BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao H, Bian X, Galligan JJ, Swain GM. Electrochemical measurements of serotonin (5-HT) release from the guinea pig mucosa using continuous amperometry with a boron-doped diamond microelectrode. Diamond and Related Materials 2010;19:182-5. [DOI: 10.1016/j.diamond.2009.10.004] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Duran B, Brocenschi RF, France M, Galligan JJ, Swain GM. Electrochemical activation of diamond microelectrodes: implications for the in vitro measurement of serotonin in the bowel. Analyst 2014;139:3160-6. [PMID: 24802953 DOI: 10.1039/c4an00506f] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
2 Moon JM, Thapliyal N, Hussain KK, Goyal RN, Shim YB. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens Bioelectron 2018;102:540-52. [PMID: 29220802 DOI: 10.1016/j.bios.2017.11.069] [Cited by in Crossref: 165] [Cited by in F6Publishing: 93] [Article Influence: 41.3] [Reference Citation Analysis]
3 Liu Y, Chen Y, Fan W, Cao P, Yan J, Zhao X, Dong W, Huang W. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem 2020;132:4104-10. [DOI: 10.1002/ange.201913953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017;8:252-64. [DOI: 10.1021/acschemneuro.6b00328] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
5 Fagan-murphy A, Patel BA. Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin. Electrochimica Acta 2014;138:392-9. [DOI: 10.1016/j.electacta.2014.06.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
6 MacEachern SJ, Keenan CM, Papakonstantinou E, Sharkey KA, Patel BA. Alterations in melatonin and 5-HT signalling in the colonic mucosa of mice with dextran-sodium sulfate-induced colitis. Br J Pharmacol 2018;175:1535-47. [PMID: 29447434 DOI: 10.1111/bph.14163] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
7 Fox K, Prawer S. Neural circuits and in vivo monitoring using diamond. Quantum Information Processing with Diamond. Elsevier; 2014. pp. 291-304. [DOI: 10.1533/9780857096685.2.291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
8 Patel AN, Unwin PR, Macpherson JV. Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 2013;15:18085. [DOI: 10.1039/c3cp53513d] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
9 Eifert A, Langenwalter P, Higl J, Lindén M, Nebel CE, Mizaikoff B, Kranz C. Focused ion beam (FIB)-induced changes in the electrochemical behavior of boron-doped diamond (BDD) electrodes. Electrochimica Acta 2014;130:418-25. [DOI: 10.1016/j.electacta.2014.03.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
10 Fan B, Rusinek CA, Thompson CH, Setien M, Guo Y, Rechenberg R, Gong Y, Weber AJ, Becker MF, Purcell E, Li W. Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsyst Nanoeng 2020;6:42. [PMID: 32685185 DOI: 10.1038/s41378-020-0155-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 15.0] [Reference Citation Analysis]
11 Bunyakul N, Promptmas C, Baeumner AJ. Microfluidic biosensor for cholera toxin detection in fecal samples. Anal Bioanal Chem 2015;407:727-36. [DOI: 10.1007/s00216-014-7947-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
12 Damodhar Ghime, Prabir Ghosh. Removal of Organic Compounds Found in the Wastewater through Electrochemical Advanced Oxidation Processes: A Review. Russ J Electrochem 2019;55:591-620. [DOI: 10.1134/s1023193519050057] [Cited by in Crossref: 14] [Article Influence: 7.0] [Reference Citation Analysis]
13 Bennet KE, Tomshine JR, Min HK, Manciu FS, Marsh MP, Paek SB, Settell ML, Nicolai EN, Blaha CD, Kouzani AZ, Chang SY, Lee KH. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain. Front Hum Neurosci 2016;10:102. [PMID: 27014033 DOI: 10.3389/fnhum.2016.00102] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 12.4] [Reference Citation Analysis]
14 Özcan A, İlkbaş S. Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry. Sensors and Actuators B: Chemical 2015;215:518-24. [DOI: 10.1016/j.snb.2015.03.100] [Cited by in Crossref: 41] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
15 Patel BA. Mucosal serotonin overflow is associated with colonic stretch rather than phasic contractions. Neurogastroenterol Motil 2016;28:914-23. [PMID: 26891254 DOI: 10.1111/nmo.12791] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
16 Eifert A, Mizaikoff B, Kranz C. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Micron 2015;68:27-35. [DOI: 10.1016/j.micron.2014.08.008] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
17 Birbeck JA, Mathews TA. Simultaneous Detection of Monoamine and Purine Molecules Using High-Performance Liquid Chromatography with a Boron-Doped Diamond Electrode. Anal Chem 2013;85:7398-404. [DOI: 10.1021/ac4013144] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
18 Trouillon R, Einaga Y, Gijs MA. Cathodic pretreatment improves the resistance of boron-doped diamond electrodes to dopamine fouling. Electrochemistry Communications 2014;47:92-5. [DOI: 10.1016/j.elecom.2014.07.028] [Cited by in Crossref: 27] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
19 Hamzah HH, Keattch O, Yeoman MS, Covill D, Patel BA. Three-Dimensional-Printed Electrochemical Sensor for Simultaneous Dual Monitoring of Serotonin Overflow and Circular Muscle Contraction. Anal Chem 2019;91:12014-20. [DOI: 10.1021/acs.analchem.9b02958] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
20 Marcelli G, Patel BA. Understanding changes in uptake and release of serotonin from gastrointestinal tissue using a novel electroanalytical approach. Analyst 2010;135:2340-7. [PMID: 20596571 DOI: 10.1039/c0an00260g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
21 Liu YL, Chen Y, Fan WT, Cao P, Yan J, Zhao XZ, Dong WG, Huang WH. Mechanical Distension Induces Serotonin Release from Intestine as Revealed by Stretchable Electrochemical Sensing. Angew Chem Int Ed Engl 2020;59:4075-81. [PMID: 31829491 DOI: 10.1002/anie.201913953] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
22 Liñán-Rico A, Wunderlich JE, Grants IS, Frankel WL, Xue J, Williams KC, Harzman AE, Enneking JT, Cooke HJ, Christofi FL. Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 2013;19:2366-79. [PMID: 23917247 DOI: 10.1097/MIB.0b013e31829ecf4d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
23 Zhao H, Sovadinova I, Swope VM, Swain GM, Kadrofske MM, Bian X. Postnatal development of the serotonin signaling system in the mucosa of the guinea pig ileum. Neurogastroenterol Motil 2011;23:161-8, e40. [PMID: 21226885 DOI: 10.1111/j.1365-2982.2010.01645.x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
24 Sharma S, Singh N, Tomar V, Chandra R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosensors and Bioelectronics 2018;107:76-93. [DOI: 10.1016/j.bios.2018.02.013] [Cited by in Crossref: 77] [Cited by in F6Publishing: 54] [Article Influence: 25.7] [Reference Citation Analysis]
25 Frederick van Staden J, Georgescu R, Stefan-van staden R, Calinescu I. Evaluation of Amperometric Dot Microsensors for the Analysis of Serotonin in Urine Samples. J Electrochem Soc 2014;161:B49-54. [DOI: 10.1149/2.034404jes] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
26 Parmar L, Fidalgo S, Yeoman MS, Patel BA. Chromatographic analysis of age-related changes in mucosal serotonin transmission in the murine distal ileum. Chem Cent J 2012;6:31. [PMID: 22494644 DOI: 10.1186/1752-153X-6-31] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
27 Asai K, Yamamoto T, Nagashima S, Ogata G, Hibino H, Einaga Y. An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond. Analyst 2020;145:544-9. [PMID: 31764923 DOI: 10.1039/c9an01976f] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Patel BA. Electroanalytical approaches to study signaling mechanisms in the gastrointestinal tract: Electroanalytical techniques. Neurogastroenterology & Motility 2011;23:595-605. [DOI: 10.1111/j.1365-2982.2011.01708.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
29 Fredj Z, Ali M, Singh B, Dempsey E. Simultaneous voltammetric detection of 5-hydroxyindole-3-acetic acid and 5-hydroxytryptamine using a glassy carbon electrode modified with conducting polymer and platinised carbon nanofibers. Mikrochim Acta 2018;185:412. [PMID: 30105543 DOI: 10.1007/s00604-018-2949-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
30 Sangsiri S, Xu H, Fernandes R, Fink GD, Lujan HL, DiCarlo SE, Galligan JJ. Spinal cord injury alters purinergic neurotransmission to mesenteric arteries in rats. Am J Physiol Heart Circ Physiol 2020;318:H223-37. [PMID: 31774690 DOI: 10.1152/ajpheart.00525.2019] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Peteu SF, Whitman BW, Galligan JJ, Swain GM. Electrochemical detection of peroxynitrite using hemin-PEDOT functionalized boron-doped diamond microelectrode. Analyst 2016;141:1796-806. [PMID: 26862713 DOI: 10.1039/c5an02587g] [Cited by in Crossref: 22] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
32 France M, Skorich E, Kadrofske M, Swain GM, Galligan JJ. Sex-related differences in small intestinal transit and serotonin dynamics in high-fat-diet-induced obesity in mice. Exp Physiol 2016;101:81-99. [PMID: 26381722 DOI: 10.1113/EP085427] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
33 Arumugam PU, Zeng H, Siddiqui S, Covey DP, Carlisle JA, Garris PA. Characterization of ultrananocrystalline diamond microsensors for in vivo dopamine detection. Appl Phys Lett 2013;102:253107. [PMID: 23918991 DOI: 10.1063/1.4811785] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
34 Harreither W, Trouillon R, Poulin P, Neri W, Ewing AG, Safina G. Cysteine residues reduce the severity of dopamine electrochemical fouling. Electrochimica Acta 2016;210:622-9. [DOI: 10.1016/j.electacta.2016.05.124] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
35 Abbaspour A, Noori A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 2011;26:4674-80. [PMID: 21715153 DOI: 10.1016/j.bios.2011.04.061] [Cited by in Crossref: 98] [Cited by in F6Publishing: 83] [Article Influence: 9.8] [Reference Citation Analysis]