BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tura A, Maran A, Pacini G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Research and Clinical Practice 2007;77:16-40. [DOI: 10.1016/j.diabres.2006.10.027] [Cited by in Crossref: 174] [Cited by in F6Publishing: 82] [Article Influence: 11.6] [Reference Citation Analysis]
Number Citing Articles
1 Li Z, Li G, Yan W, Lin L. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy. Infrared Physics & Technology 2014;67:574-82. [DOI: 10.1016/j.infrared.2014.09.040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 5] [Article Influence: 3.1] [Reference Citation Analysis]
2 Bandodkar AJ, Jia W, Wang J. Tattoo-Based Wearable Electrochemical Devices: A Review. Electroanalysis 2015;27:562-72. [DOI: 10.1002/elan.201400537] [Cited by in Crossref: 197] [Cited by in F6Publishing: 113] [Article Influence: 28.1] [Reference Citation Analysis]
3 Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011;57:e1-e47. [PMID: 21617152 DOI: 10.1373/clinchem.2010.161596] [Cited by in Crossref: 248] [Cited by in F6Publishing: 200] [Article Influence: 22.5] [Reference Citation Analysis]
4 Lundsgaard-Nielsen SM, Pors A, Banke SO, Henriksen JE, Hepp DK, Weber A. Critical-depth Raman spectroscopy enables home-use non-invasive glucose monitoring. PLoS One 2018;13:e0197134. [PMID: 29750797 DOI: 10.1371/journal.pone.0197134] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
5 Tierney R, Hermina W, Walsh S. The pharmaceutical technology landscape: A new form of technology roadmapping. Technological Forecasting and Social Change 2013;80:194-211. [DOI: 10.1016/j.techfore.2012.05.002] [Cited by in Crossref: 61] [Cited by in F6Publishing: 11] [Article Influence: 6.8] [Reference Citation Analysis]
6 Ding S, Schumacher M. Sensor Monitoring of Physical Activity to Improve Glucose Management in Diabetic Patients: A Review. Sensors (Basel). 2016;16:E589. [PMID: 27120602 DOI: 10.3390/s16040589] [Cited by in Crossref: 43] [Cited by in F6Publishing: 25] [Article Influence: 7.2] [Reference Citation Analysis]
7 Li G, Xu S, Zhou M, Zhang Q, Lin L. Noninvasive hemoglobin measurement based on optimizing Dynamic Spectrum method. Spectroscopy Letters 2017;50:164-70. [DOI: 10.1080/00387010.2017.1302481] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Flores-Guerrero JL, Muñoz-Morales A, Narea-Jimenez F, Perez-Fuentes R, Torres-Rasgado E, Ruiz-Vivanco G, Gonzalez-Viveros N, Castro-Ramos J. Novel Assessment of Urinary Albumin Excretion in Type 2 Diabetes Patients by Raman Spectroscopy. Diagnostics (Basel) 2020;10:E141. [PMID: 32138353 DOI: 10.3390/diagnostics10030141] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
9 Karyakin AA, Nikulina SV, Vokhmyanina DV, Karyakina EE, Anaev EK, Chuchalin AG. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochemistry Communications 2017;83:81-4. [DOI: 10.1016/j.elecom.2017.09.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
10 Takeuchi K, Kim B. Functionalized microneedles for continuous glucose monitoring. Nano Converg 2018;5:28. [PMID: 30467645 DOI: 10.1186/s40580-018-0161-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
11 Hoeg-jensen T. Design of Insulin Variants for Improved Treatment of Diabetes. In: Jensen KJ, editor. Peptide and Protein Design for Biopharmaceutical Applications. Chichester: John Wiley & Sons, Ltd; 2009. pp. 249-86. [DOI: 10.1002/9780470749708.ch7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
12 Lee SH, Cho YC, Bin Choy Y. Noninvasive Self-diagnostic Device for Tear Collection and Glucose Measurement. Sci Rep 2019;9:4747. [PMID: 30894582 DOI: 10.1038/s41598-019-41066-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
13 Vaddiraju S, Burgess DJ, Tomazos I, Jain FC, Papadimitrakopoulos F. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol 2010;4:1540-62. [PMID: 21129353 DOI: 10.1177/193229681000400632] [Cited by in Crossref: 167] [Cited by in F6Publishing: 121] [Article Influence: 13.9] [Reference Citation Analysis]
14 Porumb M, Stranges S, Pescapè A, Pecchia L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci Rep 2020;10:170. [PMID: 31932608 DOI: 10.1038/s41598-019-56927-5] [Cited by in Crossref: 37] [Cited by in F6Publishing: 21] [Article Influence: 18.5] [Reference Citation Analysis]
15 Zanon M, Sparacino G, Facchinetti A, Riz M, Talary MS, Suri RE, Caduff A, Cobelli C. Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the Multisensor system. Med Biol Eng Comput 2012;50:1047-57. [PMID: 22722898 DOI: 10.1007/s11517-012-0932-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
16 Minh TD, Oliver SR, Ngo J, Flores R, Midyett J, Meinardi S, Carlson MK, Rowland FS, Blake DR, Galassetti PR. Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects. Am J Physiol Endocrinol Metab 2011;300:E1166-75. [PMID: 21467303 DOI: 10.1152/ajpendo.00634.2010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 48] [Article Influence: 6.1] [Reference Citation Analysis]
17 Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for continuous glucose monitoring devices. Chem Rev 2013;113:2528-49. [PMID: 23387395 DOI: 10.1021/cr300387j] [Cited by in Crossref: 195] [Cited by in F6Publishing: 151] [Article Influence: 21.7] [Reference Citation Analysis]
18 Camou S. Phase Difference Optimization of Dual-Wavelength Excitation for the CW-Photoacoustic-Based Noninvasive and Selective Investigation of Aqueous Solutions of Glucose. Sensors (Basel) 2015;15:16358-71. [PMID: 26198230 DOI: 10.3390/s150716358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
19 Guo D, Zhang D, Zhang L, Lu G. Non-invasive blood glucose monitoring for diabetics by means of breath signal analysis. Sensors and Actuators B: Chemical 2012;173:106-13. [DOI: 10.1016/j.snb.2012.06.025] [Cited by in Crossref: 50] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
20 Guo X, Mandelis A, Zinman B. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry. Biomed Opt Express 2012;3:3012-21. [PMID: 23162736 DOI: 10.1364/BOE.3.003012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
21 Mandelis A, Guo X. Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water. Phys Rev E Stat Nonlin Soft Matter Phys 2011;84:041917. [PMID: 22181185 DOI: 10.1103/PhysRevE.84.041917] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kim S, Melikyan H, Kim J, Babajanyan A, Lee J, Enkhtur L, Friedman B, Lee K. Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor. Diabetes Research and Clinical Practice 2012;96:379-84. [DOI: 10.1016/j.diabres.2012.01.018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
23 Chen JY, Zhou Q, Xu G, Wang RT, Tai EG, Xie L, Zhang Q, Guan Y, Huang X. Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid-IR. Talanta 2019;197:211-7. [PMID: 30771926 DOI: 10.1016/j.talanta.2019.01.034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
24 Caduff A, Talary MS, Zakharov P. Cutaneous Blood Perfusion as a Perturbing Factor for Noninvasive Glucose Monitoring. Diabetes Technology & Therapeutics 2010;12:1-9. [DOI: 10.1089/dia.2009.0095] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
25 Hadar E, Chen R, Toledano Y, Tenenbaum-Gavish K, Atzmon Y, Hod M. Noninvasive, continuous, real-time glucose measurements compared to reference laboratory venous plasma glucose values. J Matern Fetal Neonatal Med 2019;32:3393-400. [PMID: 29635953 DOI: 10.1080/14767058.2018.1463987] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Goodarzi M, Sharma S, Ramon H, Saeys W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC Trends in Analytical Chemistry 2015;67:147-58. [DOI: 10.1016/j.trac.2014.12.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 28] [Article Influence: 10.3] [Reference Citation Analysis]
27 Shokrekhodaei M, Quinones S. Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors (Basel) 2020;20:E1251. [PMID: 32106464 DOI: 10.3390/s20051251] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 18.5] [Reference Citation Analysis]
28 Javid B, Fotouhi-Ghazvini F, Zakeri FS. Noninvasive Optical Diagnostic Techniques for Mobile Blood Glucose and Bilirubin Monitoring. J Med Signals Sens 2018;8:125-39. [PMID: 30181961 DOI: 10.4103/jmss.JMSS_8_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Tura A, Sbrignadello S, Cianciavicchia D, Pacini G, Ravazzani P. A low frequency electromagnetic sensor for indirect measurement of glucose concentration: in vitro experiments in different conductive solutions. Sensors (Basel) 2010;10:5346-58. [PMID: 22219665 DOI: 10.3390/s100605346] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
30 Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM; National Academy of Clinical Biochemistry., Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011;34:e61-99. [PMID: 21617108 DOI: 10.2337/dc11-9998] [Cited by in Crossref: 262] [Cited by in F6Publishing: 229] [Article Influence: 23.8] [Reference Citation Analysis]
31 Mccormick C, Heath D, Connolly P. Towards blood free measurement of glucose and potassium in humans using reverse iontophoresis. Sensors and Actuators B: Chemical 2012;166-167:593-600. [DOI: 10.1016/j.snb.2012.03.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
32 Scholtes-Timmerman MJ, Bijlsma S, Fokkert MJ, Slingerland R, van Veen SJ. Raman spectroscopy as a promising tool for noninvasive point-of-care glucose monitoring. J Diabetes Sci Technol 2014;8:974-9. [PMID: 25037192 DOI: 10.1177/1932296814543104] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
33 Arakawa T, Kuroki Y, Nitta H, Chouhan P, Toma K, Sawada S, Takeuchi S, Sekita T, Akiyoshi K, Minakuchi S, Mitsubayashi K. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens Bioelectron 2016;84:106-11. [PMID: 26725934 DOI: 10.1016/j.bios.2015.12.014] [Cited by in Crossref: 125] [Cited by in F6Publishing: 90] [Article Influence: 17.9] [Reference Citation Analysis]
34 Zilberstein G, Zilberstein R, Maor U, Righetti PG. Noninvasive wearable sensor for indirect glucometry. ELECTROPHORESIS 2018;39:2344-50. [DOI: 10.1002/elps.201700424] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
35 Guo X, Mandelis A, Zinman B. Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum: Application of MW-DPTR to nonivasive glucose detection in blood serum. J Biophoton 2013;6:911-9. [DOI: 10.1002/jbio.201200103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
36 Yu ZF, Pirnstill CW, Coté GL. Dual-modulation, dual-wavelength, optical polarimetry system for glucose monitoring. J Biomed Opt 2016;21:87001. [PMID: 27477078 DOI: 10.1117/1.JBO.21.8.087001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
37 Bai C, Graham TL, Arnold MA. Assessing and Advancing Technology for the Noninvasive Measurement of Clinical Glucose. Analytical Letters 2008;41:2773-93. [DOI: 10.1080/00032710802418885] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
38 Gusev M, Poposka L, Spasevski G, Kostoska M, Koteska B, Simjanoska M, Ackovska N, Stojmenski A, Tasic J, Trontelj J. Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability. Journal of Sensors 2020;2020:1-13. [DOI: 10.1155/2020/9628281] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
39 Stepanenko OV, Fonin AV, Stepanenko OV, Morozova KS, Verkhusha VV, Kuznetsova IM, Turoverov KK, Staiano M, D’auria S. New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the d -Galactose/ d -Glucose-Binding Protein from E. coli. J Phys Chem B 2011;115:9022-32. [DOI: 10.1021/jp204555h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
40 Gupta S, Sandhu SV, Bansal H, Sharma D. Comparison of salivary and serum glucose levels in diabetic patients. J Diabetes Sci Technol 2015;9:91-6. [PMID: 25294888 DOI: 10.1177/1932296814552673] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 6.1] [Reference Citation Analysis]
41 Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. Applied Spectroscopy Reviews 2019;54:543-72. [DOI: 10.1080/05704928.2018.1486324] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
42 Hau NY, Yang P, Liu C, Wang J, Lee PH, Feng SP. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties. Sci Rep 2017;7:39839. [PMID: 28045064 DOI: 10.1038/srep39839] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
43 Xue J, Chen H, Xiong D, Huang G, Ai H, Liang Y, Yan X, Gan Y, Chen C, Chao R, Ye L. Noninvasive measurement of glucose in artificial plasma with near-infrared and Raman spectroscopy. Appl Spectrosc 2014;68:428-33. [PMID: 24694699 DOI: 10.1366/13-07250] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
44 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
45 Pirnstill CW, Malik BH, Gresham VC, Coté GL. In vivo glucose monitoring using dual-wavelength polarimetry to overcome corneal birefringence in the presence of motion. Diabetes Technol Ther 2012;14:819-27. [PMID: 22691020 DOI: 10.1089/dia.2012.0070] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 2.9] [Reference Citation Analysis]
46 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
47 Sbrignadello S, Pacini G, Tura A. Determination of Glucose Levels during Dialysis Treatment: Different Sensors and Technologies. Journal of Sensors 2016;2016:1-8. [DOI: 10.1155/2016/8943095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
48 Teichert JF, Mazunin D, Bode JW. Chemical Sensing of Polyols with Shapeshifting Boronic Acids As a Self-Contained Sensor Array. J Am Chem Soc 2013;135:11314-21. [DOI: 10.1021/ja404981q] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 7.1] [Reference Citation Analysis]
49 Camou S, Haga T, Tajima T, Tamechika E. Detection of aqueous glucose based on a cavity size- and optical-wavelength-independent continuous-wave photoacoustic technique. Anal Chem 2012;84:4718-24. [PMID: 22548281 DOI: 10.1021/ac203331w] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
50 Cano-garcia H, Kosmas P, Sotiriou I, Papadopoulos-kelidis I, Parini C, Gouzouasis I, Palikaras G, Kallos E. Detection of glucose variability in saline solutions from transmission and reflection measurements using V-band waveguides. Meas Sci Technol 2015;26:125701. [DOI: 10.1088/0957-0233/26/12/125701] [Cited by in Crossref: 19] [Article Influence: 2.7] [Reference Citation Analysis]
51 Chen Y, Lu S, Zhang S, Li Y, Qu Z, Chen Y, Lu B, Wang X, Feng X. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017;3:e1701629. [PMID: 29279864 DOI: 10.1126/sciadv.1701629] [Cited by in Crossref: 158] [Cited by in F6Publishing: 100] [Article Influence: 31.6] [Reference Citation Analysis]
52 Cheng J, Ji Z, Li M, Dai J. Study of a noninvasive blood glucose detection model using the near-infrared light based on SA-NARX. Biomedical Signal Processing and Control 2020;56:101694. [DOI: 10.1016/j.bspc.2019.101694] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
53 Kalinke C, Wosgrau V, Oliveira PR, Oliveira GA, Martins G, Mangrich AS, Bergamini MF, Marcolino-junior LH. Green method for glucose determination using microfluidic device with a non-enzymatic sensor based on nickel oxyhydroxide supported at activated biochar. Talanta 2019;200:518-25. [DOI: 10.1016/j.talanta.2019.03.079] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
54 Melikyan H, Danielyan E, Kim S, Kim J, Babajanyan A, Lee J, Friedman B, Lee K. Non-invasive in vitro sensing of d-glucose in pig blood. Medical Engineering & Physics 2012;34:299-304. [DOI: 10.1016/j.medengphy.2011.07.020] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
55 Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
56 Tura A. Noninvasive glycaemia monitoring: background, traditional findings, and novelties in the recent clinical trials. Curr Opin Clin Nutr Metab Care 2008;11:607-12. [PMID: 18685457 DOI: 10.1097/MCO.0b013e328309ec3a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
57 Delgado-charro M. Recent advances on transdermal iontophoretic drug delivery and non-invasive sampling. Journal of Drug Delivery Science and Technology 2009;19:75-88. [DOI: 10.1016/s1773-2247(09)50015-9] [Cited by in Crossref: 11] [Article Influence: 0.8] [Reference Citation Analysis]
58 Saleh G, Alkaabi F, Al-Hajhouj N, Al-Towailib F, Al-Hamza S. Design of non-invasive glucose meter using near-infrared technique. J Med Eng Technol 2018;42:140-7. [PMID: 29498303 DOI: 10.1080/03091902.2018.1439114] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
59 Tura A, Sbrignadello S, Barison S, Conti S, Pacini G. Impedance spectroscopy of solutions at physiological glucose concentrations. Biophysical Chemistry 2007;129:235-41. [DOI: 10.1016/j.bpc.2007.06.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
60 Howsmon D, Bequette BW. Hypo- and Hyperglycemic Alarms: Devices and Algorithms. J Diabetes Sci Technol 2015;9:1126-37. [PMID: 25931581 DOI: 10.1177/1932296815583507] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
61 Belobrajdic DP, Wei J, Bird AR. A rat model for determining the postprandial response to foods. J Sci Food Agric 2017;97:1529-32. [PMID: 27404497 DOI: 10.1002/jsfa.7896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
62 Eltayib E, Brady AJ, Caffarel-Salvador E, Gonzalez-Vazquez P, Zaid Alkilani A, McCarthy HO, McElnay JC, Donnelly RF. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. Eur J Pharm Biopharm 2016;102:123-31. [PMID: 26969262 DOI: 10.1016/j.ejpb.2016.03.009] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 7.7] [Reference Citation Analysis]
63 Yadav J, Rani A, Singh V, Murari BM. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomedical Signal Processing and Control 2015;18:214-27. [DOI: 10.1016/j.bspc.2015.01.005] [Cited by in Crossref: 151] [Cited by in F6Publishing: 38] [Article Influence: 21.6] [Reference Citation Analysis]
64 Yang Y, Tseng T, Yeh J, Chen C, Lou S. Performance characteristic studies of glucose biosensors modified by (3-mercaptopropyl)trimethoxysilane sol–gel and non-conducting polyaniline. Sensors and Actuators B: Chemical 2008;131:533-40. [DOI: 10.1016/j.snb.2007.12.039] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
65 Camou S, Tamechika E. Simulation tool for the prediction of compound dependence of CW-photoacoustic-based sensor using dual optical excitation. Sensors and Actuators B: Chemical 2013;189:224-9. [DOI: 10.1016/j.snb.2013.04.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
66 Tura A, Sbrignadello S, Barison S, Conti S, Pacini G. Dielectric properties of water and blood samples with glucose at different concentrations. In: Jarm T, Kramar P, Zupanic A, editors. 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. Berlin: Springer Berlin Heidelberg; 2007. pp. 194-7. [DOI: 10.1007/978-3-540-73044-6_48] [Cited by in Crossref: 3] [Reference Citation Analysis]
67 Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, Al Hariri M, Lee YK, Jaffa AA. Recent advances in application of biosensors in tissue engineering. Biomed Res Int 2014;2014:307519. [PMID: 25165697 DOI: 10.1155/2014/307519] [Cited by in Crossref: 66] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
68 Karakostas K, Gkagkanis S, Katsaliaki K, Köllensperger P, Hatzopoulos A, Kiziroglou ME. Portable optical blood scattering sensor. Microelectronic Engineering 2019;217:111129. [DOI: 10.1016/j.mee.2019.111129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
69 Chadwick DT, Mcdonnell KP, Brennan LP, Fagan CC, Everard CD. Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review. Renewable and Sustainable Energy Reviews 2014;30:672-81. [DOI: 10.1016/j.rser.2013.11.006] [Cited by in Crossref: 44] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
70 Wang S, Sherlock T, Salazar B, Sudheendran N, Manapuram RK, Kourentzi K, Ruchhoeft P, Willson RC, Larin KV. Detection and Monitoring of Microparticles Under Skin by Optical Coherence Tomography as an Approach to Continuous Glucose Sensing Using Implanted Retroreflectors. IEEE Sens J 2013;13:4534-41. [PMID: 26413034 DOI: 10.1109/JSEN.2013.2270008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 1.9] [Reference Citation Analysis]
71 Villena Gonzales W, Mobashsher AT, Abbosh A. The Progress of Glucose Monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors (Basel) 2019;19:E800. [PMID: 30781431 DOI: 10.3390/s19040800] [Cited by in Crossref: 125] [Cited by in F6Publishing: 57] [Article Influence: 41.7] [Reference Citation Analysis]
72 Yadav J, Rani A, Singh V, Murari BM. Levenberg–Marquardt-Based Non-Invasive Blood Glucose Measurement System. IETE Journal of Research 2017;64:116-23. [DOI: 10.1080/03772063.2017.1351313] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Yum K, McNicholas TP, Mu B, Strano MS. Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. J Diabetes Sci Technol 2013;7:72-87. [PMID: 23439162 DOI: 10.1177/193229681300700109] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
74 Wainstein J, Chimin G, Landau Z, Boaz M, Jakubowicz D, Goddard G, Bar-dayan Y. The Use of a CoolSense Device to Lower Pain Sensation During Finger Pricking While Measuring Blood Glucose in Diabetes Patients—A Randomized Placebo. Diabetes Technology & Therapeutics 2013;15:688-94. [DOI: 10.1089/dia.2012.0278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
75 Mueller M, Grunze M, Leiter EH, Reifsnyder PC, Klueh U, Kreutzer D. Non-invasive glucose measurements in mice using mid-infrared emission spectroscopy. Sensors and Actuators B: Chemical 2009;142:502-8. [DOI: 10.1016/j.snb.2009.08.048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
76 Ramchandani N, Heptulla RA. New technologies for diabetes: a review of the present and the future. Int J Pediatr Endocrinol 2012;2012:28. [PMID: 23098076 DOI: 10.1186/1687-9856-2012-28] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
77 Shende P, Sahu P, Gaud R. A technology roadmap of smart biosensors from conventional glucose monitoring systems. Therapeutic Delivery 2017;8:411-23. [DOI: 10.4155/tde-2017-0012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
78 McGarraugh G. The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther 2009;11 Suppl 1:S17-24. [PMID: 19469674 DOI: 10.1089/dia.2008.0133] [Cited by in Crossref: 88] [Cited by in F6Publishing: 63] [Article Influence: 6.8] [Reference Citation Analysis]
79 O'Kane MJ, Pickup J. Self-monitoring of blood glucose in diabetes: is it worth it? Ann Clin Biochem 2009;46:273-82. [PMID: 19454538 DOI: 10.1258/acb.2009.009011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
80 Jintao X, Liming Y, Yufei L, Chunyan L, Han C. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2017;179:250-4. [PMID: 28259064 DOI: 10.1016/j.saa.2017.02.032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 13] [Article Influence: 5.8] [Reference Citation Analysis]
81 Minh Tdo C, Blake DR, Galassetti PR. The clinical potential of exhaled breath analysis for diabetes mellitus. Diabetes Res Clin Pract. 2012;97:195-205. [PMID: 22410396 DOI: 10.1016/j.diabres.2012.02.006] [Cited by in Crossref: 108] [Cited by in F6Publishing: 78] [Article Influence: 10.8] [Reference Citation Analysis]
82 Karpova EV, Karyakina EE, Karyakin AA. Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta 2020;215:120922. [DOI: 10.1016/j.talanta.2020.120922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
83 Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012;750:16-27. [PMID: 23062426 DOI: 10.1016/j.aca.2012.03.043] [Cited by in Crossref: 342] [Cited by in F6Publishing: 177] [Article Influence: 34.2] [Reference Citation Analysis]
84 Souza SL, Graça G, Oliva A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res Technol 2018;24:187-95. [DOI: 10.1111/srt.12412] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
85 Vashist SK, Zheng D, Al-rubeaan K, Luong JH, Sheu F. Technology behind commercial devices for blood glucose monitoring in diabetes management: A review. Analytica Chimica Acta 2011;703:124-36. [DOI: 10.1016/j.aca.2011.07.024] [Cited by in Crossref: 127] [Cited by in F6Publishing: 82] [Article Influence: 11.5] [Reference Citation Analysis]
86 Sparacino G, Zanon M, Facchinetti A, Zecchin C, Maran A, Cobelli C. Italian contributions to the development of continuous glucose monitoring sensors for diabetes management. Sensors (Basel) 2012;12:13753-80. [PMID: 23202020 DOI: 10.3390/s121013753] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
87 Pai PP, Sanki PK, Sarangi S, Banerjee S. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system. Rev Sci Instrum 2015;86:064901. [PMID: 26133859 DOI: 10.1063/1.4922416] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
88 Karakuş E, Pekyardımcı Ş, Kiliç E. Potentiometric glucose determination in human serum samples with glucose oxidase biosensor based on iodide electrode. Appl Biochem Microbiol 2013;49:194-8. [DOI: 10.1134/s0003683813020051] [Cited by in Crossref: 6] [Article Influence: 0.7] [Reference Citation Analysis]
89 Martini J, Kiesel P, Roe J, Bruce RH. Glucose concentration monitoring using a small Fabry-Pérot etalon. J Biomed Opt 2009;14:034029. [DOI: 10.1117/1.3153848] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]