BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Comput Struct Biotechnol J 2021;19:4868-83. [PMID: 34457214 DOI: 10.1016/j.csbj.2021.08.036] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang H, Chen J, Li X, Zhong YT, Kang LP, Wang G, Yu M, Fu LF, Wang P, Xu HY. Systematic identification of chemical components in Fufang Shuanghua oral liquid and screening of potential active components against SARS-CoV-2 protease. J Pharm Biomed Anal 2022;223:115118. [PMID: 36332330 DOI: 10.1016/j.jpba.2022.115118] [Reference Citation Analysis]
2 Dong J, Varbanov M, Philippot S, Vreken F, Zeng W, Blay V. Ligand-based discovery of coronavirus main protease inhibitors using MACAW molecular embeddings. Journal of Enzyme Inhibition and Medicinal Chemistry 2023;38:24-35. [DOI: 10.1080/14756366.2022.2132486] [Reference Citation Analysis]
3 Zhou Y, Wang H, Yang L, Wang Q. Progress on COVID-19 Chemotherapeutics Discovery and Novel Technology. Molecules 2022;27. [PMID: 36500347 DOI: 10.3390/molecules27238257] [Reference Citation Analysis]
4 Attiq N, Arshad U, Brogi S, Shafiq N, Imtiaz F, Parveen S, Rashid M, Noor N. Exploring the anti-SARS-CoV-2 main protease potential of FDA approved marine drugs using integrated machine learning templates as predictive tools. Int J Biol Macromol 2022;220:1415-28. [PMID: 36122771 DOI: 10.1016/j.ijbiomac.2022.09.086] [Reference Citation Analysis]
5 Shuldau N, Yushkevich A, Furs K, Tuzikov A, Andrianov A. Development of a Deep Learning Generative Neural Network for Computer-Aided Design of Potential SARS-Cov-2 Inhibitors. Math Biol Bioinf 2022;17:188-207. [DOI: 10.17537/2022.17.188] [Reference Citation Analysis]
6 Oki N, Yamada S, Tanaka T, Fukui H, Hatakeyama S, Okumura F. Curcumin partly prevents ISG15 activation via ubiquitin-activating enzyme E1-like protein and decreases ISGylation. Biochemical and Biophysical Research Communications 2022. [DOI: 10.1016/j.bbrc.2022.08.003] [Reference Citation Analysis]
7 Abdizadeh R, Hadizadeh F, Abdizadeh T. Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. J Biomol Struct Dyn 2022;:1-31. [PMID: 35848354 DOI: 10.1080/07391102.2022.2098821] [Reference Citation Analysis]
8 Jin Y, Ouyang M, Yu T, Zhuang J, Wang W, Liu X, Duan F, Guo D, Peng X, Pan JA. Genome-Wide Analysis of the Indispensable Role of Non-structural Proteins in the Replication of SARS-CoV-2. Front Microbiol 2022;13:907422. [PMID: 35722274 DOI: 10.3389/fmicb.2022.907422] [Reference Citation Analysis]
9 Makati AC, Ananda AN, Putri JA, Amellia SF, Setiawan B. Molecular docking of ethanol extracts of katuk leaf (Sauropus androgynus) on functional proteins of severe acute respiratory syndrome coronavirus 2. S Afr J Bot 2022;149:1-5. [PMID: 35668920 DOI: 10.1016/j.sajb.2022.04.044] [Reference Citation Analysis]
10 Reina J, Iglesias C. [Nirmatrelvir plus ritonavir (Paxlovid) a potent SARS-CoV-2 3CLpro protease inhibitor combination]. Rev Esp Quimioter 2022;35:236-40. [PMID: 35183067 DOI: 10.37201/req/002.2022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
11 Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry 2022. [DOI: 10.1016/j.bpc.2022.106824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zothantluanga JH, Abdalla M, Rudrapal M, Tian Q, Chetia D, Li J. Computational Investigations for Identification of Bioactive Molecules from Baccaurea ramiflora and Bergenia ciliata as Inhibitors of SARS-CoV-2 M pro. Polycyclic Aromatic Compounds. [DOI: 10.1080/10406638.2022.2046613] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR. Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. Int J Mol Sci 2022;23:1781. [PMID: 35163703 DOI: 10.3390/ijms23031781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Sencanski M, Perovic V, Milicevic J, Todorovic T, Prodanovic R, Veljkovic V, Paessler S, Glisic S. Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. ChemistryOpen 2022;11:e202100248. [PMID: 35103413 DOI: 10.1002/open.202100248] [Reference Citation Analysis]
15 Hernández González JE, Eberle RJ, Willbold D, Coronado MA. A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease. Front Mol Biosci 2022;8:816166. [DOI: 10.3389/fmolb.2021.816166] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Liu N, Zhang Y, Lei Y, Wang R, Zhan M, Liu J, An Y, Zhou Y, Zhan J, Yin F, Li Z. Design and Evaluation of a Novel Peptide-Drug Conjugate Covalently Targeting SARS-CoV-2 Papain-like Protease. J Med Chem 2022;65:876-84. [PMID: 34981929 DOI: 10.1021/acs.jmedchem.1c02022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
17 Elsawy KM, Alminderej FM, Caves LSD. Design of peptide-based coronavirus inhibitors that target disruption of 3CLpro protease self-association. Mol Syst Des Eng . [DOI: 10.1039/d2me00098a] [Reference Citation Analysis]
18 Shuldau MA, Yushkevich AM, Bosko IP, Tuzikov AV, Andrianov AM. Generative Autoencoders for Designing Novel Small-Molecule Compounds as Potential SARS-CoV-2 Main Protease Inhibitors. Communications in Computer and Information Science 2022. [DOI: 10.1007/978-3-030-98883-8_9] [Reference Citation Analysis]
19 Razali R, Asis H, Budiman C. Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Microorganisms 2021;9:2481. [PMID: 34946083 DOI: 10.3390/microorganisms9122481] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
20 Yi Y, Li J, Lai X, Zhang M, Kuang Y, Bao Y, Yu R, Hong W, Muturi E, Xue H, Wei H, Li T, Zhuang H, Qiao X, Xiang K, Yang H, Ye M. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. Journal of Advanced Research 2021. [DOI: 10.1016/j.jare.2021.11.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
21 Jin C, Feng B, Pei R, Ding Y, Li M, Chen X, Du Z, Ding Y, Huang C, Zhang B, Chen X, Zang Y, Li J, Ding K. Novel pectin from crude polysaccharide of Syzygium aromaticum against SARS-CoV-2 activities by targeting 3CLpro.. [DOI: 10.1101/2021.10.27.466067] [Reference Citation Analysis]