BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Saneja A, Kumar R, Arora D, Kumar S, Panda AK, Jaglan S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018;23:1115-25. [PMID: 29481876 DOI: 10.1016/j.drudis.2018.02.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 16.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang Y, Yu W, Niu C, Yu G, Huang X, Shi J, Ma D, Lin X, Zhao K. A NIR light-activated PLGA microsphere for controlled release of mono- or dual-drug. Polymer Testing 2022;116:107762. [DOI: 10.1016/j.polymertesting.2022.107762] [Reference Citation Analysis]
2 Xu S, Zhang P, Heing-becker I, Zhang J, Tang P, Bej R, Bhatia S, Zhong Y, Haag R. Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS2 nanoflakes for multidrug-resistant tumor ablation. Biomaterials 2022;290:121844. [DOI: 10.1016/j.biomaterials.2022.121844] [Reference Citation Analysis]
3 Garcia-Peiro JI, Bonet-Aleta J, Santamaria J, Hueso JL. Platinum nanoplatforms: classic catalysts claiming a prominent role in cancer therapy. Chem Soc Rev 2022;51:7662-81. [PMID: 35983786 DOI: 10.1039/d2cs00518b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 González-colsa J, Franco A, Bresme F, Moreno F, Albella P. Janus-Nanojet as an efficient asymmetric photothermal source. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-17630-0] [Reference Citation Analysis]
5 Sun L, Li Y, Yu Y, Wang P, Zhu S, Wu K, Liu Y, Wang R, Min L, Chang C. Inhibition of Cancer Cell Migration and Glycolysis by Terahertz Wave Modulation via Altered Chromatin Accessibility. Research 2022;2022:1-16. [DOI: 10.34133/2022/9860679] [Reference Citation Analysis]
6 Wang S, Wang F, Zhao X, Yang F, Xu Y, Yan F, Xia D, Liu Y. The effect of near-infrared light-assisted photothermal therapy combined with polymer materials on promoting bone regeneration: A systematic review. Materials & Design 2022;217:110621. [DOI: 10.1016/j.matdes.2022.110621] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li Q, Liu Y, Huang Z, Guo Y, Li Q. Triggering Immune System With Nanomaterials for Cancer Immunotherapy. Front Bioeng Biotechnol 2022;10:878524. [DOI: 10.3389/fbioe.2022.878524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS Appl Bio Mater 2022. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 28] [Article Influence: 19.0] [Reference Citation Analysis]
9 Ruchika, Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.02.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Jiang L, Luo J, Hong D, Guo S, Wang S, Zhou B, Zhou S, Ge J. Recent Advances of Poly(lactic‐co‐glycolic acid)‐Based Nanoparticles for Tumor‐Targeted Drug Delivery. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202103524] [Reference Citation Analysis]
11 Wu Y, Zhang X, Tan B, Shan Y, Zhao X, Liao J. Near-infrared light control of GelMA/PMMA/PDA hydrogel with mild photothermal therapy for skull regeneration. Mater Sci Eng C Mater Biol Appl 2022;:112641. [PMID: 35034819 DOI: 10.1016/j.msec.2022.112641] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ding Y, Hu Q. Stimuli-responsive drug delivery systems for cancer immunotherapy. Stimuli-Responsive Nanocarriers 2022. [DOI: 10.1016/b978-0-12-824456-2.00014-x] [Reference Citation Analysis]
13 Yadav S, Ramesh K, Kumar P, Jo SH, Yoo SI, Gal YS, Park SH, Lim KT. Near-Infrared Light-Responsive Shell-Crosslinked Micelles of Poly(d,l-lactide)-b-poly((furfuryl methacrylate)-co-(N-acryloylmorpholine)) Prepared by Diels-Alder Reaction for the Triggered Release of Doxorubicin. Materials (Basel) 2021;14:7913. [PMID: 34947507 DOI: 10.3390/ma14247913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Dong Y, Cao W, Cao J. Treatment of rheumatoid arthritis by phototherapy: advances and perspectives. Nanoscale 2021;13:14591-608. [PMID: 34473167 DOI: 10.1039/d1nr03623h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Qing W, Xing X, Feng D, Chen R, Liu Z. Indocyanine green loaded pH-responsive bortezomib supramolecular hydrogel for synergistic chemo-photothermal/photodynamic colorectal cancer therapy. Photodiagnosis Photodyn Ther 2021;36:102521. [PMID: 34481977 DOI: 10.1016/j.pdpdt.2021.102521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Ma R, Alifu N, Du Z, Chen S, Heng Y, Wang J, Zhu L, Ma C, Zhang X. Indocyanine Green-Based Theranostic Nanoplatform for NIR Fluorescence Image-Guided Chemo/Photothermal Therapy of Cervical Cancer. Int J Nanomedicine 2021;16:4847-61. [PMID: 34305398 DOI: 10.2147/IJN.S318678] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
18 Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M, Pandey S. DNA Based and Stimuli-Responsive Smart Nanocarrier for Diagnosis and Treatment of Cancer: Applications and Challenges. Cancers (Basel) 2021;13:3396. [PMID: 34298610 DOI: 10.3390/cancers13143396] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 27.0] [Reference Citation Analysis]
19 Zhang X, Zhou P, Zhuo S, Zhang F, Yu J, Liu X. Protein nanogels with enhanced pH-responsive dynamics triggered by remote NIR for systemic protein delivery and programmable controlled release. Int J Pharm 2021;605:120833. [PMID: 34175378 DOI: 10.1016/j.ijpharm.2021.120833] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Khan A, Jain NK, Gandhi M, Prasad R, Srivastava R. Photo-Triggered Nanomaterials for Cancer Theranostic Applications. Nano LIFE 2021;11:2130004. [DOI: 10.1142/s1793984421300041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Ma Y, Qian C, Ma L, Guo P, Sun S, Zhang L, Zhang F, Yang D. High-stabilized polydopamine modified low eutectic fatty acids based on near-infrared response for breast cancer therapy. J Photochem Photobiol B 2021;220:112213. [PMID: 34023596 DOI: 10.1016/j.jphotobiol.2021.112213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Anand S, Chan TA, Hasan T, Maytin EV. Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021;14:447. [PMID: 34068491 DOI: 10.3390/ph14050447] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
23 Xu X, He Y, Wang Y. Near-infrared organic chromophores with pH-sensitive, non-radiative emission for intelligent disease treatment. Cell Reports Physical Science 2021;2:100433. [DOI: 10.1016/j.xcrp.2021.100433] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
24 Wu D, Xu S, Zhang X, Li Y, Zhang W, Yan Q, Yang Q, Guo F, Yang G. A Near-Infrared Laser-Triggered Size-Shrinkable Nanosystem with In Situ Drug Release for Deep Tumor Penetration. ACS Appl Mater Interfaces 2021;13:16036-47. [PMID: 33733732 DOI: 10.1021/acsami.1c00022] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Franco MS, Gomes ER, Roque MC, Oliveira MC. Triggered Drug Release From Liposomes: Exploiting the Outer and Inner Tumor Environment. Front Oncol 2021;11:623760. [PMID: 33796461 DOI: 10.3389/fonc.2021.623760] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
26 Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021;123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
27 Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. Chinese Chemical Letters 2021;32:1010-6. [DOI: 10.1016/j.cclet.2020.09.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
28 Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Adv Healthc Mater 2021;10:e2001044. [PMID: 33225633 DOI: 10.1002/adhm.202001044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
29 Wu C, Wu Y, Zhu X, Zhang J, Liu J, Zhang Y. Near-infrared-responsive functional nanomaterials: the first domino of combined tumor therapy. Nano Today 2021;36:100963. [DOI: 10.1016/j.nantod.2020.100963] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
30 Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2021;26:1319-29. [PMID: 33359114 DOI: 10.1016/j.drudis.2020.12.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
31 Hou X, Tao Y, Li X, Pang Y, Yang C, Jiang G, Liu Y. CD44-Targeting Oxygen Self-Sufficient Nanoparticles for Enhanced Photodynamic Therapy Against Malignant Melanoma. Int J Nanomedicine 2020;15:10401-16. [PMID: 33376328 DOI: 10.2147/IJN.S283515] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
32 Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020;10:11837-61. [PMID: 33052249 DOI: 10.7150/thno.49784] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
33 Bandara S, Du H, Carson L, Bradford D, Kommalapati R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials (Basel) 2020;10:E1903. [PMID: 32987697 DOI: 10.3390/nano10101903] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
34 Chen G, Zhao Y, Xu Y, Zhu C, Liu T, Wang K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int J Pharm 2020;589:119763. [PMID: 32898629 DOI: 10.1016/j.ijpharm.2020.119763] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 10.5] [Reference Citation Analysis]
35 He Y, Wang M, Fu M, Yuan X, Luo Y, Qiao B, Cao J, Wang Z, Hao L, Yuan G. Iron(II) phthalocyanine Loaded and AS1411 Aptamer Targeting Nanoparticles: A Nanocomplex for Dual Modal Imaging and Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020;15:5927-49. [PMID: 32848397 DOI: 10.2147/IJN.S254108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
36 Wang D, Wang S, Xia Y, Liu S, Jia R, Xu G, Zhan J, Lu Y. Preparation of ROS-responsive core crosslinked polycarbonate micelles with thioketal linkage. Colloids Surf B Biointerfaces 2020;195:111276. [PMID: 32763765 DOI: 10.1016/j.colsurfb.2020.111276] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
37 Wang S, Wei Z, Li L, Ning X, Liu Y. Luminescence imaging-guided triple-collaboratively enhanced photodynamic therapy by bioresponsive lanthanide-based nanomedicine. Nanomedicine 2020;29:102265. [PMID: 32668297 DOI: 10.1016/j.nano.2020.102265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Machuca A, Garcia‐calvo E, Anunciação DS, Luque‐garcia JL. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer. Chem Eur J 2020;26:7685-91. [DOI: 10.1002/chem.202001112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
39 Zhang F, Wu Q, Liu H. NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1643. [PMID: 32394638 DOI: 10.1002/wnan.1643] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
40 Wang Y, Zhang H, Xie J, Liu Y, Wang S, Zhao Q. Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;590:124498. [DOI: 10.1016/j.colsurfa.2020.124498] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
41 Qi T, Shi Y, Huang Y, Fu X, Qiu S, Sun Q, Lin G. The role of antibody delivery formation in cancer therapy. J Drug Target 2020;28:574-84. [PMID: 32037905 DOI: 10.1080/1061186X.2020.1728537] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
42 de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2019;7:3534-51. [PMID: 31250854 DOI: 10.1039/c9bm00577c] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 30.5] [Reference Citation Analysis]
43 Penelas MJ, Contreras CB, Angelomé PC, Wolosiuk A, Azzaroni O, Soler-illia GJ. Light-Induced Polymer Response through Thermoplasmonics Transduction in Highly Monodisperse Core-Shell-Brush Nanosystems. Langmuir 2020;36:1965-74. [DOI: 10.1021/acs.langmuir.9b03065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
44 Zhan X, Nie X, Gao F, Zhang C, You Y, Yu Y. An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer. Biomater Sci 2020;8:5931-40. [DOI: 10.1039/d0bm01324b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
45 Meng Y, Han S, Gu Z, Wu J. Cysteine‐Based Biomaterials as Drug Nanocarriers. Adv Therap 2020;3:1900142. [DOI: 10.1002/adtp.201900142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
46 Yang Z, Ma Y, Zhao H, Yuan Y, Kim BYS. Nanotechnology platforms for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1590. [PMID: 31696664 DOI: 10.1002/wnan.1590] [Cited by in Crossref: 46] [Cited by in F6Publishing: 53] [Article Influence: 15.3] [Reference Citation Analysis]
47 Chen Y, Zhao J, Wang S, Zhang Z, Zhang J, Wang Y, Xie P. Photothermal Composite Nanomaterials for Multimodal Tumor Therapy under MRI Guidance. ChemistrySelect 2019;4:11156-64. [DOI: 10.1002/slct.201903481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
48 Xu Z, Huang X, Zhang MX, Chen W, Liu SH, Tan Y, Yin J. Tissue Imaging of Glutathione-Specific Naphthalimide-Cyanine Dye with Two-Photon and Near-Infrared Manners. Anal Chem 2019;91:11343-8. [PMID: 31386811 DOI: 10.1021/acs.analchem.9b02458] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
49 Mohammed F, Ke W, Mukerabigwi JF, M. Japir AAM, Ibrahim A, Wang Y, Zha Z, Lu N, Zhou M, Ge Z. ROS-Responsive Polymeric Nanocarriers with Photoinduced Exposure of Cell-Penetrating Moieties for Specific Intracellular Drug Delivery. ACS Appl Mater Interfaces 2019;11:31681-92. [DOI: 10.1021/acsami.9b10950] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
50 Li S, Liu J, Li G, Zhang X, Xu F, Fu Z, Teng L, Li Y, Sun F. Near-infrared light-responsive, pramipexole-loaded biodegradable PLGA microspheres for therapeutic use in Parkinson's disease. European Journal of Pharmaceutics and Biopharmaceutics 2019;141:1-11. [DOI: 10.1016/j.ejpb.2019.05.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
51 Zhang L, Qian M, Wang J, Xia J, Cui H, Chen Q. Nitrophenyl-engaged photocleavage of an amphiphilic copolymer for spatiotemporally controlled drug release. J Mater Sci 2019;54:13298-313. [DOI: 10.1007/s10853-019-03831-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Noreen H, Iqbal J, Arshad A, Faryal R, Ata-ur-rahman, Khattak R. Sunlight induced catalytic degradation of bromophenol blue and antibacterial performance of graphene nanoplatelets/polypyrrole nanocomposites. Journal of Solid State Chemistry 2019;275:141-8. [DOI: 10.1016/j.jssc.2019.03.045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
53 Kong M, Huang Y, Yu R, Xi J. Coordination bonding-based Fe3O4@PDA-Zn2+-doxorubicin nanoparticles for tumor chemo-photothermal therapy. Journal of Drug Delivery Science and Technology 2019;51:185-93. [DOI: 10.1016/j.jddst.2019.02.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
54 Wehler P, Di Ventura B. Engineering Optogenetic Control of Endogenous p53 Protein Levels. Applied Sciences 2019;9:2095. [DOI: 10.3390/app9102095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
55 Wu H, Zheng J, Kjøniksen AL, Wang W, Zhang Y, Ma J. Metallogels: Availability, Applicability, and Advanceability. Adv Mater 2019;31:e1806204. [PMID: 30680801 DOI: 10.1002/adma.201806204] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 26.0] [Reference Citation Analysis]
56 Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano‐Photosensitizers for Anticancer Phototherapies. Small 2019;15:1804927. [DOI: 10.1002/smll.201804927] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 32.3] [Reference Citation Analysis]
57 He W, Li P, Zhu Y, Liu M, Huang X, Qi H. An injectable silk fibroin nanofiber hydrogel hybrid system for tumor upconversion luminescence imaging and photothermal therapy. New J Chem 2019;43:2213-9. [DOI: 10.1039/c8nj05766d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
58 Pamfil D, Vasile C. Responsive Polymeric Nanotherapeutics. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00002-9] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Kemper KJ. “Let there be light.” Research on phototherapy, light therapy, and photobiomodulation for healing – Alternative therapy becomes mainstream. Complementary Therapies in Medicine 2018;41:A1-6. [DOI: 10.1016/j.ctim.2018.10.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
60 Lamch Ł, Pucek A, Kulbacka J, Chudy M, Jastrzębska E, Tokarska K, Bułka M, Brzózka Z, Wilk KA. Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Adv Colloid Interface Sci 2018;261:62-81. [PMID: 30262128 DOI: 10.1016/j.cis.2018.09.002] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
61 Hou X, Tao Y, Pang Y, Li X, Jiang G, Liu Y. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment: Nanoparticle-based phototherapies. Int J Cancer 2018;143:3050-60. [DOI: 10.1002/ijc.31717] [Cited by in Crossref: 98] [Cited by in F6Publishing: 105] [Article Influence: 24.5] [Reference Citation Analysis]
62 Hou Y, Zhou Z, Huang K, Yang H, Han G. Long Wavelength Light Activated Prodrug Conjugates for Biomedical Applications. ChemPhotoChem 2018;2:1005-11. [DOI: 10.1002/cptc.201800147] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
63 Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. Eur J Pharm Sci 2018;121:47-58. [PMID: 29777858 DOI: 10.1016/j.ejps.2018.05.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
64 Agrahari V, Agrahari V. Novel nanotherapeutic strategies: fabrication approaches, application and clinical challenges. Drug Discovery Today 2018;23:931-933. [DOI: 10.1016/j.drudis.2018.04.008] [Reference Citation Analysis]
65 Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for Cancer Therapy Based on Chemotherapy. Molecules 2018;23:E826. [PMID: 29617302 DOI: 10.3390/molecules23040826] [Cited by in Crossref: 137] [Cited by in F6Publishing: 150] [Article Influence: 34.3] [Reference Citation Analysis]
66 Huang Q, Li M, Wang L, Yuan H, Wang M, Wu Y, Li T. Synthesis of novel cyclodextrin-modified reduced graphene oxide composites by a simple hydrothermal method. RSC Adv 2018;8:37623-30. [DOI: 10.1039/c8ra07807f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]