BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017;23:27-36. [PMID: 28647083 DOI: 10.1016/j.ddtec.2017.03.002] [Cited by in Crossref: 150] [Cited by in F6Publishing: 140] [Article Influence: 30.0] [Reference Citation Analysis]
Number Citing Articles
1 Mei N, Zhao N, Tian T, Jiao M, Li C. Biological features, gene expression profile, and mechanisms of drug resistance of two- and three-dimensional hepatocellular carcinoma cell cultures. Pharmacol Res Perspect 2021;9:e00715. [PMID: 33486902 DOI: 10.1002/prp2.715] [Reference Citation Analysis]
2 Liu W, Sun M, Lu B, Yan M, Han K, Wang J. A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. Sensors and Actuators B: Chemical 2019;292:111-20. [DOI: 10.1016/j.snb.2019.04.121] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
3 Almela T, Tayebi L, Moharamzadeh K. 3D Bioprinting for In Vitro Models of Oral Cancer: Toward Development and Validation. Bioprinting 2021;22:e00132. [PMID: 34368488 DOI: 10.1016/j.bprint.2021.e00132] [Reference Citation Analysis]
4 Guzmán EAT, Sun Q, Meenach SA. Development and Evaluation of Paclitaxel-Loaded Aerosol Nanocomposite Microparticles and Their Efficacy Against Air-Grown Lung Cancer Tumor Spheroids. ACS Biomater Sci Eng 2019;5:6570-80. [PMID: 32133390 DOI: 10.1021/acsbiomaterials.9b00947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
5 Singhera F, Cooper E, Scampavia L, Spicer T. Using bead injection to model dispensing of 3-D multicellular spheroids into microtiter plates. Talanta 2018;177:74-6. [PMID: 29108585 DOI: 10.1016/j.talanta.2017.09.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
6 Durbin KR, Nottoli MS, Jenkins GJ. Effects of microtubule-inhibiting small molecule and antibody-drug conjugate treatment on differentially-sized A431 squamous carcinoma spheroids. Sci Rep 2020;10:907. [PMID: 31969631 DOI: 10.1038/s41598-020-57789-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021;9:785937. [PMID: 34926430 DOI: 10.3389/fbioe.2021.785937] [Reference Citation Analysis]
8 Wu YZ, Chen YH, Cheng CT, Ann DK, Kuo CY. Amino acid restriction induces a long non-coding RNA UBA6-AS1 to regulate GCN2-mediated integrated stress response in breast cancer. FASEB J 2022;36:e22201. [PMID: 35137449 DOI: 10.1096/fj.202101466R] [Reference Citation Analysis]
9 Domnina A, Ivanova J, Alekseenko L, Kozhukharova I, Borodkina A, Pugovkina N, Smirnova I, Lyublinskaya O, Fridlyanskaya I, Nikolsky N. Three-Dimensional Compaction Switches Stress Response Programs and Enhances Therapeutic Efficacy of Endometrial Mesenchymal Stem/Stromal Cells. Front Cell Dev Biol 2020;8:473. [PMID: 32612993 DOI: 10.3389/fcell.2020.00473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Zhao L, Mok S, Moraes C. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication 2019;11:045013. [DOI: 10.1088/1758-5090/ab30b4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
11 Decarli MC, de Castro MV, Nogueira JA, Nagahara MHT, Westin CB, de Oliveira ALR, Silva JVL, Moroni L, Mota C, Moraes ÂM. Development of a device useful to reproducibly produce large quantities of viable and uniform stem cell spheroids with controlled diameters. Materials Science and Engineering: C 2022. [DOI: 10.1016/j.msec.2022.112685] [Reference Citation Analysis]
12 Alshehri AM, Wilson OC, Dahal B, Philip J, Luo X, Raub CB. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs. Colloids and Surfaces B: Biointerfaces 2017;159:945-55. [DOI: 10.1016/j.colsurfb.2017.08.062] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
13 Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021;8:163. [PMID: 34821729 DOI: 10.3390/bioengineering8110163] [Reference Citation Analysis]
14 Redmond J, McCarthy H, Buchanan P, Levingstone TJ, Dunne NJ. Advances in biofabrication techniques for collagen-based 3D in vitro culture models for breast cancer research. Mater Sci Eng C Mater Biol Appl 2021;122:111944. [PMID: 33641930 DOI: 10.1016/j.msec.2021.111944] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. Biomed Res Int 2020;2020:6051210. [PMID: 32352002 DOI: 10.1155/2020/6051210] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
16 Henrique RBL, Lima RRM, Monteiro CAP, Oliveira WF, Pereira G, Cabral Filho PE, Fontes A. Advances in the study of spheroids as versatile models to evaluate biological interactions of inorganic nanoparticles. Life Sci 2022;:120657. [PMID: 35609631 DOI: 10.1016/j.lfs.2022.120657] [Reference Citation Analysis]
17 Jiang X, Ren L, Tebon P, Wang C, Zhou X, Qu M, Zhu J, Ling H, Zhang S, Xue Y, Wu Q, Bandaru P, Lee J, Kim HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Wu J, Gu Z, Sun W, Khademhosseini A. Cancer-on-a-Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. Small 2021;17:e2004282. [PMID: 33502118 DOI: 10.1002/smll.202004282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Kochanek SJ, Close DA, Johnston PA. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Assay Drug Dev Technol 2019;17:17-36. [PMID: 30592624 DOI: 10.1089/adt.2018.896] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
19 Kaur G, Evans DM, Teicher BA, Coussens NP. Complex Tumor Spheroids, a Tissue-Mimicking Tumor Model, for Drug Discovery and Precision Medicine. SLAS Discov 2021;26:1298-314. [PMID: 34772287 DOI: 10.1177/24725552211038362] [Reference Citation Analysis]
20 Tratnjek L, Sibinovska N, Kralj S, Makovec D, Kristan K, Kreft ME. Standardization of esophageal adenocarcinoma in vitro model and its applicability for model drug testing. Sci Rep 2021;11:6664. [PMID: 33758229 DOI: 10.1038/s41598-021-85530-w] [Reference Citation Analysis]
21 DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022;180:114067. [PMID: 34822927 DOI: 10.1016/j.addr.2021.114067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Wang G, An Y, Zhang X, Ding P, Bi H, Zhao Z. Chondrocyte Spheroids Laden in GelMA/HAMA Hybrid Hydrogel for Tissue-Engineered Cartilage with Enhanced Proliferation, Better Phenotype Maintenance, and Natural Morphological Structure. Gels 2021;7:247. [PMID: 34940307 DOI: 10.3390/gels7040247] [Reference Citation Analysis]
23 Mó I, Sabino IJ, Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. The importance of spheroids in analyzing nanomedicine efficacy. Nanomedicine (Lond) 2020;15:1513-25. [PMID: 32552537 DOI: 10.2217/nnm-2020-0054] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
24 Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, Feng M. Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma. ACS Nano 2019;13:1078-96. [PMID: 30608136 DOI: 10.1021/acsnano.8b08872] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
25 Sun M, Han K, Liu D, Hu R, Liu W. Microfluidics‐Molded Through‐Hole Membranes for 3D Culture Array‐Based Tumor Manipulation and Analysis. Adv Mater Technol 2020;5:2000084. [DOI: 10.1002/admt.202000084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Fujibayashi E, Yabuta N, Nishikawa Y, Uchihashi T, Miura D, Kurioka K, Tanaka S, Kogo M, Nojima H. Isolation of cancer cells with augmented spheroid-forming capability using a novel tool equipped with removable filter. Oncotarget 2018;9:33931-46. [PMID: 30338036 DOI: 10.18632/oncotarget.26092] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Li Z, Langhans SA. In Vivo and Ex Vivo Pediatric Brain Tumor Models: An Overview. Front Oncol 2021;11:620831. [PMID: 33869004 DOI: 10.3389/fonc.2021.620831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Lara S, Heilig J, Virtanen A, Kleinau S. Exploring complement-dependent cytotoxicity by rituximab isotypes in 2D and 3D-cultured B-cell lymphoma. BMC Cancer 2022;22:678. [PMID: 35725455 DOI: 10.1186/s12885-022-09772-1] [Reference Citation Analysis]
29 Wang T, Wang L, Wang G, Zhuang Y. Leveraging and manufacturing in vitro multicellular spheroid-based tumor cell model as a preclinical tool for translating dysregulated tumor metabolism into clinical targets and biomarkers. Bioresour Bioprocess 2020;7. [DOI: 10.1186/s40643-020-00325-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
30 Yang W, Cai S, Yuan Z, Lai Y, Yu H, Wang Y, Liu L. Mask-free generation of multicellular 3D heterospheroids array for high-throughput combinatorial anti-cancer drug screening. Materials & Design 2019;183:108182. [DOI: 10.1016/j.matdes.2019.108182] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 4.7] [Reference Citation Analysis]
31 Shoval H, Karsch-Bluman A, Brill-Karniely Y, Stern T, Zamir G, Hubert A, Benny O. Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Sci Rep 2017;7:10428. [PMID: 28874803 DOI: 10.1038/s41598-017-10699-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 8.2] [Reference Citation Analysis]
32 Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, Guo Y, Wu M, Chen Y, Li W, Wang J, Du Y. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials 2019;198:167-79. [PMID: 29807624 DOI: 10.1016/j.biomaterials.2018.05.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
33 Tomás RMF, Gibson MI. Covalent cell surface recruitment of chemotherapeutic polymers enhances selectivity and activity. Chem Sci 2021;12:4557-69. [PMID: 34163721 DOI: 10.1039/d0sc06580c] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Antunes N, Kundu B, Kundu SC, Reis RL, Correlo V. In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering 2022;9:166. [DOI: 10.3390/bioengineering9040166] [Reference Citation Analysis]
35 Aranda-Tavío H, Recio C, Martín-Acosta P, Guerra-Rodríguez M, Brito-Casillas Y, Blanco R, Junco V, León J, Montero JC, Gandullo-Sánchez L, McNaughton-Smith G, Zapata JM, Pandiella A, Amesty A, Estévez-Braun A, Fernández-Pérez L, Guerra B. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother 2021;144:112330. [PMID: 34673425 DOI: 10.1016/j.biopha.2021.112330] [Reference Citation Analysis]
36 Sargenti A, Musmeci F, Bacchi F, Delprete C, Cristaldi DA, Cannas F, Bonetti S, Pasqua S, Gazzola D, Costa D, Villa F, Zocchi MR, Poggi A. Physical Characterization of Colorectal Cancer Spheroids and Evaluation of NK Cell Infiltration Through a Flow-Based Analysis. Front Immunol 2020;11:564887. [PMID: 33424829 DOI: 10.3389/fimmu.2020.564887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
37 Niora M, Pedersbæk D, Münter R, Weywadt MFV, Farhangibarooji Y, Andresen TL, Simonsen JB, Jauffred L. Head-to-Head Comparison of the Penetration Efficiency of Lipid-Based Nanoparticles into Tumor Spheroids. ACS Omega 2020;5:21162-71. [PMID: 32875252 DOI: 10.1021/acsomega.0c02879] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
38 Condello M, Pellegrini E, Spugnini EP, Baldi A, Amadio B, Vincenzi B, Occhionero G, Delfine S, Mastrodonato F, Meschini S. Anticancer activity of "Trigno M", extract of Prunus spinosa drupes, against in vitro 3D and in vivo colon cancer models. Biomed Pharmacother 2019;118:109281. [PMID: 31377469 DOI: 10.1016/j.biopha.2019.109281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Nguyen-thi L, Nguyen ST, Tran TP, Phan-lu C, Van Pham P, The Van T. Anti-cancer Effect of Xao Tam Phan Paramignya trimera Methanol Root Extract on Human Breast Cancer Cell Line MCF-7 in 3D Model. In: Pham PV, editor. Cancer Biology and Advances in Treatment. Cham: Springer International Publishing; 2020. pp. 13-25. [DOI: 10.1007/5584_2018_148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zanoni M, Pignatta S, Arienti C, Bonafè M, Tesei A. Anticancer drug discovery using multicellular tumor spheroid models. Expert Opin Drug Discov 2019;14:289-301. [PMID: 30689452 DOI: 10.1080/17460441.2019.1570129] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 10.7] [Reference Citation Analysis]
41 Tofani LB, Abriata JP, Luiz MT, Marchetti JM, Swiech K. Establishment and characterization of an in vitro 3D ovarian cancer model for drug screening assays. Biotechnol Progress 2020;36. [DOI: 10.1002/btpr.3034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 Ohya S, Kajikuri J, Endo K, Kito H, Elboray EE, Suzuki T. Ca2+ -activated K+ channel KCa 1.1 as a therapeutic target to overcome chemoresistance in three-dimensional sarcoma spheroid models. Cancer Sci 2021;112:3769-83. [PMID: 34181803 DOI: 10.1111/cas.15046] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Cascioferro S, Petri GL, Parrino B, Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D, Peters GJ, Cirrincione G, Giovannetti E, Diana P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem 2020;189:112088. [PMID: 32007666 DOI: 10.1016/j.ejmech.2020.112088] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
44 Singh M, Tian XJ, Donnenberg VS, Watson AM, Zhang J, Stabile LP, Watkins SC, Xing J, Sant S. Targeting the Temporal Dynamics of Hypoxia-Induced Tumor-Secreted Factors Halts Tumor Migration. Cancer Res 2019;79:2962-77. [PMID: 30952634 DOI: 10.1158/0008-5472.CAN-18-3151] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
45 Dunn E, Chitcholtan K, Sykes P, Garrill A. The Anti-Proliferative Effect of PI3K/mTOR and ERK Inhibition in Monolayer and Three-Dimensional Ovarian Cancer Cell Models. Cancers 2022;14:395. [DOI: 10.3390/cancers14020395] [Reference Citation Analysis]
46 Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA, Lara-Mayorga IM, González-Gamboa I, Zhang YS, Rojas-Martínez A, Ortiz-López R, Álvarez MM. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Materials (Basel) 2019;12:E2945. [PMID: 31514390 DOI: 10.3390/ma12182945] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
47 Liu W, Liu D, Hu R, Huang Z, Sun M, Han K. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation. Analyst 2020;145:6447-55. [PMID: 33043931 DOI: 10.1039/d0an01229g] [Reference Citation Analysis]
48 Srisongkram T, Weerapreeyakul N, Thumanu K. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy. Int J Mol Sci 2020;21:E4141. [PMID: 32531986 DOI: 10.3390/ijms21114141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Calpe B, Kovacs WJ. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opin Drug Discov 2020;15:955-67. [PMID: 32364413 DOI: 10.1080/17460441.2020.1756769] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Zhai J, Yi S, Jia Y, Mak P, Martins RP. Cell-based drug screening on microfluidics. TrAC Trends in Analytical Chemistry 2019;117:231-41. [DOI: 10.1016/j.trac.2019.05.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 5.3] [Reference Citation Analysis]
51 Aguilar Cosme JR, Gagui DC, Bryant HE, Claeyssens F. Morphological Response in Cancer Spheroids for Screening Photodynamic Therapy Parameters. Front Mol Biosci 2021;8:784962. [PMID: 34869604 DOI: 10.3389/fmolb.2021.784962] [Reference Citation Analysis]
52 Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol 2020;13:97. [PMID: 32677979 DOI: 10.1186/s13045-020-00931-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
53 Bustamante P, Piquet L, Landreville S, Burnier JV. Uveal melanoma pathobiology: Metastasis to the liver. Semin Cancer Biol 2021;71:65-85. [PMID: 32450140 DOI: 10.1016/j.semcancer.2020.05.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 Li C, Torres VC, He Y, Xu X, Basheer Y, Papavasiliou G, Samkoe KS, Brankov JG, Tichauer KM. Intraoperative Detection of Micrometastases in Whole Excised Lymph Nodes Using Fluorescent Paired-Agent Imaging Principles: Identification of a Suitable Staining and Rinsing Protocol. Mol Imaging Biol 2021;23:537-49. [PMID: 33591478 DOI: 10.1007/s11307-021-01587-z] [Reference Citation Analysis]
55 Förster N, Butke J, Keßel HE, Bendt F, Pahl M, Li L, Fan X, Leung PC, Klose J, Masjosthusmann S, Fritsche E, Mosig A. Reliable identification and quantification of neural cells in microscopic images of neurospheres. Cytometry A 2021. [PMID: 34747115 DOI: 10.1002/cyto.a.24514] [Reference Citation Analysis]
56 Shan F, Close DA, Camarco DP, Johnston PA. High-Content Screening Comparison of Cancer Drug Accumulation and Distribution in Two-Dimensional and Three-Dimensional Culture Models of Head and Neck Cancer. Assay Drug Dev Technol 2018;16:27-50. [PMID: 29215913 DOI: 10.1089/adt.2017.812] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
57 Chang FC, Levengood SL, Cho N, Chen L, Wang E, Yu JS, Zhang M. Crosslinked Chitosan-PEG Hydrogel for Culture of Human Glioblastoma Cell Spheroids and Drug Screening. Adv Ther (Weinh) 2018;1:1800058. [PMID: 31435500 DOI: 10.1002/adtp.201800058] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
58 Randall MJ, Jüngel A, Rimann M, Wuertz-Kozak K. Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Front Bioeng Biotechnol 2018;6:154. [PMID: 30430109 DOI: 10.3389/fbioe.2018.00154] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
59 Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. ACS Biomater Sci Eng 2021;7:5288-300. [PMID: 34661396 DOI: 10.1021/acsbiomaterials.1c00812] [Reference Citation Analysis]
60 Molina ER, Chim LK, Barrios S, Ludwig JA, Mikos AG. Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma. Tissue Eng Part B Rev 2020;26:249-71. [PMID: 32057288 DOI: 10.1089/ten.teb.2019.0302] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
61 Niu H, Xiao J, Lou X, Guo L, Zhang Y, Yang R, Yang H, Wang S, Niu F. Three-Dimensional Silk Fibroin/Chitosan Based Microscaffold for Anticancer Drug Screening. Front Bioeng Biotechnol 2022;10:800830. [DOI: 10.3389/fbioe.2022.800830] [Reference Citation Analysis]
62 Mirbagheri M, Adibnia V, Hughes BR, Waldman SD, Banquy X, Hwang DK. Advanced cell culture platforms: a growing quest for emulating natural tissues. Mater Horiz 2019;6:45-71. [DOI: 10.1039/c8mh00803e] [Cited by in Crossref: 67] [Cited by in F6Publishing: 3] [Article Influence: 22.3] [Reference Citation Analysis]
63 Benchaib MA, Bouchnita A, Volpert V, Makhoute A. Mathematical Modeling Reveals That the Administration of EGF Can Promote the Elimination of Lymph Node Metastases by PD-1/PD-L1 Blockade. Front Bioeng Biotechnol 2019;7:104. [PMID: 31157216 DOI: 10.3389/fbioe.2019.00104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
64 Reddy TS, Pooja D, Privér SH, Luwor RB, Mirzadeh N, Ramesan S, Ramakrishna S, Karri S, Kuncha M, Bhargava SK. Potent and Selective Cytotoxic and Anti-inflammatory Gold(III) Compounds Containing Cyclometalated Phosphine Sulfide Ligands. Chemistry 2019;25:14089-100. [PMID: 31414501 DOI: 10.1002/chem.201903388] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
65 Lei L, Ma B, Xu C, Liu H. Emerging Tumor-on-Chips with Electrochemical Biosensors. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116640] [Reference Citation Analysis]
66 Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021;121:11085-148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zhang M, Vandana JJ, Lacko L, Chen S. Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020;49:102063. [PMID: 33137568 DOI: 10.1016/j.scr.2020.102063] [Reference Citation Analysis]
68 Ardila DC, Aggarwal V, Singh M, Chattopadhyay A, Chaparala S, Sant S. Identifying Molecular Signatures of Distinct Modes of Collective Migration in Response to the Microenvironment Using Three-Dimensional Breast Cancer Models. Cancers (Basel) 2021;13:1429. [PMID: 33804802 DOI: 10.3390/cancers13061429] [Reference Citation Analysis]
69 Liu C, Lewin Mejia D, Chiang B, Luker KE, Luker GD. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Acta Biomater 2018;75:213-25. [PMID: 29879553 DOI: 10.1016/j.actbio.2018.06.003] [Cited by in Crossref: 70] [Cited by in F6Publishing: 55] [Article Influence: 17.5] [Reference Citation Analysis]
70 Guillaume L, Rigal L, Fehrenbach J, Severac C, Ducommun B, Lobjois V. Characterization of the physical properties of tumor-derived spheroids reveals critical insights for pre-clinical studies. Sci Rep 2019;9:6597. [PMID: 31036886 DOI: 10.1038/s41598-019-43090-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
71 El-Sadek IA, Miyazawa A, Shen LT, Makita S, Mukherjee P, Lichtenegger A, Matsusaka S, Yasuno Y. Three-dimensional dynamics optical coherence tomography for tumor spheroid evaluation. Biomed Opt Express 2021;12:6844-63. [PMID: 34858684 DOI: 10.1364/BOE.440444] [Reference Citation Analysis]
72 Lamberti MJ, Rettel M, Krijgsveld J, Rivarola VA, Rumie Vittar NB. Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol (Dordr) 2019;42:173-96. [PMID: 30756254 DOI: 10.1007/s13402-018-00418-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
73 Ramadhan W, Kagawa G, Moriyama K, Wakabayashi R, Minamihata K, Goto M, Kamiya N. Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel. Sci Rep 2020;10:6710. [PMID: 32317652 DOI: 10.1038/s41598-020-63362-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
74 Priester MI, Curto S, van Rhoon GC, Ten Hagen TLM. External Basic Hyperthermia Devices for Preclinical Studies in Small Animals. Cancers (Basel) 2021;13:4628. [PMID: 34572855 DOI: 10.3390/cancers13184628] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Ndyabawe K, Haidekker M, Asthana A, Kisaalita WS. Spheroid Trapping and Calcium Spike Estimation Techniques toward Automation of 3D Culture. SLAS Technol 2021;26:265-73. [PMID: 32672140 DOI: 10.1177/2472630320938319] [Reference Citation Analysis]
76 Kakimoto M, Yamamoto H, Tanaka AR. Spermine synthesis inhibitor blocks 25-hydroxycholesterol-induced- apoptosis via SREBP2 upregulation in DLD-1 cell spheroids. Biochem Biophys Rep 2020;22:100754. [PMID: 32258442 DOI: 10.1016/j.bbrep.2020.100754] [Reference Citation Analysis]
77 Wagner M, Koyasu S. A 3D Skin Melanoma Spheroid-Based Model to Assess Tumor-Immune Cell Interactions. Bio Protoc 2020;10:e3839. [PMID: 33659488 DOI: 10.21769/BioProtoc.3839] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Grayson KA, Jyotsana N, Ortiz-Otero N, King MR. Overcoming TRAIL-resistance by sensitizing prostate cancer 3D spheroids with taxanes. PLoS One 2021;16:e0246733. [PMID: 33661931 DOI: 10.1371/journal.pone.0246733] [Reference Citation Analysis]
79 Too NSH, Ho NCW, Adine C, Iyer NG, Fong ELS. Hot or cold: Bioengineering immune contextures into in vitro patient-derived tumor models. Adv Drug Deliv Rev 2021;175:113791. [PMID: 33965462 DOI: 10.1016/j.addr.2021.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Sogomonyan AS, Shipunova VO, Soloviev VD, Larionov VI, Kotelnikova PA, Deyev SM. 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro. Acta Naturae 2022;14:92-100. [PMID: 35441052 DOI: 10.32607/actanaturae.11603] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, De Souza P, Dong Q, Xu H. Towards a Framework for Better Understanding of Quiescent Cancer Cells. Cells 2021;10:562. [PMID: 33807533 DOI: 10.3390/cells10030562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Neureiter D, Stintzing S, Kiesslich T, Ocker M. Hepatocellular carcinoma: Therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 2019; 25(25): 3136-3150 [PMID: 31333307 DOI: 10.3748/wjg.v25.i25.3136] [Cited by in CrossRef: 27] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
83 Smithen DA, Monro S, Pinto M, Roque J 3rd, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020;11:12047-69. [PMID: 33738086 DOI: 10.1039/d0sc04500d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
84 Ramadhan W, Ohama Y, Minamihata K, Moriyama K, Wakabayashi R, Goto M, Kamiya N. Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. J Biosci Bioeng 2020;130:416-23. [PMID: 32636145 DOI: 10.1016/j.jbiosc.2020.05.010] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Kim TY, Kofron CM, King ME, Markes AR, Okundaye AO, Qu Z, Mende U, Choi BR. Directed fusion of cardiac spheroids into larger heterocellular microtissues enables investigation of cardiac action potential propagation via cardiac fibroblasts. PLoS One 2018;13:e0196714. [PMID: 29715271 DOI: 10.1371/journal.pone.0196714] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
86 Diaz-Aragon R, Ramirez-Ricardo J, Cortes-Reynosa P, Simoni-Nieves A, Gomez-Quiroz LE, Perez Salazar E. Role of phospholipase D in migration and invasion induced by linoleic acid in breast cancer cells. Mol Cell Biochem 2019;457:119-32. [PMID: 30877512 DOI: 10.1007/s11010-019-03517-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
87 Goričan L, Gole B, Potočnik U. Head and Neck Cancer Stem Cell-Enriched Spheroid Model for Anticancer Compound Screening. Cells 2020;9:E1707. [PMID: 32708734 DOI: 10.3390/cells9071707] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Malhão F, Ramos AA, Macedo AC, Rocha E. Cytotoxicity of Seaweed Compounds, Alone or Combined to Reference Drugs, against Breast Cell Lines Cultured in 2D and 3D. Toxics 2021;9:24. [PMID: 33572635 DOI: 10.3390/toxics9020024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Blanco-Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Adv Sci (Weinh) 2021;8:2003129. [PMID: 33643799 DOI: 10.1002/advs.202003129] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
90 Carter AC, King JB, Mattes AO, Cai S, Singh N, Cichewicz RH. Natural-Product-Inspired Compounds as Countermeasures against the Liver Carcinogen Aflatoxin B1. J Nat Prod 2019;82:1694-703. [PMID: 31136174 DOI: 10.1021/acs.jnatprod.9b00290] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Bassi G, Grimaudo MA, Panseri S, Montesi M. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021;22:1195. [PMID: 33530487 DOI: 10.3390/ijms22031195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
92 Luo Y, Chen Z, Hsieh N, Lin T. Chemical and biological assessments of environmental mixtures: A review of current trends, advances, and future perspectives. Journal of Hazardous Materials 2022;432:128658. [DOI: 10.1016/j.jhazmat.2022.128658] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Rozhina E, Batasheva S, Gomzikova M, Naumenko E, Fakhrullin R. Multicellular spheroids formation: The synergistic effects of halloysite nanoclay and cationic magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;565:16-24. [DOI: 10.1016/j.colsurfa.2018.12.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
94 Close DA, Johnston PA. Detection and impact of hypoxic regions in multicellular tumor spheroid cultures formed by head and neck squamous cell carcinoma cells lines. SLAS Discov 2022;27:39-54. [PMID: 35058175 DOI: 10.1016/j.slasd.2021.10.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
95 Srinivasa Reddy T, Privér SH, Rao VV, Mirzadeh N, Bhargava SK. Gold( i ) and gold( iii ) phosphine complexes: synthesis, anticancer activities towards 2D and 3D cancer models, and apoptosis inducing properties. Dalton Trans 2018;47:15312-23. [DOI: 10.1039/c8dt01724g] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
96 Bhattacharya S, Calar K, de la Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res 2020;39:75. [PMID: 32357910 DOI: 10.1186/s13046-020-01583-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
97 Negron K, Khalasawi N, Lu B, Ho CY, Lee J, Shenoy S, Mao HQ, Wang TH, Hanes J, Suk JS. Widespread gene transfer to malignant gliomas with In vitro-to-In vivo correlation. J Control Release 2019;303:1-11. [PMID: 30978431 DOI: 10.1016/j.jconrel.2019.04.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
98 Ha J, Lee S, Park J, Seo J, Kang E, Yoon H, Kim BR, Lee HK, Ryu SE, Cho S. Identification of a novel inhibitor of liver cancer cell invasion and proliferation through regulation of Akt and Twist1. Sci Rep 2021;11:16765. [PMID: 34408201 DOI: 10.1038/s41598-021-95933-4] [Reference Citation Analysis]
99 Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep (Hoboken) 2019;2:e1229. [PMID: 32729258 DOI: 10.1002/cnr2.1229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
100 Premaratne ID, Toyoda Y, Celie K, Brown KA, Spector JA. Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. Tissue Engineering Part B: Reviews 2020;26:423-42. [DOI: 10.1089/ten.teb.2019.0347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
101 Khan MH, Cai M, Deng J, Yu P, Liang H, Yang F. Anticancer Function and ROS-Mediated Multi-Targeting Anticancer Mechanisms of Copper (II) 2-hydroxy-1-naphthaldehyde Complexes. Molecules 2019;24:E2544. [PMID: 31336900 DOI: 10.3390/molecules24142544] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
102 Kim DE, Lee YB, Shim HE, Song JJ, Han JS, Moon KS, Huh KM, Kang SW. Application of Hexanoyl Glycol Chitosan as a Non-cell Adhesive Polymer in Three-Dimensional Cell Culture. ACS Omega 2022;7:18471-80. [PMID: 35694497 DOI: 10.1021/acsomega.2c00890] [Reference Citation Analysis]
103 Varesano S, Zocchi MR, Poggi A. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures. Front Immunol 2018;9:998. [PMID: 29867975 DOI: 10.3389/fimmu.2018.00998] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
104 Kochanek SJ, Close DA, Camarco DP, Johnston PA. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines. SLAS Discov 2020;25:329-49. [PMID: 31983262 DOI: 10.1177/2472555219896999] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
105 Sivakumar S, Schmid R, Wieland A, Strissel PL, Strick R, Fischer L, Thievessen I, Kataev E, Arkudas A, Horch RE, Schubert DW, Kengelbach‐weigand A. Role of Fiber Thickness and Surface Treatment of Electrospun Polycaprolactone Matrices on the Growth of Different Breast Cancer‐Associated Cells. Adv Materials Inter 2022;9:2101808. [DOI: 10.1002/admi.202101808] [Reference Citation Analysis]
106 Wu X, Seraia E, Hatch SB, Wan X, Ebner DV, Aroldi F, Jiang Y, Ryan AJ, Bogenrieder T, Weyer-Czernilofsky U, Rieunier G, Macaulay VM. CHK1 inhibition exacerbates replication stress induced by IGF blockade. Oncogene 2021. [PMID: 34773074 DOI: 10.1038/s41388-021-02080-1] [Reference Citation Analysis]
107 Quilles Jr JC, Bernardi MD, Batista PH, Silva SC, Rocha CM, Montanari CA, Leitão A. Biological Activity and Physicochemical Properties of Dipeptidyl Nitrile Derivatives Against Pancreatic Ductal Adenocarcinoma Cells. ACAMC 2019;19:112-20. [DOI: 10.2174/1871520618666181029141649] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
108 Farhat J, Pandey I, AlWahsh M. Transcending toward Advanced 3D-Cell Culture Modalities: A Review about an Emerging Paradigm in Translational Oncology. Cells 2021;10:1657. [PMID: 34359827 DOI: 10.3390/cells10071657] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
109 Krishnan MA, Yadav K, Chelvam V. Agarose Micro-Well Platform for Rapid Generation of Homogenous 3D Tumor Spheroids. Curr Protoc 2021;1:e199. [PMID: 34288582 DOI: 10.1002/cpz1.199] [Reference Citation Analysis]
110 Meyer RA, Neshat SY, Green JJ, Santos JL, Tuesca AD. Targeting strategies for mRNA delivery. Materials Today Advances 2022;14:100240. [DOI: 10.1016/j.mtadv.2022.100240] [Reference Citation Analysis]
111 Hsieh PH, Huang WY, Wang HC, Kuan CH, Shiue TY, Chen Y, Wang TW. Dual-responsive polypeptide nanoparticles attenuate tumor-associated stromal desmoplasia and anticancer through programmable dissociation. Biomaterials 2022;284:121469. [PMID: 35344799 DOI: 10.1016/j.biomaterials.2022.121469] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Hong CR, Mehta SY, Liyanage HDS, McManaway SP, Lee HH, Jaiswal JK, Bogle G, Tercel M, Pruijn FB, Wilson WR, Hicks KO. Spatially-resolved pharmacokinetic/pharmacodynamic modelling of bystander effects of a nitrochloromethylbenzindoline hypoxia-activated prodrug. Cancer Chemother Pharmacol 2021;88:673-87. [PMID: 34245333 DOI: 10.1007/s00280-021-04320-3] [Reference Citation Analysis]
113 Sasaki JI, Katata C, Abe GL, Matsumoto T, Imazato S. Fabricating large-scale three-dimensional constructs with living cells by processing with syringe needles. J Biomed Mater Res A 2019;107:904-9. [PMID: 30663860 DOI: 10.1002/jbm.a.36613] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
114 de Souza IR, Canavez ADPM, Schuck DC, Gagosian VSC, de Souza IR, Vicari T, da Silva Trindade E, Cestari MM, Lorencini M, Leme DM. Development of 3D cultures of zebrafish liver and embryo cell lines: a comparison of different spheroid formation methods. Ecotoxicology 2021. [PMID: 34379241 DOI: 10.1007/s10646-021-02459-6] [Reference Citation Analysis]
115 Khan AH, Cook JK, Wortmann WJ, Kersker ND, Rao A, Pojman JA, Melvin AT. Synthesis and characterization of thiol‐acrylate hydrogels using a base‐catalyzed Michael addition for 3D cell culture applications. J Biomed Mater Res 2020;108:2294-307. [DOI: 10.1002/jbm.b.34565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
116 Fan TM, Roberts RD, Lizardo MM. Understanding and Modeling Metastasis Biology to Improve Therapeutic Strategies for Combating Osteosarcoma Progression. Front Oncol 2020;10:13. [PMID: 32082995 DOI: 10.3389/fonc.2020.00013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
117 Pustchi SE, Avci NG, Akay YM, Akay M. Astrocytes Decreased the Sensitivity of Glioblastoma Cells to Temozolomide and Bay 11-7082. Int J Mol Sci 2020;21:E7154. [PMID: 32998285 DOI: 10.3390/ijms21197154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Zhao L, Shi M, Liu Y, Zheng X, Xiu J, Liu Y, Tian L, Wang H, Zhang M, Zhang X. Systematic Analysis of Different Cell Spheroids with a Microfluidic Device Using Scanning Electrochemical Microscopy and Gene Expression Profiling. Anal Chem 2019;91:4307-11. [PMID: 30869520 DOI: 10.1021/acs.analchem.9b00376] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
119 Phelan MA, Lelkes PI, Swaroop A. Mini and customized low-cost bioreactors for optimized high-throughput generation of tissue organoids. Stem Cell Investig 2018;5:33. [PMID: 30498744 DOI: 10.21037/sci.2018.09.06] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
120 Salehi F, Behboudi H, Kavoosi G, Ardestani SK. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci Rep 2018;8:13902. [PMID: 30224635 DOI: 10.1038/s41598-018-32308-2] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 10.8] [Reference Citation Analysis]
121 Malhão F, Ramos AA, Buttachon S, Dethoup T, Kijjoa A, Rocha E. Cytotoxic and Antiproliferative Effects of Preussin, a Hydroxypyrrolidine Derivative from the Marine Sponge-Associated Fungus Aspergillus candidus KUFA 0062, in a Panel of Breast Cancer Cell Lines and Using 2D and 3D Cultures. Mar Drugs 2019;17:E448. [PMID: 31366127 DOI: 10.3390/md17080448] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
122 Fan TW, Higashi RM, Chernayavskaya Y, Lane AN. Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective. Metabolites 2020;10:E249. [PMID: 32549391 DOI: 10.3390/metabo10060249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
123 Liu X, Fang J, Huang S, Wu X, Xie X, Wang J, Liu F, Zhang M, Peng Z, Hu N. Tumor-on-a-chip: from bioinspired design to biomedical application. Microsyst Nanoeng 2021;7:50. [PMID: 34567763 DOI: 10.1038/s41378-021-00277-8] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Hitsuda A, Dan R, Urakawa A, Hiraoka Y, Murakami C, Yamamoto H, Tanaka AR. 25-hydroxycholesterol-induced cell death via activation of ROCK/LIMK/cofilin axis in colorectal cancer cell spheroids. J Steroid Biochem Mol Biol 2021;216:106037. [PMID: 34861388 DOI: 10.1016/j.jsbmb.2021.106037] [Reference Citation Analysis]
125 Van Petten de Vasconcelos Azevedo F, Lopes DS, Zóia MAP, Correia LIV, Saito N, Fonseca BB, Polloni L, Teixeira SC, Goulart LR, de Melo Rodrigues Ávila V. A New Approach to Inhibiting Triple-Negative Breast Cancer: In Vitro, Ex Vivo and In Vivo Antiangiogenic Effect of BthTx-II, a PLA2-Asp-49 from Bothrops jararacussu Venom. Biomolecules 2022;12:258. [DOI: 10.3390/biom12020258] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
126 Lane AN, Higashi RM, Fan TW. NMR and MS-based Stable Isotope-Resolved Metabolomics and Applications in Cancer Metabolism. Trends Analyt Chem 2019;120:115322. [PMID: 32523238 DOI: 10.1016/j.trac.2018.11.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
127 Bourn MD, Batchelor DVB, Ingram N, McLaughlan JR, Coletta PL, Evans SD, Peyman SA. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. J Control Release 2020;326:13-24. [PMID: 32562855 DOI: 10.1016/j.jconrel.2020.06.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
128 Movia D, Bazou D, Volkov Y, Prina-Mello A. Multilayered Cultures of NSCLC cells grown at the Air-Liquid Interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 2018;8:12920. [PMID: 30150787 DOI: 10.1038/s41598-018-31332-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
129 Zamora-Perez P, Xiao C, Sanles-Sobrido M, Rovira-Esteva M, Conesa JJ, Mulens-Arias V, Jaque D, Rivera-Gil P. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Acta Biomater 2022;142:308-19. [PMID: 35104657 DOI: 10.1016/j.actbio.2022.01.052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 [DOI: 10.1101/454397] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Rupp T, Pelouin O, Genest L, Legrand C, Froget G, Castagné V. Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Transl Oncol 2021;14:100926. [PMID: 33157518 DOI: 10.1016/j.tranon.2020.100926] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
132 Chantarasriwong O, Milcarek AT, Morales TH, Settle AL, Rezende CO, Althufairi BD, Theodoraki MA, Alpaugh ML, Theodorakis EA. Synthesis, structure-activity relationship and in vitro pharmacodynamics of A-ring modified caged xanthones in a preclinical model of inflammatory breast cancer. European Journal of Medicinal Chemistry 2019;168:405-13. [DOI: 10.1016/j.ejmech.2019.02.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
133 Anil-inevi M, Sağlam-metiner P, Kabak EC, Gulce-iz S. Development and verification of a three-dimensional (3D) breast cancer tumor model composed of circulating tumor cell (CTC) subsets. Mol Biol Rep 2020;47:97-109. [DOI: 10.1007/s11033-019-05111-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
134 Aggarwal V, Miranda O, Johnston PA, Sant S. Three dimensional engineered models to study hypoxia biology in breast cancer. Cancer Lett 2020;490:124-42. [PMID: 32569616 DOI: 10.1016/j.canlet.2020.05.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
135 Goisnard A, Dubois C, Daumar P, Aubel C, Depresle M, Gauthier J, Vidalinc B, Penault-Llorca F, Mounetou E, Bamdad M. The New Serum-Free OptiPASS® Medium in Cold and Oxygen-Free Conditions: An Innovative Conservation Method for the Preservation of MDA-MB-231 Triple Negative Breast Cancer Spheroids. Cancers (Basel) 2021;13:1945. [PMID: 33919619 DOI: 10.3390/cancers13081945] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Sargenti A, Musmeci F, Cavallo C, Mazzeschi M, Bonetti S, Pasqua S, Bacchi F, Filardo G, Gazzola D, Lauriola M, Santi S. A new method for the study of biophysical and morphological parameters in 3D cell cultures: Evaluation in LoVo spheroids treated with crizotinib. PLoS One 2021;16:e0252907. [PMID: 34101765 DOI: 10.1371/journal.pone.0252907] [Reference Citation Analysis]
137 Martínez-Rodríguez OP, Thompson-Bonilla MDR, Jaramillo-Flores ME. Association between obesity and breast cancer: Molecular bases and the effect of flavonoids in signaling pathways. Crit Rev Food Sci Nutr 2020;60:3770-92. [PMID: 31899947 DOI: 10.1080/10408398.2019.1708262] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
138 Murakami S, Tanaka H, Nakayama T, Taniura N, Miyake T, Tani M, Kushima R, Yamamoto G, Sugihara H, Mukaisho KI. Similarities and differences in metabolites of tongue cancer cells among two- and three-dimensional cultures and xenografts. Cancer Sci 2021;112:918-31. [PMID: 33244783 DOI: 10.1111/cas.14749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
139 Fan TW, El-Amouri SS, Macedo JKA, Wang QJ, Song H, Cassel T, Lane AN. Stable Isotope-Resolved Metabolomics Shows Metabolic Resistance to Anti-Cancer Selenite in 3D Spheroids versus 2D Cell Cultures. Metabolites 2018;8:E40. [PMID: 29996515 DOI: 10.3390/metabo8030040] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
140 Steinberg E, Fluksman A, Zemmour C, Tischenko K, Karsch-Bluman A, Brill-Karniely Y, Birsner AE, D'Amato RJ, Benny O. Low dose amiodarone reduces tumor growth and angiogenesis. Sci Rep 2020;10:18034. [PMID: 33093573 DOI: 10.1038/s41598-020-75142-1] [Reference Citation Analysis]
141 Movia D, Bazou D, Prina-Mello A. ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 2019;19:854. [PMID: 31464606 DOI: 10.1186/s12885-019-6038-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
142 Close DA, Wang AX, Kochanek SJ, Shun T, Eiseman JL, Johnston PA. Implementation of the NCI-60 Human Tumor Cell Line Panel to Screen 2260 Cancer Drug Combinations to Generate >3 Million Data Points Used to Populate a Large Matrix of Anti-Neoplastic Agent Combinations (ALMANAC) Database. SLAS Discov 2019;24:242-63. [PMID: 30500310 DOI: 10.1177/2472555218812429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
143 Mukundan S, Bell J, Teryek M, Hernandez C, Love AC, Parekkadan B, Chan LL. Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewell™400 Plates Using Image Cytometry. J Fluoresc 2022. [PMID: 34989923 DOI: 10.1007/s10895-021-02881-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Perini G, Rosa E, Friggeri G, Di Pietro L, Barba M, Parolini O, Ciasca G, Moriconi C, Papi M, De Spirito M, Palmieri V. INSIDIA 2.0 High-Throughput Analysis of 3D Cancer Models: Multiparametric Quantification of Graphene Quantum Dots Photothermal Therapy for Glioblastoma and Pancreatic Cancer. Int J Mol Sci 2022;23:3217. [PMID: 35328638 DOI: 10.3390/ijms23063217] [Reference Citation Analysis]
145 Desai D, Åkerfelt M, Prabhakar N, Toriseva M, Näreoja T, Zhang J, Nees M, Rosenholm JM. Factors Affecting Intracellular Delivery and Release of Hydrophilic Versus Hydrophobic Cargo from Mesoporous Silica Nanoparticles on 2D and 3D Cell Cultures. Pharmaceutics 2018;10:E237. [PMID: 30453596 DOI: 10.3390/pharmaceutics10040237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
146 Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12. [PMID: 33291351 DOI: 10.3390/pharmaceutics12121186] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
147 Utama RH, Atapattu L, O'Mahony AP, Fife CM, Baek J, Allard T, O'Mahony KJ, Ribeiro JCC, Gaus K, Kavallaris M, Gooding JJ. A 3D Bioprinter Specifically Designed for the High-Throughput Production of Matrix-Embedded Multicellular Spheroids. iScience 2020;23:101621. [PMID: 33089109 DOI: 10.1016/j.isci.2020.101621] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
148 Aughton K, Shahidipour H, Djirackor L, Coupland SE, Kalirai H. Characterization of Uveal Melanoma Cell Lines and Primary Tumor Samples in 3D Culture. Transl Vis Sci Technol. 2020;9:39. [PMID: 32832244 DOI: 10.1167/tvst.9.7.39] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
149 Krüger M, Kopp S, Wehland M, Corydon TJ, Grimm D. Science between Bioreactors and Space Research-Response to Comments by Joseph J. Bevelacqua et al. on "Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity". Cells 2020;9:E1763. [PMID: 32717829 DOI: 10.3390/cells9081763] [Reference Citation Analysis]
150 Shao J, Pijpers IAB, Cao S, Williams DS, Yan X, Li J, Abdelmohsen LKEA, van Hest JCM. Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nano-Red Blood Cells. Adv Sci (Weinh) 2019;6:1801678. [PMID: 30886797 DOI: 10.1002/advs.201801678] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
151 Lee JH, Park SY, Hwang W, Sung JY, Cho ML, Shim J, Kim YN, Yoon K. Isoharringtonine Induces Apoptosis of Non-Small Cell Lung Cancer Cells in Tumorspheroids via the Intrinsic Pathway. Biomolecules 2020;10:E1521. [PMID: 33172112 DOI: 10.3390/biom10111521] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
152 Białkowska K, Komorowski P, Bryszewska M, Miłowska K. Spheroids as a Type of Three-Dimensional Cell Cultures-Examples of Methods of Preparation and the Most Important Application. Int J Mol Sci 2020;21:E6225. [PMID: 32872135 DOI: 10.3390/ijms21176225] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
153 Zhang L, Wang Y, Yang D, Huang W, Hao P, Feng S, Appelhans D, Zhang T, Zan X. Shape Effect of Nanoparticles on Tumor Penetration in Monolayers Versus Spheroids. Mol Pharm 2019;16:2902-11. [PMID: 31184906 DOI: 10.1021/acs.molpharmaceut.9b00107] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
154 Dhanwal V, Katoch A, Singh A, Chakraborty S, Faheem MM, Kaur G, Nayak D, Singh N, Goswami A, Kaur N. Self-assembled organic nanoparticles of benzimidazole analogue exhibit enhanced uptake in 3D tumor spheroids and oxidative stress induced cytotoxicity in breast cancer. Mater Sci Eng C Mater Biol Appl 2019;97:467-78. [PMID: 30678934 DOI: 10.1016/j.msec.2018.12.039] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
155 Wolff A, Frank M, Staehlke S, Peters K. A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022;11:1313. [DOI: 10.3390/cells11081313] [Reference Citation Analysis]
156 Cavo M, Delle Cave D, D'Amone E, Gigli G, Lonardo E, Del Mercato LL. A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. Sci Rep 2020;10:10192. [PMID: 32576846 DOI: 10.1038/s41598-020-66908-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
157 Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019;19:369-86. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Cited by in Crossref: 78] [Cited by in F6Publishing: 31] [Article Influence: 26.0] [Reference Citation Analysis]
158 Diosdi A, Hirling D, Kovacs M, Toth T, Harmati M, Koos K, Buzas K, Piccinini F, Horvath P. A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids. Comput Struct Biotechnol J 2021;19:1233-43. [PMID: 33717421 DOI: 10.1016/j.csbj.2021.01.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
159 Tofani LB, Sousa LO, Luiz MT, Abriata JP, Marchetti JM, Leopoldino AM, Swiech K. Generation of a Three-Dimensional in Vitro Ovarian Cancer Co-Culture Model for Drug Screening Assays. J Pharm Sci 2021;110:2629-36. [PMID: 33848527 DOI: 10.1016/j.xphs.2021.04.003] [Reference Citation Analysis]
160 Shao J, Cao S, Williams DS, Abdelmohsen LKEA, van Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem Int Ed Engl 2020;59:16918-25. [PMID: 32533754 DOI: 10.1002/anie.202003748] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
161 Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK. Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. Adv Nanobiomed Res 2021;1:2100017. [PMID: 34927168 DOI: 10.1002/anbr.202100017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Hou Y, Ai X, Zhao L, Gao Z, Wang Y, Lu Y, Tu P, Jiang Y. An integrated biomimetic array chip for high-throughput co-culture of liver and tumor microtissues for advanced anticancer bioactivity screening. Lab Chip 2020;20:2482-94. [DOI: 10.1039/d0lc00288g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
163 Lotsberg ML, Røsland GV, Rayford AJ, Dyrstad SE, Ekanger CT, Lu N, Frantz K, Stuhr LEB, Ditzel HJ, Thiery JP, Akslen LA, Lorens JB, Engelsen AST. Intrinsic Differences in Spatiotemporal Organization and Stromal Cell Interactions Between Isogenic Lung Cancer Cells of Epithelial and Mesenchymal Phenotypes Revealed by High-Dimensional Single-Cell Analysis of Heterotypic 3D Spheroid Models. Front Oncol 2022;12:818437. [DOI: 10.3389/fonc.2022.818437] [Reference Citation Analysis]
164 Shao J, Cao S, Williams DS, Abdelmohsen LKEA, Hest JCM. Photoactivated Polymersome Nanomotors: Traversing Biological Barriers. Angew Chem 2020;132:17066-73. [DOI: 10.1002/ange.202003748] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
165 Ryu NE, Lee SH, Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019;8:E1620. [PMID: 31842346 DOI: 10.3390/cells8121620] [Cited by in Crossref: 68] [Cited by in F6Publishing: 56] [Article Influence: 22.7] [Reference Citation Analysis]
166 Yildiz-Ozturk E, Saglam-Metiner P, Yesil-Celiktas O. Lung carcinoma spheroids embedded in a microfluidic platform. Cytotechnology 2021;73:457-71. [PMID: 34149177 DOI: 10.1007/s10616-021-00470-7] [Reference Citation Analysis]
167 Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019;9:13012. [PMID: 31506601 DOI: 10.1038/s41598-019-49671-3] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 16.0] [Reference Citation Analysis]
168 Liu W, Sun M, Han K, Wang J. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform. Anal Chem 2019;91:13601-10. [DOI: 10.1021/acs.analchem.9b02768] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
169 Zhang C, Yang Z, Dong DL, Jang TS, Knowles JC, Kim HW, Jin GZ, Xuan Y. 3D culture technologies of cancer stem cells: promising ex vivo tumor models. J Tissue Eng 2020;11:2041731420933407. [PMID: 32637062 DOI: 10.1177/2041731420933407] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
170 Sokolova EA, Vodeneev VA, Deyev SM, Balalaeva IV. 3D in vitro models of tumors expressing EGFR family receptors: a potent tool for studying receptor biology and targeted drug development. Drug Discov Today 2019;24:99-111. [PMID: 30205170 DOI: 10.1016/j.drudis.2018.09.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
171 Cummins KA, Crampton AL, Wood DK. A High-Throughput Workflow to Study Remodeling of Extracellular Matrix-Based Microtissues. Tissue Eng Part C Methods 2019;25:25-36. [PMID: 30430922 DOI: 10.1089/ten.TEC.2018.0290] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
172 Pinton G, Wang Z, Balzano C, Missaglia S, Tavian D, Boldorini R, Fennell DA, Griffin M, Moro L. CDKN2A Determines Mesothelioma Cell Fate to EZH2 Inhibition. Front Oncol 2021;11:678447. [PMID: 34277422 DOI: 10.3389/fonc.2021.678447] [Reference Citation Analysis]