BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin W, Wang H, Ji Y, Hu Q, Yan W, Chen G, Yin H. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine 2008;44:135-40. [PMID: 18722136 DOI: 10.1016/j.cyto.2008.07.005] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016;272:38-49. [PMID: 27382003 DOI: 10.1016/j.jneumeth.2016.06.018] [Cited by in Crossref: 112] [Cited by in F6Publishing: 101] [Article Influence: 22.4] [Reference Citation Analysis]
2 Weaver JL. The Kinetics of Intestinal Permeability in a Mouse Model of Traumatic Brain Injury. Curr Protoc Mouse Biol 2020;10:e86. [PMID: 33264493 DOI: 10.1002/cpmo.86] [Reference Citation Analysis]
3 Zhang L, Wang H. Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2018;55:1773-85. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
4 Gong J, Xu J, Zhu W, Gao X, Li N, Li J. Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 2010;136:245-56. [PMID: 20452828 DOI: 10.1016/j.clim.2010.04.001] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sabet N, Soltani Z, Khaksari M. Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol 2021;357:577619. [PMID: 34058510 DOI: 10.1016/j.jneuroim.2021.577619] [Reference Citation Analysis]
6 Pan P, Song Y, Du X, Bai L, Hua X, Xiao Y, Yu X. Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019;40:1105-10. [PMID: 30771023 DOI: 10.1007/s10072-019-03739-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
7 McDonald SJ, Sharkey JM, Sun M, Kaukas LM, Shultz SR, Turner RJ, Leonard AV, Brady RD, Corrigan F. Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. J Neurotrauma 2020;37:770-81. [PMID: 32041478 DOI: 10.1089/neu.2019.6885] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 21.0] [Reference Citation Analysis]
8 Bansal V, Costantini T, Kroll L, Peterson C, Loomis W, Eliceiri B, Baird A, Wolf P, Coimbra R. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma. 2009;26:1353-1359. [PMID: 19344293 DOI: 10.1089/neu.2008-0858] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
9 Iftikhar PM, Anwar A, Saleem S, Nasir S, Inayat A. Traumatic brain injury causing intestinal dysfunction: A review. J Clin Neurosci 2020;79:237-40. [PMID: 33070903 DOI: 10.1016/j.jocn.2020.07.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Blanke EN, Holmes GM, Besecker EM. Altered physiology of gastrointestinal vagal afferents following neurotrauma. Neural Regen Res 2021;16:254-63. [PMID: 32859772 DOI: 10.4103/1673-5374.290883] [Reference Citation Analysis]
11 Cox LM, Abou-El-Hassan H, Maghzi AH, Vincentini J, Weiner HL. The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Res 2019;1724:146385. [PMID: 31419428 DOI: 10.1016/j.brainres.2019.146385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 2017;66:56-69. [PMID: 28676351 DOI: 10.1016/j.bbi.2017.06.018] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 14.0] [Reference Citation Analysis]
13 Bansal V, Costantini T, Kroll L, Peterson C, Loomis W, Eliceiri B, Baird A, Wolf P, Coimbra R. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. J Neurotrauma. 2009;26:1353-1359. [PMID: 19344293 DOI: 10.1089/neu.2008.0858] [Cited by in Crossref: 90] [Cited by in F6Publishing: 95] [Article Influence: 8.2] [Reference Citation Analysis]
14 Krishnamoorthy V, Komisarow JM, Laskowitz DT, Vavilala MS. Multiorgan Dysfunction After Severe Traumatic Brain Injury: Epidemiology, Mechanisms, and Clinical Management. Chest 2021;160:956-64. [PMID: 33460623 DOI: 10.1016/j.chest.2021.01.016] [Reference Citation Analysis]
15 Zhang J, Zhu Y, Zhou D, Wang Z, Chen G. Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine 2010;52:252-7. [PMID: 20864352 DOI: 10.1016/j.cyto.2010.08.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
16 Wrba L, Palmer A, Braun CK, Huber-lang M. Evaluation of gut-blood barrier dysfunction in various models of trauma, hemorrhagic shock, and burn injury. J Trauma Acute Care Surg 2017;83:944-53. [DOI: 10.1097/ta.0000000000001654] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
17 Ho J, Chan H, Liang Y, Liu X, Zhang L, Li Q, Zhang Y, Zeng J, Ugwu FN, Ho IHT, Hu W, Yau JCW, Wong SH, Wong WT, Ling L, Cho CH, Gallo RL, Gin T, Tse G, Yu J, Chan MTV, Leung CCH, Wu WKK. Cathelicidin preserves intestinal barrier function in polymicrobial sepsis. Crit Care 2020;24:47. [PMID: 32041659 DOI: 10.1186/s13054-020-2754-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
18 Faden AI, Barrett JP, Stoica BA, Henry RJ. Bidirectional Brain-Systemic Interactions and Outcomes After TBI. Trends Neurosci 2021;44:406-18. [PMID: 33495023 DOI: 10.1016/j.tins.2020.12.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
19 Sauer T, Raithel M, Kressel J, Münch G, Pischetsrieder M. Activation of the transcription factor Nrf2 in macrophages, Caco-2 cells and intact human gut tissue by Maillard reaction products and coffee. Amino Acids 2013;44:1427-39. [DOI: 10.1007/s00726-012-1222-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
20 Kundu JK, Surh YJ. Nrf2-Keap1 signaling as a potential target for chemoprevention of inflammation-associated carcinogenesis. Pharm Res. 2010;27:999-1013. [PMID: 20354764 DOI: 10.1007/s11095-010-0096-8] [Cited by in Crossref: 113] [Cited by in F6Publishing: 107] [Article Influence: 10.3] [Reference Citation Analysis]
21 Yang Z, Zhu ML, Li DH, Zeng R, Han BN. N-Me-trichodermamide B isolated from Penicillium janthinellum, with antioxidant properties through Nrf2-mediated signaling pathway. Bioorg Med Chem 2017;25:6614-22. [PMID: 29153548 DOI: 10.1016/j.bmc.2017.10.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Tohidnezhad M, Wruck C, Slowik A, Kweider N, Beckmann R, Bayer A, Houben A, Brandenburg L, Varoga D, Sönmez T, Stoffel M, Jahr H, Lippross S, Pufe T. Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts. Bone 2014;65:9-17. [DOI: 10.1016/j.bone.2014.04.029] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
23 Giustina AD, Bonfante S, Zarbato GF, Danielski LG, Mathias K, de Oliveira AN, Garbossa L, Cardoso T, Fileti ME, De Carli RJ, Goldim MP, Barichello T, Petronilho F. Dimethyl Fumarate Modulates Oxidative Stress and Inflammation in Organs After Sepsis in Rats. Inflammation 2018;41:315-27. [DOI: 10.1007/s10753-017-0689-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
24 Sundman MH, Chen N, Subbian V, Chou Y. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain, Behavior, and Immunity 2017;66:31-44. [DOI: 10.1016/j.bbi.2017.05.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 16.8] [Reference Citation Analysis]
25 Liu X, Liang F, Song W, Diao X, Zhu W, Yang J. Effect of Nrf2 signaling pathway on the improvement of intestinal epithelial barrier dysfunction by hyperbaric oxygen treatment after spinal cord injury. Cell Stress Chaperones 2021;26:433-41. [PMID: 33471265 DOI: 10.1007/s12192-020-01190-1] [Reference Citation Analysis]
26 Cheng Y, Wei Y, Yang W, Cai Y, Chen B, Yang G, Shang H, Zhao W. Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice. Int J Mol Sci 2016;17:E2032. [PMID: 27929421 DOI: 10.3390/ijms17122032] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
27 Ferrebee CB, Li J, Haywood J, Pachura K, Robinson BS, Hinrichs BH, Jones RM, Rao A, Dawson PA. Organic Solute Transporter α-β Protects Ileal Enterocytes From Bile Acid-Induced Injury. Cell Mol Gastroenterol Hepatol 2018;5:499-522. [PMID: 29930976 DOI: 10.1016/j.jcmgh.2018.01.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
28 Chen Z, Zhang Y, Ma L, Ni Y, Zhao H. Nrf2 plays a pivotal role in protection against burn trauma-induced intestinal injury and death. Oncotarget 2016;7:19272-83. [PMID: 27009867 DOI: 10.18632/oncotarget.8189] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
29 Cruz BCDS, de Sousa Moraes LF, De Nadai Marcon L, Dias KA, Murad LB, Sarandy MM, Conceição LLD, Gonçalves RV, Ferreira CLLF, Peluzio MDCG. Evaluation of the efficacy of probiotic VSL#3 and synbiotic VSL#3 and yacon-based product in reducing oxidative stress and intestinal permeability in mice induced to colorectal carcinogenesis. J Food Sci 2021;86:1448-62. [PMID: 33761141 DOI: 10.1111/1750-3841.15690] [Reference Citation Analysis]
30 Al-Sadi R, Guo S, Ye D, Dokladny K, Alhmoud T, Ereifej L, Said HM, Ma TY. Mechanism of IL-1β modulation of intestinal epithelial barrier involves p38 kinase and activating transcription factor-2 activation. J Immunol. 2013;190:6596-6606. [PMID: 23656735 DOI: 10.4049/jimmunol.1201876] [Cited by in Crossref: 80] [Cited by in F6Publishing: 80] [Article Influence: 10.0] [Reference Citation Analysis]
31 Colombani J, Andersen DS. The Drosophila gut: A gatekeeper and coordinator of organism fitness and physiology. WIREs Dev Biol 2020;9. [DOI: 10.1002/wdev.378] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
32 de Moura E Dias M, Dos Reis Louzano SA, da Conceição LL, da Conceição Fernandes R, de Oliveira Mendes TA, Pereira SS, de Oliveira LL, Gouveia Peluzio MDC. Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics Antimicrob Proteins 2021. [PMID: 33818711 DOI: 10.1007/s12602-021-09760-0] [Reference Citation Analysis]
33 Huynh DL, Sharma N, Kumar Singh A, Singh Sodhi S, Zhang JJ, Mongre RK, Ghosh M, Kim N, Ho Park Y, Kee Jeong D. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017;15:15-40. [PMID: 28259249 DOI: 10.1016/S1875-5364(17)30005-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
34 Li Y, Liu L, Sun P, Zhang Y, Wu T, Sun H, Cheng KW, Chen F. Fucoxanthinol from the Diatom Nitzschia Laevis Ameliorates Neuroinflammatory Responses in Lipopolysaccharide-Stimulated BV-2 Microglia. Mar Drugs 2020;18:E116. [PMID: 32079242 DOI: 10.3390/md18020116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
35 Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021;18:24. [PMID: 33461596 DOI: 10.1186/s12974-020-02067-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
36 Tohidnezhad M, Varoga D, Wruck CJ, Brandenburg LO, Seekamp A, Shakibaei M, Sönmez TT, Pufe T, Lippross S. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element. Histochem Cell Biol 2011;135:453-60. [PMID: 21476078 DOI: 10.1007/s00418-011-0808-0] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 5.8] [Reference Citation Analysis]
37 Salberg S, Yamakawa G, Christensen J, Kolb B, Mychasiuk R. Assessment of a nutritional supplement containing resveratrol, prebiotic fiber, and omega-3 fatty acids for the prevention and treatment of mild traumatic brain injury in rats. Neuroscience 2017;365:146-57. [PMID: 28988852 DOI: 10.1016/j.neuroscience.2017.09.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
38 Gaddam SS, Buell T, Robertson CS. Systemic manifestations of traumatic brain injury. Handb Clin Neurol 2015;127:205-18. [PMID: 25702219 DOI: 10.1016/B978-0-444-52892-6.00014-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
39 Su X, Wang H, Zhao J, Pan H, Mao L. Beneficial effects of ethyl pyruvate through inhibiting high-mobility group box 1 expression and TLR4/NF-κB pathway after traumatic brain injury in the rat. Mediators Inflamm. 2011;2011:807142. [PMID: 21772666 DOI: 10.1155/2011/807142] [Cited by in Crossref: 75] [Cited by in F6Publishing: 84] [Article Influence: 7.5] [Reference Citation Analysis]
40 Lian P, Braber S, Garssen J, Wichers HJ, Folkerts G, Fink-Gremmels J, Varasteh S. Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020;12:E734. [PMID: 32168808 DOI: 10.3390/nu12030734] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
41 Wen Z, Liu W, Li X, Chen W, Liu Z, Wen J, Liu Z. A Protective Role of the NRF2-Keap1 Pathway in Maintaining Intestinal Barrier Function. Oxid Med Cell Longev 2019;2019:1759149. [PMID: 31346356 DOI: 10.1155/2019/1759149] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
42 Lv P, Xue P, Dong J, Peng H, Clewell R, Wang A, Wang Y, Peng S, Qu W, Zhang Q, Andersen ME, Pi J. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages. Toxicology and Applied Pharmacology 2013;272:697-702. [DOI: 10.1016/j.taap.2013.07.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
43 Mosberian-Tanha P, Øverland M, Landsverk T, Reveco FE, Schrama JW, Roem AJ, Agger JW, Mydland LT. Bacterial translocation and in vivo assessment of intestinal barrier permeability in rainbow trout (Oncorhynchus mykiss) with and without soyabean meal-induced inflammation. J Nutr Sci 2016;5:e26. [PMID: 27547389 DOI: 10.1017/jns.2016.7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yao J, Zhao L, Zhao Q, Zhao Y, Sun Y, Zhang Y, Miao H, You QD, Hu R, Guo QL. NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis 2014;5:e1283. [PMID: 24901054 DOI: 10.1038/cddis.2014.221] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 7.9] [Reference Citation Analysis]
45 Wu Q, Zhang XS, Wang HD, Zhang X, Yu Q, Li W, Zhou ML, Wang XL. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar Drugs 2014;12:6125-41. [PMID: 25528957 DOI: 10.3390/md12126125] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 10.1] [Reference Citation Analysis]
46 Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury. Fly (Austin) 2015;9:68-74. [PMID: 26291482 DOI: 10.1080/19336934.2015.1085623] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
47 Jones RM, Mercante JW, Neish AS. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem 2012;19:1519-29. [PMID: 22360484 DOI: 10.2174/092986712799828283] [Cited by in Crossref: 102] [Cited by in F6Publishing: 98] [Article Influence: 11.3] [Reference Citation Analysis]
48 Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100:30-47. [PMID: 23025925 DOI: 10.1016/j.pneurobio.2012.09.003] [Cited by in Crossref: 347] [Cited by in F6Publishing: 344] [Article Influence: 38.6] [Reference Citation Analysis]
49 Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM, Swanson LC, Zajac JE, Ganetzky B, Wassarman DA. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. Elife 2015;4. [PMID: 25742603 DOI: 10.7554/eLife.04790] [Cited by in Crossref: 51] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]
50 Jin W, Ni H, Dai Y, Wang H, Lu T, Wu J, Jiang J, Liang W. Effects of tert-butylhydroquinone on intestinal inflammatory response and apoptosis following traumatic brain injury in mice. Mediators Inflamm. 2010;2010:502564. [PMID: 21274455 DOI: 10.1155/2010/502564] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 2.9] [Reference Citation Analysis]
51 Liu Z, Wang H, Shi X, Li L, Zhou M, Ding H, Yang Y, Li X, Ding K. dl-3-n-Butylphthalide (NBP) Provides Neuroprotection in the Mice Models After Traumatic Brain Injury via Nrf2-ARE Signaling Pathway. Neurochem Res 2017;42:1375-86. [DOI: 10.1007/s11064-017-2186-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 4.3] [Reference Citation Analysis]
52 Khaksari M, Keshavarzi Z, Gholamhoseinian A, Bibak B. The effect of female sexual hormones on the intestinal and serum cytokine response after traumatic brain injury: different roles for estrogen receptor subtypes. Can J Physiol Pharmacol 2013;91:700-7. [PMID: 23984641 DOI: 10.1139/cjpp-2012-0359] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
53 Liu S, Xin D, Wang L, Zhang T, Bai X, Li T, Xie Y, Xue H, Bo S, Liu D, Wang Z. Therapeutic effects of L-Cysteine in newborn mice subjected to hypoxia-ischemia brain injury via the CBS/H2S system: Role of oxidative stress and endoplasmic reticulum stress. Redox Biol 2017;13:528-40. [PMID: 28735240 DOI: 10.1016/j.redox.2017.06.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
54 Li H, Sun J, Du J, Wang F, Fang R, Yu C, Xiong J, Chen W, Lu Z, Liu J. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 2018;30:e13260. [DOI: 10.1111/nmo.13260] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 11.5] [Reference Citation Analysis]
55 Yang JJ, Ma YL, Zhang P, Chen HQ, Liu ZH, Qin HL. Histidine decarboxylase is identified as a potential biomarker of intestinal mucosal injury in patients with acute intestinal obstruction. Mol Med 2011;17:1323-37. [PMID: 21915437 DOI: 10.2119/molmed.2011.00107] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
56 van der Wijst MG, Brown R, Rots MG. Nrf2, the master redox switch: The Achilles' heel of ovarian cancer? Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014;1846:494-509. [DOI: 10.1016/j.bbcan.2014.09.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]