BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou B, Zhang H, Xu Z, Tang Y. Interfacial polymerization on PES hollow fiber membranes using mixed diamines for nanofiltration removal of salts containing oxyanions and ferric ions. Desalination 2016;394:176-84. [DOI: 10.1016/j.desal.2016.05.016] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Wang S, Wu W, Yu H, Che R, Kang G, Cao Y. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation. Journal of Membrane Science 2022;659:120809. [DOI: 10.1016/j.memsci.2022.120809] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xiang H, Min X, Tang C, Sillanpää M, Zhao F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. Journal of Water Process Engineering 2022;49:103023. [DOI: 10.1016/j.jwpe.2022.103023] [Reference Citation Analysis]
3 Jin J, Du X, Yang J, Li K, Li J, Qin S, Yu J, He M. Designed loose nanofiltration membrane for efficient separation of low molecular dye/salt. J of Applied Polymer Sci 2022;139. [DOI: 10.1002/app.52715] [Reference Citation Analysis]
4 Tang C, Wang T, Zhang X, Wang R, He Z, Li Z, Wang XC. Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater. Bioresource Technology 2022. [DOI: 10.1016/j.biortech.2022.127755] [Reference Citation Analysis]
5 Chen K, Zhao S, Lan H, Xie T, Wang H, Chen Y, Li P, Sun H, Niu QJ, Yang C. Dual-electric layer nanofiltration membranes based on polyphenol/PEI interlayer for highly efficient Mg2+/Li+ separation. Journal of Membrane Science 2022. [DOI: 10.1016/j.memsci.2022.120860] [Reference Citation Analysis]
6 Mondal M, Raval HD. Removal of arsenic from water using a novel polyamide composite hollow fiber membrane by interfacial polymerization on lumen side. Journal of Environmental Chemical Engineering 2022;10:107843. [DOI: 10.1016/j.jece.2022.107843] [Reference Citation Analysis]
7 Choi O, Peck D, Park CH. High-performance nanofiltration of outer-selective thin-film composite hollow-fiber membranes via continuous interfacial polymerization. Journal of Industrial and Engineering Chemistry 2021;103:373-80. [DOI: 10.1016/j.jiec.2021.08.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tang CC, Zhang XY, Wang R, Wang TY, He ZW, Wang XC. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater. Environ Res 2021;:112228. [PMID: 34662574 DOI: 10.1016/j.envres.2021.112228] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
9 Zhang L, Zhang R, Ji M, Lu Y, Zhu Y, Jin J. Polyamide nanofiltration membrane with high mono/divalent salt selectivity via pre-diffusion interfacial polymerization. Journal of Membrane Science 2021;636:119478. [DOI: 10.1016/j.memsci.2021.119478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
10 Jiang Y, Li S, Su J, Lv X, Liu S, Su B. Two dimensional COFs as ultra-thin interlayer to build TFN hollow fiber nanofiltration membrane for desalination and heavy metal wastewater treatment. Journal of Membrane Science 2021;635:119523. [DOI: 10.1016/j.memsci.2021.119523] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
11 Cheng X, Qin Y, Ye Y, Chen X, Wang K, Zhang Y, Figoli A, Drioli E. Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chemical Engineering Journal 2021;417:127976. [DOI: 10.1016/j.cej.2020.127976] [Cited by in Crossref: 10] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
12 Worou CN, Chen Z, Bacharou T. Arsenic removal from water by nanofiltration membrane: potentials and limitations. Water Practice and Technology 2021;16:291-319. [DOI: 10.2166/wpt.2021.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
13 Yang Z, Fang W, Wang Z, Zhang R, Zhu Y, Jin J. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation. Journal of Membrane Science 2021;620:118862. [DOI: 10.1016/j.memsci.2020.118862] [Cited by in Crossref: 26] [Cited by in F6Publishing: 37] [Article Influence: 26.0] [Reference Citation Analysis]
14 Gao P, Xu S, Xu Z, Li P, Wu Y, Li L, Zhang H. High-Flux Fine Hollow Fiber Nanofiltration Membranes for the Purification of Drinking Water. Ind Eng Chem Res 2021;60:1817-28. [DOI: 10.1021/acs.iecr.0c05150] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
15 Mu T, Zhang H, Sun J, Xu Z. Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal. Separation and Purification Technology 2020;248:117133. [DOI: 10.1016/j.seppur.2020.117133] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
16 Tian L, Jiang Y, Li S, Han L, Su B. Graphene oxide interlayered thin-film nanocomposite hollow fiber nanofiltration membranes with enhanced aqueous electrolyte separation performance. Separation and Purification Technology 2020;248:117153. [DOI: 10.1016/j.seppur.2020.117153] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
17 Wang Q, Lu T, Yan X, Zhao L, Yin H, Xiong X, Zhou R, Sun S. Designing nanofiltration hollow fiber membranes based on dynamic deposition technology. Journal of Membrane Science 2020;610:118336. [DOI: 10.1016/j.memsci.2020.118336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
18 Xu S, Shen Q, Tong Y, Dong Z, Xu Z. GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling. Separation and Purification Technology 2020;240:116619. [DOI: 10.1016/j.seppur.2020.116619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
19 Xu S, Wang Z, Li S, Tian L, Su B. Fabrication of polyimide-based hollow fiber membrane by synergetic covalent-crosslinking strategy for organic solvent nanofiltration (OSN) application. Separation and Purification Technology 2020;241:116751. [DOI: 10.1016/j.seppur.2020.116751] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
20 Shintani T, Akamatsu K, Hamada S, Nakagawa K, Matsuyama H, Yoshioka T. Preparation of monoamine-incorporated polyamide nanofiltration membranes by interfacial polymerization for efficient separation of divalent anions from divalent cations. Separation and Purification Technology 2020;239:116530. [DOI: 10.1016/j.seppur.2020.116530] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
21 Echaide‐górriz C, Malankowska M, Téllez C, Coronas J. Nanofiltration thin‐film composite membrane on either the internal or the external surface of a polysulfone hollow fiber. AIChE J 2020;66. [DOI: 10.1002/aic.16970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Li H, Shi W, Zhang H, Zhou R, Qin X. Preparation of internally pressurized polyamide thin-film composite hollow fiber nanofiltration membrane with high ions selectivity by a facile coating method. Progress in Organic Coatings 2020;139:105456. [DOI: 10.1016/j.porgcoat.2019.105456] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
23 Zhang X, Liu C, Yang J, Zhu C, Zhang L, Xu Z. Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. Journal of Membrane Science 2020;593:117444. [DOI: 10.1016/j.memsci.2019.117444] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
24 Daneshvar H, Seyed Dorraji MS, Rasoulifard MH, Ahmadi A, Nooshiran-zadeh N. Tris(hydroxymethyl)aminomethane-grafted polyamine nanofiltration membrane: enhanced antifouling and pH resistant properties. New J Chem 2020;44:6321-30. [DOI: 10.1039/c9nj06352h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Yang Z, Guo H, Tang CY. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. Journal of Membrane Science 2019;590:117297. [DOI: 10.1016/j.memsci.2019.117297] [Cited by in Crossref: 134] [Cited by in F6Publishing: 180] [Article Influence: 44.7] [Reference Citation Analysis]
26 Qi Y, Zhu L, Shen X, Sotto A, Gao C, Shen J. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes. Separation and Purification Technology 2019;222:117-24. [DOI: 10.1016/j.seppur.2019.03.083] [Cited by in Crossref: 51] [Cited by in F6Publishing: 69] [Article Influence: 17.0] [Reference Citation Analysis]
27 Sum J, Ahmad A, Ooi B. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. Journal of Industrial and Engineering Chemistry 2019;76:277-87. [DOI: 10.1016/j.jiec.2019.03.052] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
28 Guo Y, Li S, Su B, Mandal B. Fluorine incorporation for enhancing solvent resistance of organic solvent nanofiltration membrane. Chemical Engineering Journal 2019;369:498-510. [DOI: 10.1016/j.cej.2019.03.044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
29 Bai L, Liu Y, Ding A, Ren N, Li G, Liang H. Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal. Chemical Engineering Journal 2019;358:1519-28. [DOI: 10.1016/j.cej.2018.10.147] [Cited by in Crossref: 78] [Cited by in F6Publishing: 99] [Article Influence: 26.0] [Reference Citation Analysis]
30 Halali MA, de Lannoy C. The Effect of Cross-Linkers on the Permeability of Electrically Conductive Membranes. Ind Eng Chem Res 2019;58:3832-44. [DOI: 10.1021/acs.iecr.8b05691] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
31 Wang H, Wei Z, Wang H, Jiang H, Li Y, Wu C. An acid-stable positively charged polysulfonamide nanofiltration membrane prepared by interfacial polymerization of polyallylamine and 1,3-benzenedisulfonyl chloride for water treatment. RSC Adv 2019;9:2042-54. [DOI: 10.1039/c8ra08369j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
32 Huang B, Ding H, Xu Z, Tang Y. Novel thin‐film composite nanofiltration membranes fabricated via the incorporation of ssDNA for highly efficient desalination. J Appl Polym Sci 2018;136:47102. [DOI: 10.1002/app.47102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
33 Yang Z, Zhou Z, Guo H, Yao Z, Ma X, Song X, Feng S, Tang CY. Tannic Acid/Fe 3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance. Environ Sci Technol 2018;52:9341-9. [DOI: 10.1021/acs.est.8b02425] [Cited by in Crossref: 123] [Cited by in F6Publishing: 173] [Article Influence: 30.8] [Reference Citation Analysis]
34 Tsai H, Chen Y, Huang S, Hu C, Hung W, Lee K, Lai J. Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization. Journal of Membrane Science 2018;551:261-72. [DOI: 10.1016/j.memsci.2018.01.059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
35 Park CH, Kwak SJ, Choi J, Lee K, Lee J. Fabrication of a pilot scale module of thin film composite hollow fiber membrane for osmotic pressure-driven processes. J Appl Polym Sci 2018;135:46110. [DOI: 10.1002/app.46110] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
36 Ruan H, Li B, Ji J, Sotto A, Van der Bruggen B, Shen J, Gao C. Preparation and characterization of an amphiphilic polyamide nanofiltration membrane with improved antifouling properties by two-step surface modification method. RSC Adv 2018;8:13353-63. [DOI: 10.1039/c8ra00637g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
37 Ren S, Liu D, Miao R, Zhu Z, Zhang Y. Composite Membrane with a Calixarene-Containing Polyamide Functional Layer. Aust J Chem 2018;71:360. [DOI: 10.1071/ch18038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
38 Sengur-tasdemir R, Sayinli B, Urper GM, Tutuncu HE, Gul-karaguler N, Ates-genceli E, Tarabara VV, Koyuncu I. Hollow fiber nanofiltration membranes with integrated aquaporin Z. New J Chem 2018;42:17769-78. [DOI: 10.1039/c8nj04367a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
39 Liu Y, Lin B, Liu W, Li J, Gao C, Pan Q. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance. RSC Adv 2018;8:36430-40. [DOI: 10.1039/c8ra06755d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
40 Zhang H, Xu Z, Ding H, Tang Y. Positively charged capillary nanofiltration membrane with high rejection for Mg2 + and Ca2 + and good separation for Mg2 + and Li +. Desalination 2017;420:158-66. [DOI: 10.1016/j.desal.2017.07.011] [Cited by in Crossref: 80] [Cited by in F6Publishing: 97] [Article Influence: 16.0] [Reference Citation Analysis]
41 Guo Y, Sun P, Wei J. New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors. Environmental Technology 2018;39:3159-68. [DOI: 10.1080/09593330.2017.1375023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
42 Tang Y, Xu Z, Xue S, Wei Y, Yang H. Improving the chlorine-tolerant ability of polypiperazine-amide nanofiltration membrane by adding NH 2 -PEG-NH 2 in the aqueous phase. Journal of Membrane Science 2017;538:9-17. [DOI: 10.1016/j.memsci.2017.05.049] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
43 Trivedi JS, Bera A, Jewrajka SK. Alkyl amine functional dextran macromonomer-based thin film composite loose nanofiltration membranes for separation of charged and neutral solutes. J Appl Polym Sci 2017;134:45301. [DOI: 10.1002/app.45301] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
44 Urper GM, Sengur-tasdemir R, Turken T, Ates Genceli E, Tarabara VV, Koyuncu I. Hollow fiber nanofiltration membranes: A comparative review of interfacial polymerization and phase inversion fabrication methods. Separation Science and Technology 2017;52:2120-36. [DOI: 10.1080/01496395.2017.1321668] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
45 Li H, Shi W, Su Y, Zhang H, Qin X. Preparation and characterization of carboxylated multiwalled carbon nanotube/polyamide composite nanofiltration membranes with improved performance. J Appl Polym Sci 2017;134:45268. [DOI: 10.1002/app.45268] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
46 Zhang H, Xu Z, Tang Y, Ding H. Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer. Journal of Membrane Science 2017;527:111-20. [DOI: 10.1016/j.memsci.2016.12.059] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
47 Liu S, Xu Z, Liu M, Wei Y, Guo F. Preparation and characterization of PES/CA microporous membranes via reverse thermally induced phase separation process. Polym Eng Sci 2018;58:180-91. [DOI: 10.1002/pen.24545] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
48 Tang H, He J, Hao L, Wang F, Zhang H, Guo Y. Developing nanofiltration membrane based on microporous poly(tetrafluoroethylene) substrates by bi-stretching process. Journal of Membrane Science 2017;524:612-22. [DOI: 10.1016/j.memsci.2016.11.030] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
49 Huang B, Xu Z, Ding H, Miao M, Tang Y. Antifouling sulfonated polyamide nanofiltration hollow fiber membrane prepared with mixed diamine monomers of BDSA and PIP. RSC Adv 2017;7:56629-37. [DOI: 10.1039/c7ra11632b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
50 Zha S, Gusnawan P, Zhang G, Liu N, Lee R, Yu J. Experimental study of PES/SiO 2 based TFC hollow fiber membrane modules for oilfield produced water desalination with low-pressure nanofiltration process. Journal of Industrial and Engineering Chemistry 2016;44:118-25. [DOI: 10.1016/j.jiec.2016.08.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]