lemma R, Hoffman LM, Mulcahy Levy J, Raybin J, Hemenway M, Gilani A, Koschmann C, Dahl N, Handler M, Pierce A, Venkataraman S, Foreman N, Vibhakar R, Wempe MF, Dorris K. Preclinical and clinical investigation of intratumoral chemotherapy pharmacokinetics in DIPG using gemcitabine. Neurooncol Adv 2020;2:vdaa021. [PMID: 32642682 DOI: 10.1093/noajnl/vdaa021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
232 Shapira-furman T, Serra R, Gorelick N, Doglioli M, Tagliaferri V, Cecia A, Peters M, Kumar A, Rottenberg Y, Langer R, Brem H, Tyler B, Domb AJ. Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer. Journal of Controlled Release 2019;295:93-101. [DOI: 10.1016/j.jconrel.2018.12.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
233 Traxl A, Mairinger S, Filip T, Sauberer M, Stanek J, Poschner S, Jäger W, Zoufal V, Novarino G, Tournier N, Bauer M, Wanek T, Langer O. Inhibition of ABCB1 and ABCG2 at the Mouse Blood-Brain Barrier with Marketed Drugs To Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [11C]erlotinib. Mol Pharm 2019;16:1282-93. [PMID: 30694684 DOI: 10.1021/acs.molpharmaceut.8b01217] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
234 Gao S, Tian H, Xing Z, Zhang D, Guo Y, Guo Z, Zhu X, Chen X. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. J Control Release 2016;243:357-69. [PMID: 27794494 DOI: 10.1016/j.jconrel.2016.10.027] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 7.3] [Reference Citation Analysis]
235 Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021;14:99. [PMID: 33525329 DOI: 10.3390/ph14020099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
236 Cai X, Sughrue ME. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity. Oncotarget 2018;9:9540-54. [PMID: 29507709 DOI: 10.18632/oncotarget.23476] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 6.8] [Reference Citation Analysis]
237 Liu R, Jia W, Wang Y, Hu C, Yu W, Huang Y, Wang L, Gao H. Glymphatic System and Subsidiary Pathways Drive Nanoparticles Away from the Brain. Research 2022;2022:1-18. [DOI: 10.34133/2022/9847612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
238 Rizzuto MA, Dal Magro R, Barbieri L, Pandolfi L, Sguazzini-Viscontini A, Truffi M, Salvioni L, Corsi F, Colombo M, Re F, Prosperi D. H-Ferritin nanoparticle-mediated delivery of antibodies across a BBB in vitro model for treatment of brain malignancies. Biomater Sci 2021;9:2032-42. [PMID: 33544109 DOI: 10.1039/d0bm01726d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
239 Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020;15:2563-82. [PMID: 32368041 DOI: 10.2147/IJN.S243223] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
240 D'Ammando A, Raspagliesi L, Gionso M, Franzini A, Porto E, Di Meco F, Durando G, Pellegatta S, Prada F. Sonodynamic Therapy for the Treatment of Intracranial Gliomas. J Clin Med 2021;10:1101. [PMID: 33800821 DOI: 10.3390/jcm10051101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
241 Hong P, Kudulaiti N, Wu S, Nie J, Zhuang D. Tumor treating fields: a comprehensive overview of the underlying molecular mechanism. Expert Rev Mol Diagn 2021;:1-10. [PMID: 34883030 DOI: 10.1080/14737159.2022.2017283] [Reference Citation Analysis]
242 de Gooijer MC, Buil LCM, Beijnen JH, van Tellingen O. ATP-binding cassette transporters limit the brain penetration of Wee1 inhibitors. Invest New Drugs 2018;36:380-7. [DOI: 10.1007/s10637-017-0539-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
243 Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2019;555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
244 Qamar SA, Asgher M, Khalid N, Sadaf M. Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatalysis and Agricultural Biotechnology 2019;22:101388. [DOI: 10.1016/j.bcab.2019.101388] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
245 Prashanth A, Donaghy H, Stoner SP, Hudson AL, Wheeler HR, Diakos CI, Howell VM, Grau GE, McKelvey KJ. Are In Vitro Human Blood-Brain-Tumor-Barriers Suitable Replacements for In Vivo Models of Brain Permeability for Novel Therapeutics? Cancers (Basel) 2021;13:955. [PMID: 33668807 DOI: 10.3390/cancers13050955] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
246 Veldhuijzen van Zanten SEM, De Witt Hamer PC, van Dongen GAMS. Brain Access of Monoclonal Antibodies as Imaged and Quantified by 89Zr-Antibody PET: Perspectives for Treatment of Brain Diseases. J Nucl Med 2019;60:615-6. [PMID: 30737301 DOI: 10.2967/jnumed.118.220939] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
247 Caragher S, Chalmers AJ, Gomez-Roman N. Glioblastoma's Next Top Model: Novel Culture Systems for Brain Cancer Radiotherapy Research. Cancers (Basel) 2019;11:E44. [PMID: 30621226 DOI: 10.3390/cancers11010044] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
248 Anastasiadis P, Gandhi D, Guo Y, Ahmed AK, Bentzen SM, Arvanitis C, Woodworth GF. Localized blood-brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound. Proc Natl Acad Sci U S A 2021;118:e2103280118. [PMID: 34504017 DOI: 10.1073/pnas.2103280118] [Reference Citation Analysis]
249 Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis Analysis and Validation of m6A Signature and Tumor Immune Microenvironment in Glioma. Front Oncol 2020;10:541401. [PMID: 33123464 DOI: 10.3389/fonc.2020.541401] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
250 Sewing ACP, Lagerweij T, van Vuurden DG, Meel MH, Veringa SJE, Carcaboso AM, Gaillard PJ, Peter Vandertop W, Wesseling P, Noske D, Kaspers GJL, Hulleman E. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma. J Neurosurg Pediatr 2017;19:518-30. [PMID: 28291423 DOI: 10.3171/2016.9.PEDS16152] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
251 Stewart TS, Nagesetti A, Guduru R, Liang P, Stimphil E, Hadjikhani A, Salgueiro L, Horstmyer J, Cai R, Schally A, Khizroev S. Magnetoelectric nanoparticles for delivery of antitumor peptides into glioblastoma cells by magnetic fields. Nanomedicine (Lond) 2018;13:423-38. [PMID: 29345190 DOI: 10.2217/nnm-2017-0300] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
252 Li YJ, Wu JY, Liu J, Qiu X, Xu W, Tang T, Xiang DX. From blood to brain: blood cell-based biomimetic drug delivery systems. Drug Deliv 2021;28:1214-25. [PMID: 34142628 DOI: 10.1080/10717544.2021.1937384] [Reference Citation Analysis]
253 Nwagwu CD, Immidisetti AV, Jiang MY, Adeagbo O, Adamson DC, Carbonell AM. Convection Enhanced Delivery in the Setting of High-Grade Gliomas. Pharmaceutics 2021;13:561. [PMID: 33921157 DOI: 10.3390/pharmaceutics13040561] [Reference Citation Analysis]
254 Moura RP, Martins C, Pinto S, Sousa F, Sarmento B. Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opin Drug Deliv 2019;16:271-85. [PMID: 30767695 DOI: 10.1080/17425247.2019.1583205] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
255 Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 2018;135:311-36. [PMID: 29411111 DOI: 10.1007/s00401-018-1815-1] [Cited by in Crossref: 309] [Cited by in F6Publishing: 266] [Article Influence: 77.3] [Reference Citation Analysis]
256 Teleanu RI, Preda MD, Niculescu A, Vladâcenco O, Radu CI, Grumezescu AM, Teleanu DM. Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022;14:987. [DOI: 10.3390/pharmaceutics14050987] [Reference Citation Analysis]
257 Ziegler J, Bastian A, Lerner M, Bailey-Downs L, Saunders D, Smith N, Sutton J, Battiste JD, Ihnat MA, Gangjee A, Towner RA. AG488 as a therapy against gliomas. Oncotarget 2017;8:71833-44. [PMID: 29069750 DOI: 10.18632/oncotarget.18284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
258 Su B, Wang R, Xie Z, Ruan H, Li J, Xie C, Lu W, Wang J, Wang D, Liu M. Effect of Retro-Inverso Isomer of Bradykinin on Size-Dependent Penetration of Blood-Brain Tumor Barrier. Small 2018;14. [PMID: 29292579 DOI: 10.1002/smll.201702331] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
259 Xu D, Yu J, Gao G, Lu G, Zhang Y, Ma P. LncRNA DANCR functions as a competing endogenous RNA to regulate RAB1A expression by sponging miR-634 in glioma. Biosci Rep 2018;38:BSR20171664. [PMID: 29301870 DOI: 10.1042/BSR20171664] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
260 Wang C, Li K, Li T, Chen Z, Wen Y, Liu X, Jia X, Zhang Y, Xu Y, Han M, Komatsu N, Zhao L, Chen X. Monocyte-mediated chemotherapy drug delivery in glioblastoma. Nanomedicine (Lond) 2018;13:157-78. [PMID: 29173008 DOI: 10.2217/nnm-2017-0266] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
261 Sardoiwala MN, Kaundal B, Roy Choudhury S. Development of Engineered Nanoparticles Expediting Diagnostic and Therapeutic Applications Across Blood–Brain Barrier. Handbook of Nanomaterials for Industrial Applications. Elsevier; 2018. pp. 696-709. [DOI: 10.1016/b978-0-12-813351-4.00038-9] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
262 Ebrahimi Z, Talaei S, Aghamiri S, Goradel NH, Jafarpour A, Negahdari B. Overcoming the blood–brain barrier in neurodegenerative disorders and brain tumours. IET nanobiotechnol 2020;14:441-8. [DOI: 10.1049/iet-nbt.2019.0351] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
263 Torres A, Vargas Y, Uribe D, Carrasco C, Torres C, Rocha R, Oyarzún C, San Martín R, Quezada C. Pro-apoptotic and anti-angiogenic properties of the α /β-thujone fraction from Thuja occidentalis on glioblastoma cells. J Neurooncol 2016;128:9-19. [PMID: 26900077 DOI: 10.1007/s11060-016-2076-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
264 Cen P, Zhou Y, Cui C, Wei Y, Cheng Z, Wu S, Zhang H, Tian M. Optical molecular imaging and theranostics in neurological diseases based on aggregation-induced emission luminogens. Eur J Nucl Med Mol Imaging 2022. [PMID: 35781601 DOI: 10.1007/s00259-022-05894-7] [Reference Citation Analysis]
265 Ersoz M, Erdemir A, Derman S, Arasoglu T, Mansuroglu B. Quercetin-loaded nanoparticles enhance cytotoxicity and antioxidant activity on C6 glioma cells. Pharm Dev Technol 2020;25:757-66. [PMID: 32192406 DOI: 10.1080/10837450.2020.1740933] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
266 Roberts NB, Wadajkar AS, Winkles JA, Davila E, Kim AJ, Woodworth GF. Repurposing platinum-based chemotherapies for multi-modal treatment of glioblastoma. Oncoimmunology 2016;5:e1208876. [PMID: 27757301 DOI: 10.1080/2162402X.2016.1208876] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
267 Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D, Regan MS, Gupta SK, Mladek AC, Carlson BL, Johnson AJ, Lu FK, Xie XS, Joughin BA, Reddy RJ, Peng S, Abdelmoula WM, Jackson PR, Kolluri A, Kellersberger KA, Agar JN, Lauffenburger DA, Swanson KR, Tran NL, Elmquist WF, White FM, Sarkaria JN, Agar NYR. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun 2018;9:4904. [PMID: 30464169 DOI: 10.1038/s41467-018-07334-3] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
268 de Gooijer MC, Zhang P, Buil LCM, Çitirikkaya CH, Thota N, Beijnen JH, van Tellingen O. Buparlisib is a brain penetrable pan-PI3K inhibitor. Sci Rep 2018;8:10784. [PMID: 30018387 DOI: 10.1038/s41598-018-29062-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
269 Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2019;164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
270 Smith-Cohn M, Davidson C, Colman H, Cohen AL. Challenges of targeting BRAF V600E mutations in adult primary brain tumor patients: a report of two cases. CNS Oncol 2019;8:CNS48. [PMID: 31818130 DOI: 10.2217/cns-2019-0018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
271 Sattiraju A, Xiong X, Pandya DN, Wadas TJ, Xuan A, Sun Y, Jung Y, Sai KKS, Dorsey JF, Li KC, Mintz A. Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3-Targeted Liposomes. Mol Cancer Ther 2017;16:2191-200. [PMID: 28619756 DOI: 10.1158/1535-7163.MCT-16-0907] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
272 Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opinion on Drug Delivery 2019;16:1287-311. [DOI: 10.1080/17425247.2019.1676721] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
273 Wang H, Chao Y, Zhao H, Zhou X, Zhang F, Zhang Z, Li Z, Pan J, Wang J, Chen Q, Liu Z. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS Nano 2022. [PMID: 34978418 DOI: 10.1021/acsnano.1c08120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
274 Kadiyala P, Li D, Nuñez FM, Altshuler D, Doherty R, Kuai R, Yu M, Kamran N, Edwards M, Moon JJ, Lowenstein PR, Castro MG, Schwendeman A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS Nano 2019;13:1365-84. [PMID: 30721028 DOI: 10.1021/acsnano.8b06842] [Cited by in Crossref: 33] [Cited by in F6Publishing: 44] [Article Influence: 11.0] [Reference Citation Analysis]
275 Khosa A, Saha RN, Singhvi G. Drug delivery to the brain. Nanomaterials for Drug Delivery and Therapy. Elsevier; 2019. pp. 461-514. [DOI: 10.1016/b978-0-12-816505-8.00005-9] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
276 Massey SC, Urcuyo JC, Marin BM, Sarkaria JN, Swanson KR. Quantifying Glioblastoma Drug Response Dynamics Incorporating Treatment Sensitivity and Blood Brain Barrier Penetrance From Experimental Data. Front Physiol 2020;11:830. [PMID: 32973540 DOI: 10.3389/fphys.2020.00830] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
277 Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021;22:10118. [PMID: 34576281 DOI: 10.3390/ijms221810118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
278 Esposito CL, Catuogno S, Condorelli G, Ungaro P, de Franciscis V. Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018;9:E529. [PMID: 30384431 DOI: 10.3390/genes9110529] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
279 Bikhezar F, de Kruijff RM, van der Meer AJGM, Torrelo Villa G, van der Pol SMA, Becerril Aragon G, Gasol Garcia A, Narayan RS, de Vries HE, Slotman BJ, Denkova AG, Sminia P. Preclinical evaluation of binimetinib (MEK162) delivered via polymeric nanocarriers in combination with radiation and temozolomide in glioma. J Neurooncol 2020;146:239-46. [PMID: 31875307 DOI: 10.1007/s11060-019-03365-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
280 Hron RJ, Jursic BS, Neumann DM. Synthesis of N-aryl and N-arylcarbamoylamino derivatives of 1,3-diazinane-5-carboxamide and their activity against glioblastoma LN-229 cell line. Bioorganic & Medicinal Chemistry 2016;24:6183-93. [DOI: 10.1016/j.bmc.2016.09.074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
281 Bruinsmann FA, Richter Vaz G, de Cristo Soares Alves A, Aguirre T, Raffin Pohlmann A, Stanisçuaski Guterres S, Sonvico F. Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019;24:E4312. [PMID: 31779126 DOI: 10.3390/molecules24234312] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
282 Jue TR, Mcdonald KL. The challenges associated with molecular targeted therapies for glioblastoma. J Neurooncol 2016;127:427-34. [DOI: 10.1007/s11060-016-2080-6] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 7.5] [Reference Citation Analysis]
283 Hsu JF, Chu SM, Liao CC, Wang CJ, Wang YS, Lai MY, Wang HC, Huang HR, Tsai MH. Nanotechnology and Nanocarrier-Based Drug Delivery as the Potential Therapeutic Strategy for Glioblastoma Multiforme: An Update. Cancers (Basel) 2021;13:E195. [PMID: 33430494 DOI: 10.3390/cancers13020195] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
284 Pottoo FH, Javed MN, Rahman JU, Abu-Izneid T, Khan FA. Targeted delivery of miRNA based therapeuticals in the clinical management of Glioblastoma Multiforme. Semin Cancer Biol 2021;69:391-8. [PMID: 32302695 DOI: 10.1016/j.semcancer.2020.04.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
285 Przystal JM, Hajji N, Khozoie C, Renziehausen A, Zeng Q, Abaitua F, Hajitou A, Suwan K, Want E, Bomalaski J, Szlosarek P, O'Neill K, Crook T, Syed N. Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM. Cell Death Dis 2018;9:1192. [PMID: 30546006 DOI: 10.1038/s41419-018-1195-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
286 Quader S, Liu X, Chen Y, Mi P, Chida T, Ishii T, Miura Y, Nishiyama N, Cabral H, Kataoka K. cRGD peptide-installed epirubicin-loaded polymeric micelles for effective targeted therapy against brain tumors. Journal of Controlled Release 2017;258:56-66. [DOI: 10.1016/j.jconrel.2017.04.033] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 12.4] [Reference Citation Analysis]
287 Gorain B, Choudhury H, Pandey M, Mohd Amin MCI, Singh B, Gupta U, Kesharwani P. Dendrimers as Effective Carriers for the Treatment of Brain Tumor. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Elsevier; 2018. pp. 267-305. [DOI: 10.1016/b978-0-12-812218-1.00010-5] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
288 Anami Y, Otani Y, Xiong W, Ha SYY, Yamaguchi A, Rivera-Caraballo KA, Zhang N, An Z, Kaur B, Tsuchikama K. Homogeneity of antibody-drug conjugates critically impacts the therapeutic efficacy in brain tumors. Cell Rep 2022;39:110839. [PMID: 35613589 DOI: 10.1016/j.celrep.2022.110839] [Reference Citation Analysis]
289 Tedesco AC, Silva EPO, Jayme CC, Piva HL, Franchi LP. Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma. Mater Sci Eng C Mater Biol Appl 2021;123:111984. [PMID: 33812612 DOI: 10.1016/j.msec.2021.111984] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
290 Cen B, Wei Y, Huang W, Teng M, He S, Li J, Wang W, He G, Bai X, Liu X, Yuan Y, Pan X, Ji A. An Efficient Bivalent Cyclic RGD-PIK3CB siRNA Conjugate for Specific Targeted Therapy against Glioblastoma In Vitro and In Vivo. Mol Ther Nucleic Acids 2018;13:220-32. [PMID: 30312846 DOI: 10.1016/j.omtn.2018.09.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
291 Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 2015;15:1311-23. [PMID: 26394701 DOI: 10.1586/14737159.2015.1087315] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
292 Bredlau AL, Motamarry A, Chen C, McCrackin MA, Helke K, Armeson KE, Bynum K, Broome AM, Haemmerich D. Localized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive liposomes. Drug Deliv 2018;25:973-84. [PMID: 29688083 DOI: 10.1080/10717544.2018.1461280] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
293 Velazquez FN, Miretti M, Baumgartner MT, Caputto BL, Tempesti TC, Prucca CG. Effectiveness of ZnPc and of an amine derivative to inactivate Glioblastoma cells by Photodynamic Therapy: an in vitro comparative study. Sci Rep 2019;9:3010. [PMID: 30816179 DOI: 10.1038/s41598-019-39390-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
294 Li Z, Li D, Guo Y, Wang Y, Su W. Evaluation of hepatic drug-metabolism for glioblastoma using liver-brain chip. Biotechnol Lett 2021;43:383-92. [PMID: 33145669 DOI: 10.1007/s10529-020-03043-4] [Reference Citation Analysis]
295 Pruis IJ, van Dongen GAMS, Veldhuijzen van Zanten SEM. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int J Mol Sci 2020;21:E1029. [PMID: 32033160 DOI: 10.3390/ijms21031029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
296 Nordling-david MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, Salomon S, Sharabi S, Levi-kalisman Y, Golomb G, Mardor Y. Liposomal temozolomide drug delivery using convection enhanced delivery. Journal of Controlled Release 2017;261:138-46. [DOI: 10.1016/j.jconrel.2017.06.028] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
297 Jiang Y, Lv L, Shi H, Hua Y, Lv W, Wang X, Xin H, Xu Q. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma. Colloids and Surfaces B: Biointerfaces 2016;147:242-9. [DOI: 10.1016/j.colsurfb.2016.08.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
298 Shu C, Li Q. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol 2020;151:102965. [PMID: 32442903 DOI: 10.1016/j.critrevonc.2020.102965] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
299 Nonaka M, Suzuki-Anekoji M, Nakayama J, Mabashi-Asazuma H, Jarvis DL, Yeh JC, Yamasaki K, Akama TO, Huang CT, Campos AR, Nagaoka M, Sasai T, Kimura-Takagi I, Suwa Y, Yaegashi T, Shibata TK, Sugihara K, Nishizawa-Harada C, Fukuda M, Fukuda MN. Overcoming the blood-brain barrier by Annexin A1-binding peptide to target brain tumours. Br J Cancer 2020;123:1633-43. [PMID: 32921792 DOI: 10.1038/s41416-020-01066-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
300 Melnikov PA, Valikhov MP, Kuznetsov II, Grinenko NF, Sukhinich KK, Simbirtsev AS, Kekelidze ZI, Chekhonin VP. Analysis of the Effect of IL-1β on Blood-Brain Barrier Permeability in M6 Glioma Mouse Model Using Intravital Microscopy. Bull Exp Biol Med 2019;168:118-24. [PMID: 31758381 DOI: 10.1007/s10517-019-04661-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
301 de Gooijer MC, Guillén Navarro M, Bernards R, Wurdinger T, van Tellingen O. An Experimenter's Guide to Glioblastoma Invasion Pathways. Trends Mol Med 2018;24:763-80. [PMID: 30072121 DOI: 10.1016/j.molmed.2018.07.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 9.5] [Reference Citation Analysis]
302 Moura RP, Pacheco C, Pêgo AP, des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release 2020;322:390-400. [PMID: 32247807 DOI: 10.1016/j.jconrel.2020.03.042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
303 Albertini B, Mathieu V, Iraci N, Van Woensel M, Schoubben A, Donnadio A, Greco SM, Ricci M, Temperini A, Blasi P, Wauthoz N. Tumor Targeting by Peptide-Decorated Gold Nanoparticles. Mol Pharmaceutics 2019;16:2430-44. [DOI: 10.1021/acs.molpharmaceut.9b00047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
304 Ruiz-López E, Calatayud-Pérez J, Castells-Yus I, Gimeno-Peribáñez MJ, Mendoza-Calvo N, Morcillo MÁ, Schuhmacher AJ. Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021;14:74. [PMID: 35008238 DOI: 10.3390/cancers14010074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
305 Miao Z, Yu F, Ren Y, Yang J. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway. Int J Mol Sci 2017;18:E72. [PMID: 28054986 DOI: 10.3390/ijms18010072] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
306 De Groof TWM, Mashayekhi V, Fan TS, Bergkamp ND, Sastre Toraño J, van Senten JR, Heukers R, Smit MJ, Oliveira S. Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Mol Pharm 2019;16:3145-56. [PMID: 31244224 DOI: 10.1021/acs.molpharmaceut.9b00360] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
307 Li L, Yang Y, Wu M, Yu Z, Wang C, Dou G, He H, Wang H, Yang N, Qi H, Xu X. β-Asarone Induces Apoptosis and Cell Cycle Arrest of Human Glioma U251 Cells via Suppression of HnRNP A2/B1-Mediated Pathway In Vitro and In Vivo. Molecules 2018;23:E1072. [PMID: 29751524 DOI: 10.3390/molecules23051072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
308 Fan CH, Ting CY, Lin CY, Chan HL, Chang YC, Chen YY, Liu HL, Yeh CK. Noninvasive, Targeted, and Non-Viral Ultrasound-Mediated GDNF-Plasmid Delivery for Treatment of Parkinson's Disease. Sci Rep 2016;6:19579. [PMID: 26786201 DOI: 10.1038/srep19579] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 9.2] [Reference Citation Analysis]
309 Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK, Inman GJ. Multifaceted transforming growth factor-beta (TGFβ) signalling in glioblastoma. Cell Signal 2020;72:109638. [PMID: 32320860 DOI: 10.1016/j.cellsig.2020.109638] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
310 Khoei S, Hosseini V, Hosseini M, Khoee S, Shirvalilou S, Mahdavi SR, Pirayesh Islamian J. Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line. Cell Mol Bioeng 2021;14:365-77. [PMID: 34295445 DOI: 10.1007/s12195-021-00675-y] [Reference Citation Analysis]
311 Mattei V, Santilli F, Martellucci S, Delle Monache S, Fabrizi J, Colapietro A, Angelucci A, Festuccia C. The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci 2021;22:3863. [PMID: 33917954 DOI: 10.3390/ijms22083863] [Reference Citation Analysis]
312 Li Z, Ma J, Liu L, Liu X, Wang P, Liu Y, Li Z, Zheng J, Chen J, Tao W, Xue Y. Endothelial-Monocyte Activating Polypeptide II Suppresses the In Vitro Glioblastoma-Induced Angiogenesis by Inducing Autophagy. Front Mol Neurosci 2017;10:208. [PMID: 28701921 DOI: 10.3389/fnmol.2017.00208] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
313 Traxl A, Wanek T, Mairinger S, Stanek J, Filip T, Sauberer M, Müller M, Kuntner C, Langer O. Breast Cancer Resistance Protein and P-Glycoprotein Influence In Vivo Disposition of 11C-Erlotinib. J Nucl Med 2015;56:1930-6. [PMID: 26359257 DOI: 10.2967/jnumed.115.161273] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
314 Li X, Shi L, Li Y, Li Q, Duan X, Wang Y, Li Q. The enhanced treatment efficacy of invasive brain glioma by dual-targeted artemether plus paclitaxel micelles. Artif Cells Nanomed Biotechnol 2020;48:983-96. [PMID: 32524852 DOI: 10.1080/21691401.2020.1773489] [Reference Citation Analysis]
315 de Gooijer MC, Buil LCM, Çitirikkaya CH, Hermans J, Beijnen JH, van Tellingen O. ABCB1 Attenuates the Brain Penetration of the PARP Inhibitor AZD2461. Mol Pharm 2018;15:5236-43. [PMID: 30252484 DOI: 10.1021/acs.molpharmaceut.8b00742] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
316 Pang HH, Chen PY, Wei KC, Huang CW, Shiue YL, Huang CY, Yang HW. Convection-Enhanced Delivery of a Virus-Like Nanotherapeutic Agent with Dual-Modal Imaging for Besiegement and Eradication of Brain Tumors. Theranostics 2019;9:1752-63. [PMID: 31037136 DOI: 10.7150/thno.30977] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
317 Vince O, Peeters S, Johanssen VA, Gray M, Smart S, Sibson NR, Stride E. Microbubbles Containing Lysolipid Enhance Ultrasound-Mediated Blood-Brain Barrier Breakdown In Vivo. Adv Healthc Mater 2021;10:e2001343. [PMID: 33191662 DOI: 10.1002/adhm.202001343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
318 Auzmendi-Iriarte J, Saenz-Antoñanzas A, Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH, Sampron N, Cortajarena AL, Matheu A. Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 2020;11:417. [PMID: 32488056 DOI: 10.1038/s41419-020-2586-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
319 Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, Nicolini G. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Med Chem 2020;28:115300. [PMID: 31937477 DOI: 10.1016/j.bmc.2019.115300] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
320 Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Reference Citation Analysis]
321 Puxeddu M, Shen H, Bai R, Coluccia A, Bufano M, Nalli M, Sebastiani J, Brancaccio D, Da Pozzo E, Tremolanti C, Martini C, Orlando V, Biagioni S, Sinicropi MS, Ceramella J, Iacopetta D, Coluccia AML, Hamel E, Liu T, Silvestri R, La Regina G. Discovery of pyrrole derivatives for the treatment of glioblastoma and chronic myeloid leukemia. Eur J Med Chem 2021;221:113532. [PMID: 34052717 DOI: 10.1016/j.ejmech.2021.113532] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
322 Deligne C, Hachani J, Duban-Deweer S, Meignan S, Leblond P, Carcaboso AM, Sano Y, Shimizu F, Kanda T, Gosselet F, Dehouck MP, Mysiorek C. Development of a human in vitro blood-brain tumor barrier model of diffuse intrinsic pontine glioma to better understand the chemoresistance. Fluids Barriers CNS 2020;17:37. [PMID: 32487241 DOI: 10.1186/s12987-020-00198-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
323 de Gooijer MC, Kemper EM, Buil LCM, Çitirikkaya CH, Buckle T, Beijnen JH, van Tellingen O. ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost. Cell Rep Med 2021;2:100184. [PMID: 33521698 DOI: 10.1016/j.xcrm.2020.100184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
324 Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, Santos-Martínez MJ, Ruiz-Hernández E. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. Materials (Basel) 2018;11:E779. [PMID: 29751640 DOI: 10.3390/ma11050779] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
325 Fonseca-Santos B, Chorilli M. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems. Int J Pharm 2020;589:119832. [PMID: 32877730 DOI: 10.1016/j.ijpharm.2020.119832] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
326 Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021;11:1546-67. [PMID: 33408767 DOI: 10.7150/thno.48662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
327 Dan N. Core–shell drug carriers: liposomes, polymersomes, and niosomes. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 63-105. [DOI: 10.1016/b978-0-323-46143-6.00002-6] [Cited by in Crossref: 6] [Article Influence: 1.2] [Reference Citation Analysis]
328 Kural C, Kaya Kocdogan A, Şimşek GG, Oğuztüzün S, Kaygın P, Yılmaz I, Bayram T, Izci Y. Glutathione S-Transferases and Cytochrome P450 Enzyme Expression in Patients with Intracranial Tumors: Preliminary Report of 55 Patients. Med Princ Pract 2019;28:56-62. [PMID: 30321868 DOI: 10.1159/000494496] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
329 F Martins ML, Loos NHC, Mucuk S, de Jong D, Lebre MC, Rosing H, Tibben M, Beijnen JH, Schinkel AH. P-Glycoprotein (ABCB1/MDR1) Controls Brain Penetration and Intestinal Disposition of the PARP1/2 Inhibitor Niraparib. Mol Pharm 2021;18:4371-84. [PMID: 34730366 DOI: 10.1021/acs.molpharmaceut.1c00553] [Reference Citation Analysis]
330 Liu MY, Xie F, Zhang Y, Wang TT, Ma SN, Zhao PX, Zhang X, Lebaron TW, Yan XL, Ma XM. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation. Stem Cell Res Ther 2019;10:145. [PMID: 31113492 DOI: 10.1186/s13287-019-1241-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
331 Yang L, Li N, Yan Z, Li C, Zhao Z. MiR-29a-Mediated CD133 Expression Contributes to Cisplatin Resistance in CD133+ Glioblastoma Stem Cells. J Mol Neurosci 2018;66:369-77. [DOI: 10.1007/s12031-018-1177-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
332 Zhu Q, Ling X, Yang Y, Zhang J, Li Q, Niu X, Hu G, Chen B, Li H, Wang Y, Deng Z. Embryonic Stem Cells-Derived Exosomes Endowed with Targeting Properties as Chemotherapeutics Delivery Vehicles for Glioblastoma Therapy. Adv Sci (Weinh) 2019;6:1801899. [PMID: 30937268 DOI: 10.1002/advs.201801899] [Cited by in Crossref: 79] [Cited by in F6Publishing: 70] [Article Influence: 26.3] [Reference Citation Analysis]
333 Mahmud H, Kasai T, Khayrani AC, Asakura M, Oo AKK, Du J, Vaidyanath A, El-Ghlban S, Mizutani A, Seno A, Murakami H, Masuda J, Seno M. Targeting Glioblastoma Cells Expressing CD44 with Liposomes Encapsulating Doxorubicin and Displaying Chlorotoxin-IgG Fc Fusion Protein. Int J Mol Sci 2018;19:E659. [PMID: 29495404 DOI: 10.3390/ijms19030659] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
334 Folaron M, Seshadri M. Bioluminescence and MR Imaging of the Safety and Efficacy of Vascular Disruption in Gliomas. Mol Imaging Biol 2016;18:860-9. [DOI: 10.1007/s11307-016-0963-8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
335 Rui Y, Green JJ. Overcoming delivery barriers in immunotherapy for glioblastoma. Drug Deliv Transl Res 2021. [PMID: 34053034 DOI: 10.1007/s13346-021-01008-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
336 Tournier N, Goutal S, Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Caillé F, Breuil L, Stanek J, Freeman AF, Novarino G, Truillet C, Wanek T, Langer O. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [11C]erlotinib. J Cereb Blood Flow Metab 2021;41:1634-46. [PMID: 33081568 DOI: 10.1177/0271678X20965500] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
337 Reddy S, Tatiparti K, Sau S, Iyer AK. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 2021;26:1944-52. [PMID: 33865978 DOI: 10.1016/j.drudis.2021.04.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
338 Aparicio-Blanco J, Torres-Suárez AI. Towards tailored management of malignant brain tumors with nanotheranostics. Acta Biomater 2018;73:52-63. [PMID: 29678675 DOI: 10.1016/j.actbio.2018.04.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
339 Wang J, Xia X, Tao X, Zhao P, Deng C. Knockdown of carbohydrate sulfotransferase 12 decreases the proliferation and mobility of glioblastoma cells via the WNT/β-catenin pathway. Bioengineered 2021;12:3934-46. [PMID: 34288811 DOI: 10.1080/21655979.2021.1944455] [Reference Citation Analysis]
340 Sattiraju A, Solingapuram Sai KK, Xuan A, Pandya DN, Almaguel FG, Wadas TJ, Herpai DM, Debinski W, Mintz A. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget 2017;8:42997-3007. [PMID: 28562337 DOI: 10.18632/oncotarget.17792] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
341 Song Z, Huang X, Wang J, Cai F, Zhao P, Yan F. Targeted Delivery of Liposomal Temozolomide Enhanced Anti-Glioblastoma Efficacy through Ultrasound-Mediated Blood-Brain Barrier Opening. Pharmaceutics 2021;13:1270. [PMID: 34452234 DOI: 10.3390/pharmaceutics13081270] [Reference Citation Analysis]
342 Miao R, Xia LY, Chen HH, Huang HH, Liang Y. Improved Classification of Blood-Brain-Barrier Drugs Using Deep Learning. Sci Rep 2019;9:8802. [PMID: 31217424 DOI: 10.1038/s41598-019-44773-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
343 Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021;12:703761. [PMID: 34512336 DOI: 10.3389/fphar.2021.703761] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
344 Wang K, Wang J, Zhang J, Zhang A, Liu Y, Zhou J, Wang X, Zhang J. Ferroptosis in Glioma Immune Microenvironment: Opportunity and Challenge. Front Oncol 2022;12:917634. [PMID: 35832539 DOI: 10.3389/fonc.2022.917634] [Reference Citation Analysis]
345 Heale KA, Nath SC, Rancourt DE. Overview of the Therapeutic Applications of Stem Cell-Derived Exosomes: A Research and Commercial Perspective. Curr Protoc 2021;1:e230. [PMID: 34491629 DOI: 10.1002/cpz1.230] [Reference Citation Analysis]
346 Chen M, Huang Y, Zhu X, Hu X, Chen T. Efficient Overcoming of Blood–Brain Barrier by Functionalized Selenium Nanoparticles to Treat Glioma. Adv Therap 2018;1:1800074. [DOI: 10.1002/adtp.201800074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
347 Fadzen CM, Wolfe JM, Zhou W, Cho CF, von Spreckelsen N, Hutchinson KT, Lee YC, Chiocca EA, Lawler SE, Yilmaz OH, Lippard SJ, Pentelute BL. A Platinum(IV) Prodrug-Perfluoroaryl Macrocyclic Peptide Conjugate Enhances Platinum Uptake in the Brain. J Med Chem 2020;63:6741-7. [PMID: 32410451 DOI: 10.1021/acs.jmedchem.0c00022] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
348 O'Rawe M, Kilmister EJ, Mantamadiotis T, Kaye AH, Tan ST, Wickremesekera AC. The Renin-Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers (Basel) 2021;13:4004. [PMID: 34439159 DOI: 10.3390/cancers13164004] [Reference Citation Analysis]
349 Pena SA, Iyengar R, Eshraghi RS, Bencie N, Mittal J, Aljohani A, Mittal R, Eshraghi AA. Gene therapy for neurological disorders: challenges and recent advancements. Journal of Drug Targeting 2020;28:111-28. [DOI: 10.1080/1061186x.2019.1630415] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
350 Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD, Tsatsakis A. Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019;8:E863. [PMID: 31405017 DOI: 10.3390/cells8080863] [Cited by in Crossref: 62] [Cited by in F6Publishing: 57] [Article Influence: 20.7] [Reference Citation Analysis]
351 Miranda A, Blanco-prieto MJ, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part II: Targeted drug delivery and lipid nanoparticles. International Journal of Pharmaceutics 2017;531:389-410. [DOI: 10.1016/j.ijpharm.2017.07.049] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]
352 Ortiz R, Perazzoli G, Cabeza L, Jiménez-Luna C, Luque R, Prados J, Melguizo C. Temozolomide: An Updated Overview of Resistance Mechanisms, Nanotechnology Advances and Clinical Applications. Curr Neuropharmacol 2021;19:513-37. [PMID: 32589560 DOI: 10.2174/1570159X18666200626204005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
353 Mangani D, Weller M, Roth P. The network of immunosuppressive pathways in glioblastoma. Biochemical Pharmacology 2017;130:1-9. [DOI: 10.1016/j.bcp.2016.12.011] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
354 Razali NSC, Lam KW, Rajab NF, A Jamal AR, Kamaluddin NF, Chan KM. Curcumin piperidone derivatives induce anti-proliferative and anti-migratory effects in LN-18 human glioblastoma cells. Sci Rep 2022;12:13131. [PMID: 35907913 DOI: 10.1038/s41598-022-16274-4] [Reference Citation Analysis]
355 Mao J, Ran D, Xie C, Shen Q, Wang S, Lu W. EGFR/EGFRvIII Dual-Targeting Peptide-Mediated Drug Delivery for Enhanced Glioma Therapy. ACS Appl Mater Interfaces 2017;9:24462-75. [DOI: 10.1021/acsami.7b05617] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
356 Ibarra LE, Vilchez ML, Caverzán MD, Milla Sanabria LN. Understanding the glioblastoma tumor biology to optimize photodynamic therapy: From molecular to cellular events. J Neurosci Res 2021;99:1024-47. [PMID: 33370846 DOI: 10.1002/jnr.24776] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
357 Wang X, Li Z, Ding Y, Wang K, Xing Z, Sun X, Guo W, Hong X, Zhu X, Liu Y. Enhanced photothermal-photodynamic therapy for glioma based on near-infrared dye functionalized Fe3O4 superparticles. Chemical Engineering Journal 2020;381:122693. [DOI: 10.1016/j.cej.2019.122693] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
358 Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm 2017;531:372-88. [PMID: 28755993 DOI: 10.1016/j.ijpharm.2017.07.056] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
359 Sheybani ND, Breza VR, Paul S, McCauley KS, Berr SS, Miller GW, Neumann KD, Price RJ. ImmunoPET-informed sequence for focused ultrasound-targeted mCD47 blockade controls glioma. J Control Release 2021;331:19-29. [PMID: 33476735 DOI: 10.1016/j.jconrel.2021.01.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
360 Mandel JJ, Youssef M, Ludmir E, Yust-Katz S, Patel AJ, De Groot JF. Highlighting the need for reliable clinical trials in glioblastoma. Expert Rev Anticancer Ther 2018;18:1031-40. [PMID: 29973092 DOI: 10.1080/14737140.2018.1496824] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
361 Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2021;17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
362 Lei C, Davoodi P, Zhan W, Chow PK, Wang C. Development of Nanoparticles for Drug Delivery to Brain Tumor: The Effect of Surface Materials on Penetration Into Brain Tissue. Journal of Pharmaceutical Sciences 2019;108:1736-45. [DOI: 10.1016/j.xphs.2018.12.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
363 Ardizzone A, Scuderi SA, Giuffrida D, Colarossi C, Puglisi C, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Role of Fibroblast Growth Factors Receptors (FGFRs) in Brain Tumors, Focus on Astrocytoma and Glioblastoma. Cancers (Basel) 2020;12:E3825. [PMID: 33352931 DOI: 10.3390/cancers12123825] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
364 Couto M, Coelho-Santos V, Santos L, Fontes-Ribeiro C, Silva AP, Gomes CMF. The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol 2019;234:19750-60. [PMID: 30937892 DOI: 10.1002/jcp.28575] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
365 Kuzmin NV, Wesseling P, Hamer PC, Noske DP, Galgano GD, Mansvelder HD, Baayen JC, Groot ML. Third harmonic generation imaging for fast, label-free pathology of human brain tumors. Biomed Opt Express 2016;7:1889-904. [PMID: 27231629 DOI: 10.1364/BOE.7.001889] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
366 Berenguer J, Lagerweij T, Zhao XW, Dusoswa S, van der Stoop P, Westerman B, de Gooijer MC, Zoetemelk M, Zomer A, Crommentuijn MHW, Wedekind LE, López-López À, Giovanazzi A, Bruch-Oms M, van der Meulen-Muileman IH, Reijmers RM, van Kuppevelt TH, García-Vallejo JJ, van Kooyk Y, Tannous BA, Wesseling P, Koppers-Lalic D, Vandertop WP, Noske DP, van Beusechem VW, van Rheenen J, Pegtel DM, van Tellingen O, Wurdinger T. Glycosylated extracellular vesicles released by glioblastoma cells are decorated by CCL18 allowing for cellular uptake via chemokine receptor CCR8. J Extracell Vesicles 2018;7:1446660. [PMID: 29696074 DOI: 10.1080/20013078.2018.1446660] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 8.5] [Reference Citation Analysis]
367 Wijaya J, Fukuda Y, Schuetz JD. Obstacles to Brain Tumor Therapy: Key ABC Transporters. Int J Mol Sci 2017;18:E2544. [PMID: 29186899 DOI: 10.3390/ijms18122544] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 6.6] [Reference Citation Analysis]
368 Fisusi FA, Schätzlein AG, Uchegbu IF. Nanomedicines in the treatment of brain tumors. Nanomedicine (Lond) 2018;13:579-83. [PMID: 29376468 DOI: 10.2217/nnm-2017-0378] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
369 Gampa G, Kenchappa RS, Mohammad AS, Parrish KE, Kim M, Crish JF, Luu A, West R, Hinojosa AQ, Sarkaria JN, Rosenfeld SS, Elmquist WF. Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Sci Rep 2020;10:6524. [PMID: 32300151 DOI: 10.1038/s41598-020-63494-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
370 Khathayer F, Taylor MA, Ray SK. Synergism of 4HPR and SAHA increases anti-tumor actions in glioblastoma cells. Apoptosis 2020;25:217-32. [PMID: 32006189 DOI: 10.1007/s10495-020-01590-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
371 Mehta JN, Rausch MK, Rylander CG. Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis. Int J Numer Method Biomed Eng 2022;:e3635. [PMID: 35763587 DOI: 10.1002/cnm.3635] [Reference Citation Analysis]
372 Ding Y, Liu X, Yang C, Ruan X, Wang D, Liu Y, Shang X, Liu Q, Shen S, Zhu L, Xue Y. Pseudogene RPL32P3 regulates the blood-tumor barrier permeability via the YBX2/HNF4G axis. Cell Death Discov 2021;7:367. [PMID: 34819492 DOI: 10.1038/s41420-021-00758-9] [Reference Citation Analysis]
373 Zheng Y, Wang Y, Mai R, Liu L, Zhu Z, Cao Y. Circ_0007534 Silencing Inhibits the Proliferation, Migration and Invasion and Induces the Apoptosis of Glioma Cells Partly Through Down-Regulating PROX1 Via Elevating miR-22-3p Level. Cell Mol Neurobiol 2021. [PMID: 34536179 DOI: 10.1007/s10571-021-01150-y] [Reference Citation Analysis]
374 Gmeiner WH, Debinski W, Milligan C, Caudell D, Pardee TS. The applications of the novel polymeric fluoropyrimidine F10 in cancer treatment: current evidence. Future Oncol 2016;12:2009-20. [PMID: 27279153 DOI: 10.2217/fon-2016-0091] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.8] [Reference Citation Analysis]
375 Harder BG, Peng S, Sereduk CP, Sodoma AM, Kitange GJ, Loftus JC, Sarkaria JN, Tran NL. Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Mol Med 2019;25:49. [PMID: 31726966 DOI: 10.1186/s10020-019-0116-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
376 Gao X, Yue Q, Liu Y, Fan D, Fan K, Li S, Qian J, Han L, Fang F, Xu F, Geng D, Chen L, Zhou X, Mao Y, Li C. Image-guided chemotherapy with specifically tuned blood brain barrier permeability in glioma margins. Theranostics 2018;8:3126-37. [PMID: 29896307 DOI: 10.7150/thno.24784] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
377 Sawicki E, Schellens JH, Beijnen JH, Nuijen B. Pharmaceutical development of an amorphous solid dispersion formulation of elacridar hydrochloride for proof-of-concept clinical studies. Drug Dev Ind Pharm 2017;43:584-94. [PMID: 28010129 DOI: 10.1080/03639045.2016.1274901] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
378 Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018;292:210-20. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
379 Frosina G. Nanoparticle-mediated drug delivery to high-grade gliomas. Nanomedicine 2016;12:1083-93. [PMID: 26767516 DOI: 10.1016/j.nano.2015.12.375] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
380 Mao X, Wu S, Calero-pérez P, Candiota AP, Alfonso P, Bruna J, Yuste VJ, Lorenzo J, Novio F, Ruiz-molina D. Synthesis and Validation of a Bioinspired Catechol-Functionalized Pt(IV) Prodrug for Preclinical Intranasal Glioblastoma Treatment. Cancers 2022;14:410. [DOI: 10.3390/cancers14020410] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
381 Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. Int Rev Neurobiol 2016;130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
382 Kumar R, Sharma A, Alexiou A, Bilgrami AL, Kamal MA, Ashraf GM. DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy. Front Neurosci 2022;16:858126. [DOI: 10.3389/fnins.2022.858126] [Reference Citation Analysis]
383 Sun DP, Lee YW, Chen JT, Lin YW, Chen RM. The Bradykinin-BDKRB1 Axis Regulates Aquaporin 4 Gene Expression and Consequential Migration and Invasion of Malignant Glioblastoma Cells via a Ca2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers (Basel) 2020;12:E667. [PMID: 32182968 DOI: 10.3390/cancers12030667] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
384 Duan Y, Wu M, Hu D, Pan Y, Hu F, Liu X, Thakor N, Ng WH, Liu X, Sheng Z, Zheng H, Liu B. Biomimetic Nanocomposites Cloaked with Bioorthogonally Labeled Glioblastoma Cell Membrane for Targeted Multimodal Imaging of Brain Tumors. Adv Funct Mater 2020;30:2004346. [DOI: 10.1002/adfm.202004346] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
385 Li J, Yang H, Zhang Y, Jiang X, Guo Y, An S, Ma H, He X, Jiang C. Choline Derivate-Modified Doxorubicin Loaded Micelle for Glioma Therapy. ACS Appl Mater Interfaces 2015;7:21589-601. [DOI: 10.1021/acsami.5b07045] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
386 Kwon S, Yoo KH, Sym SJ, Khang D. Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration. Int J Nanomedicine 2019;14:5925-42. [PMID: 31534331 DOI: 10.2147/IJN.S217923] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
387 Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Martinez-Gutierrez JC, Ruiz-Valls A, Inman K, Shamul JG, Green JJ, Quinones-Hinojosa A. Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Mol Pharm 2019;16:1433-43. [PMID: 30803231 DOI: 10.1021/acs.molpharmaceut.8b00959] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
388 Li K, Zhang K, Xu S, Wang X, Zhou Y, Zhou Y, Gao P, Lin J, Ding G, Guo G. EMP-induced BBB-disruption enhances drug delivery to glioma and increases treatment efficacy in rats. Bioelectromagnetics 2018;39:60-7. [PMID: 29105885 DOI: 10.1002/bem.22090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
389 Bunevicius A, McDannold NJ, Golby AJ. Focused Ultrasound Strategies for Brain Tumor Therapy. Oper Neurosurg (Hagerstown) 2020;19:9-18. [PMID: 31853548 DOI: 10.1093/ons/opz374] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
390 Fan X, Li J, Long L, Shi T, Liu D, Tan W, Zhang H, Wu X, Lei X, Wang Z. Design, synthesis and biological evaluation of N-anthraniloyl tryptamine derivatives as pleiotropic molecules for the therapy of malignant glioma. Eur J Med Chem 2021;222:113564. [PMID: 34091208 DOI: 10.1016/j.ejmech.2021.113564] [Reference Citation Analysis]
391 Zhang Y, Sui R, Chen Y, Liang H, Shi J, Piao H. Long noncoding RNA MT1JP inhibits proliferation, invasion, and migration while promoting apoptosis of glioma cells through the activation of PTEN/Akt signaling pathway. J Cell Physiol 2019;234:19553-64. [PMID: 31066040 DOI: 10.1002/jcp.28553] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
392 Maksimenko O, Malinovskaya J, Shipulo E, Osipova N, Razzhivina V, Arantseva D, Yarovaya O, Mostovaya U, Khalansky A, Fedoseeva V, Alekseeva A, Vanchugova L, Gorshkova M, Kovalenko E, Balabanyan V, Melnikov P, Baklaushev V, Chekhonin V, Kreuter J, Gelperina S. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. Int J Pharm 2019;572:118733. [PMID: 31689481 DOI: 10.1016/j.ijpharm.2019.118733] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
393 Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017;16:100. [PMID: 28592260 DOI: 10.1186/s12943-017-0670-3] [Cited by in Crossref: 95] [Cited by in F6Publishing: 100] [Article Influence: 19.0] [Reference Citation Analysis]
394 Aparicio-Blanco J, Romero IA, Male DK, Slowing K, García-García L, Torres-Suárez AI. Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood-Brain Barrier Both in Vitro and in Vivo. Mol Pharm 2019;16:1999-2010. [PMID: 30865462 DOI: 10.1021/acs.molpharmaceut.8b01344] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
395 Garcia-Fabiani MB, Ventosa M, Comba A, Candolfi M, Nicola Candia AJ, Alghamri MS, Kadiyala P, Carney S, Faisal SM, Schwendeman A, Moon JJ, Scheetz L, Lahann J, Mauser A, Lowenstein PR, Castro MG. Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opin Investig Drugs 2020;29:659-84. [PMID: 32400216 DOI: 10.1080/13543784.2020.1768528] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
396 Huang C, Filippone NR, Reiner T, Roberts S. Sensors and Inhibitors for the Detection of Ataxia Telangiectasia Mutated (ATM) Protein Kinase. Mol Pharm 2021;18:2470-81. [PMID: 34125542 DOI: 10.1021/acs.molpharmaceut.1c00166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
397 Ruiz-Garcia H, Ramirez-Loera C, Malouff TD, Seneviratne DS, Palmer JD, Trifiletti DM. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma. Int J Mol Sci 2021;22:9673. [PMID: 34575840 DOI: 10.3390/ijms22189673] [Reference Citation Analysis]
398 Gong S, Wang S, Shao M. NADPH Oxidase 4: A Potential Therapeutic Target of Malignancy. Front Cell Dev Biol 2022;10:884412. [DOI: 10.3389/fcell.2022.884412] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
399 Vogelbaum MA, Brewer C, Barnett GH, Mohammadi AM, Peereboom DM, Ahluwalia MS, Gao S. First-in-human evaluation of the Cleveland Multiport Catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. Journal of Neurosurgery 2019;130:476-85. [DOI: 10.3171/2017.10.jns171845] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
400 Gallien J, Srinageshwar B, Gallo K, Holtgrefe G, Koneru S, Otero PS, Bueno CA, Mosher J, Roh A, Kohtz DS, Swanson D, Sharma A, Dunbar G, Rossignol J. Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines. Molecules 2021;26:6050. [PMID: 34641594 DOI: 10.3390/molecules26196050] [Reference Citation Analysis]
401 Hersh DS, Kim AJ, Winkles JA, Eisenberg HM, Woodworth GF, Frenkel V. Emerging Applications of Therapeutic Ultrasound in Neuro-oncology: Moving Beyond Tumor Ablation. Neurosurgery 2016;79:643-54. [PMID: 27552589 DOI: 10.1227/NEU.0000000000001399] [Cited by in Crossref: 45] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
402 Li J, Chai Z, Lu J, Xie C, Ran D, Wang S, Zhou J, Lu W. ɑvβ3-targeted liposomal drug delivery system with attenuated immunogenicity enabled by linear pentapeptide for glioma therapy. J Control Release 2020;322:542-54. [PMID: 32277962 DOI: 10.1016/j.jconrel.2020.04.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
403 Jung BT, Jung K, Lim M, Li M, Santos R, Ozawa T, Xu T. Design of 18 nm Doxorubicin-Loaded 3-Helix Micelles: Cellular Uptake and Cytotoxicity in Patient-Derived GBM6 Cells. ACS Biomater Sci Eng 2021;7:196-206. [PMID: 33338381 DOI: 10.1021/acsbiomaterials.0c01639] [Reference Citation Analysis]
404 Alomari S, Zhang I, Hernandez A, Kraft CY, Raj D, Kedda J, Tyler B. Drug Repurposing for Glioblastoma and Current Advances in Drug Delivery-A Comprehensive Review of the Literature. Biomolecules 2021;11:1870. [PMID: 34944514 DOI: 10.3390/biom11121870] [Reference Citation Analysis]
405 Pracucci E, Pillai V, Lamers D, Parra R, Landi S. Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021;22:6981. [PMID: 34209535 DOI: 10.3390/ijms22136981] [Reference Citation Analysis]
406 Gao H, Chu C, Cheng Y, Zhang Y, Pang X, Li D, Wang X, Ren E, Xie F, Bai Y, Chen L, Liu G, Wang M. In Situ Formation of Nanotheranostics to Overcome the Blood-Brain Barrier and Enhance Treatment of Orthotopic Glioma. ACS Appl Mater Interfaces 2020;12:26880-92. [PMID: 32441504 DOI: 10.1021/acsami.0c03873] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
407 Chang JH, Greene C, Frudd K, Araujo Dos Santos L, Futter C, Nichols BJ, Campbell M, Turowski P. Methamphetamine enhances caveolar transport of therapeutic agents across the rodent blood-brain barrier. Cell Rep Med 2022;3:100497. [PMID: 35106509 DOI: 10.1016/j.xcrm.2021.100497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
408 Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R. Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 2019;29:707-25. [PMID: 31012506 DOI: 10.1111/bpa.12729] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
409 Roda E, Bottone MG. Editorial: Brain Cancers: New Perspectives and Therapies. Front Neurosci 2022;16:857408. [DOI: 10.3389/fnins.2022.857408] [Reference Citation Analysis]
410 Tang M, Rich JN, Chen S. Biomaterials and 3D Bioprinting Strategies to Model Glioblastoma and the Blood-Brain Barrier. Adv Mater 2021;33:e2004776. [PMID: 33326131 DOI: 10.1002/adma.202004776] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
411 Ramalho MJ, Coelho MA, Pereira MC. Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma. Design and Development of New Nanocarriers. Elsevier; 2018. pp. 687-722. [DOI: 10.1016/b978-0-12-813627-0.00018-1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
412 Abdul KU, Houweling M, Svensson F, Narayan RS, Cornelissen FMG, Küçükosmanoglu A, Metzakopian E, Watts C, Bailey D, Wurdinger T, Westerman BA. WINDOW consortium: A path towards increased therapy efficacy against glioblastoma. Drug Resist Updat 2018;40:17-24. [PMID: 30439622 DOI: 10.1016/j.drup.2018.10.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
413 Pandey M, Jain N, Kanoujia J, Hussain Z, Gorain B. Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System. Front Pharmacol 2022;13:865590. [DOI: 10.3389/fphar.2022.865590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
414 Liu J, Li M, Huang Y, Zhang L, Li W, Cao P, Min W, Li J, Jing W, Karimi-maleh H. A Nanogel with Effective Blood-Brain Barrier Penetration Ability through Passive and Active Dual-Targeting Function. Journal of Nanomaterials 2021;2021:1-11. [DOI: 10.1155/2021/6623031] [Reference Citation Analysis]
415 Lu VM, Rechberger JS, Himes BT, Daniels DJ. The 100 Most-Cited Articles About Convection-Enhanced Delivery to the Brain: A Bibliometric Analysis. World Neurosurg 2019;129:497-502.e6. [PMID: 31150865 DOI: 10.1016/j.wneu.2019.05.179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
416 Sousa F, Moura RP, Moreira E, Martins C, Sarmento B. Therapeutic Monoclonal Antibodies Delivery for the Glioblastoma Treatment. Adv Protein Chem Struct Biol 2018;112:61-80. [PMID: 29680243 DOI: 10.1016/bs.apcsb.2018.03.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
417 Pan Y, Xu C, Deng H, You Q, Zhao C, Li Y, Gao Q, Akakuru OU, Li J, Zhang J, Wu A, Chen X. Localized NIR-II laser mediated chemodynamic therapy of glioblastoma. Nano Today 2022;43:101435. [DOI: 10.1016/j.nantod.2022.101435] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
418 Kimura S, Harashima H. Current Status and Challenges Associated with CNS-Targeted Gene Delivery across the BBB. Pharmaceutics 2020;12:E1216. [PMID: 33334049 DOI: 10.3390/pharmaceutics12121216] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
419 Pacia CP, Yuan J, Yue Y, Xu L, Nazeri A, Desai R, Gach HM, Wang X, Talcott MR, Chaudhuri AA, Dunn GP, Leuthardt EC, Chen H. Sonobiopsy for minimally invasive, spatiotemporally-controlled, and sensitive detection of glioblastoma-derived circulating tumor DNA. Theranostics 2022;12:362-78. [PMID: 34987650 DOI: 10.7150/thno.65597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
420 Sahab-Negah S, Ariakia F, Jalili-Nik M, Afshari AR, Salehi S, Samini F, Rajabzadeh G, Gorji A. Curcumin Loaded in Niosomal Nanoparticles Improved the Anti-tumor Effects of Free Curcumin on Glioblastoma Stem-like Cells: an In Vitro Study. Mol Neurobiol 2020;57:3391-411. [PMID: 32430842 DOI: 10.1007/s12035-020-01922-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
421 El Demerdash N, Kedda J, Ram N, Brem H, Tyler B. Novel therapeutics for brain tumors: current practice and future prospects. Expert Opinion on Drug Delivery 2020;17:9-21. [DOI: 10.1080/17425247.2019.1676227] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
422 Shahjin F, Chand S, Yelamanchili SV. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J Neuroimmune Pharmacol 2020;15:443-58. [DOI: 10.1007/s11481-019-09875-w] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
423 Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017;133:263-82. [PMID: 28074274 DOI: 10.1007/s00401-017-1671-4] [Cited by in Crossref: 155] [Cited by in F6Publishing: 134] [Article Influence: 31.0] [Reference Citation Analysis]
424 Qiao L, Yang H, Shao X, Yin Q, Fu X, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharmaceutics. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Reference Citation Analysis]
425 Grossen A, Smith K, Coulibaly N, Arbuckle B, Evans A, Wilhelm S, Jones K, Dunn I, Towner R, Wu D, Kim YT, Battiste J. Physical Forces in Glioblastoma Migration: A Systematic Review. Int J Mol Sci 2022;23:4055. [PMID: 35409420 DOI: 10.3390/ijms23074055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
426 Mandal A, Bisht R, Pal D, Mitra AK. Diagnosis and Drug Delivery to the Brain. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier; 2017. pp. 59-83. [DOI: 10.1016/b978-0-323-42978-8.00004-8] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
427 Waghule T, Rapalli VK, Singhvi G, Gorantla S, Khosa A, Dubey SK, Saha RN. Design of temozolomide-loaded proliposomes and lipid crystal nanoparticles with industrial feasible approaches: comparative assessment of drug loading, entrapment efficiency, and stability at plasma pH. J Liposome Res 2021;31:158-68. [PMID: 32290733 DOI: 10.1080/08982104.2020.1748648] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
428 Petrescu GED, Sabo AA, Torsin LI, Calin GA, Dragomir MP. MicroRNA based theranostics for brain cancer: basic principles. J Exp Clin Cancer Res 2019;38:231. [PMID: 31142339 DOI: 10.1186/s13046-019-1180-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
429 Di Cintio F, Dal Bo M, Baboci L, De Mattia E, Polano M, Toffoli G. The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices. Front Neurosci 2020;14:603647. [PMID: 33324155 DOI: 10.3389/fnins.2020.603647] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
430 van Tellingen O, de Gooijer MC, Sarkaria JN, Elmquist WF. Comments on: "Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity". Neuro Oncol 2020;22:1404-5. [PMID: 32556220 DOI: 10.1093/neuonc/noaa112] [Reference Citation Analysis]
431 Kashiwagi H, Kawabata S, Yoshimura K, Fukuo Y, Kanemitsu T, Takeuchi K, Hiramatsu R, Nishimura K, Kawai K, Takata T, Tanaka H, Watanabe T, Suzuki M, Miyatake SI, Nakamura H, Wanibuchi M. Boron neutron capture therapy using dodecaborated albumin conjugates with maleimide is effective in a rat glioma model. Invest New Drugs 2021. [PMID: 34816337 DOI: 10.1007/s10637-021-01201-7] [Reference Citation Analysis]
432 Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front Immunol 2021;12:679425. [PMID: 34305910 DOI: 10.3389/fimmu.2021.679425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
433 Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y. Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on a Charge Reversal Mechanism. ACS Appl Mater Interfaces 2018;10:43411-28. [DOI: 10.1021/acsami.8b15147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
434 Yamaguchi T, Kitahara S, Kusuda K, Okamoto J, Horise Y, Masamune K, Muragaki Y. Current Landscape of Sonodynamic Therapy for Treating Cancer. Cancers (Basel) 2021;13:6184. [PMID: 34944804 DOI: 10.3390/cancers13246184] [Reference Citation Analysis]
435 Haapala I, Kondratev A, Roine A, Mäkelä M, Kontunen A, Karjalainen M, Laakso A, Koroknay-pál P, Nordfors K, Haapasalo H, Oksala N, Vehkaoja A, Haapasalo J. Method for the Intraoperative Detection of IDH Mutation in Gliomas with Differential Mobility Spectrometry. Current Oncology 2022;29:3252-8. [DOI: 10.3390/curroncol29050265] [Reference Citation Analysis]
436 Cai X, Bandla A, Chuan CK, Magarajah G, Liao L, Teh DBL, Kennedy BK, Thakor NV, Liu B. Identifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy. Mater Horiz 2019;6:311-7. [DOI: 10.1039/c8mh00946e] [Cited by in Crossref: 31] [Cited by in F6Publishing: 1] [Article Influence: 10.3] [Reference Citation Analysis]
437 Song Y, Hu C, Fu Y, Gao H. Modulating the blood–brain tumor barrier for improving drug delivery efficiency and efficacy. VIEW 2022;3:20200129. [DOI: 10.1002/viw.20200129] [Reference Citation Analysis]
438 Seker-polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-onder T. Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers 2022;14:443. [DOI: 10.3390/cancers14020443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
439 Jiao Z, Li Y, Pang H, Zheng Y, Zhao Y. Pep-1 peptide-functionalized liposome to enhance the anticancer efficacy of cilengitide in glioma treatment. Colloids and Surfaces B: Biointerfaces 2017;158:68-75. [DOI: 10.1016/j.colsurfb.2017.03.058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
440 Luiz MT, Delello Di Filippo L, Tofani LB, de Araújo JTC, Dutra JAP, Marchetti JM, Chorilli M. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment. Int J Pharm 2021;604:120758. [PMID: 34090991 DOI: 10.1016/j.ijpharm.2021.120758] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
441 Zhang X, Wang F, Shen Q, Xie C, Liu Y, Pan J, Lu W. Structure Reconstruction of LyP-1: L c(LyP-1) Coupling by Amide Bond Inspires the Brain Metastatic Tumor Targeted Drug Delivery. Mol Pharmaceutics 2018;15:430-6. [DOI: 10.1021/acs.molpharmaceut.7b00801] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
442 Sminia P, Westerman BA. Blood-brain barrier crossing and breakthroughs in glioblastoma therapy. Br J Clin Pharmacol 2016;81:1018-20. [PMID: 26744058 DOI: 10.1111/bcp.12881] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
443 Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. Int Rev Neurobiol 2020;151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
444 Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Curr Opin Biomed Eng 2017;4:1-12. [PMID: 29333521 DOI: 10.1016/j.cobme.2017.09.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]