BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ring C, Sipes NS, Hsieh JH, Carberry C, Koval LE, Klaren WD, Harris MA, Auerbach SS, Rager JE. Predictive modeling of biological responses in the rat liver using in vitro Tox21 bioactivity: Benefits from high-throughput toxicokinetics. Comput Toxicol 2021;18:100166. [PMID: 34013136 DOI: 10.1016/j.comtox.2021.100166] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Jeong J, Kim D, Choi J. Application of ToxCast/Tox21 data for toxicity mechanism-based evaluation and prioritization of environmental chemicals: Perspective and limitations. Toxicology in Vitro 2022. [DOI: 10.1016/j.tiv.2022.105451] [Reference Citation Analysis]
2 Song WS, Koh DH, Kim EY. Orthogonal assay for validation of Tox21 PPARγ data and applicability to in silico prediction model. Toxicol In Vitro 2022;84:105445. [PMID: 35863590 DOI: 10.1016/j.tiv.2022.105445] [Reference Citation Analysis]
3 Singh AK, Bilal M, Iqbal HMN, Raj A. In silico analytical toolset for predictive degradation and toxicity of hazardous pollutants in water sources. Chemosphere 2022;292:133250. [PMID: 34922975 DOI: 10.1016/j.chemosphere.2021.133250] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Silva M, Kwok RK. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Current Research in Toxicology 2022. [DOI: 10.1016/j.crtox.2022.100064] [Reference Citation Analysis]
5 Clark J, Avula V, Ring C, Eaves LA, Howard T, Santos HP, Smeester L, Bangma JT, O'Shea TM, Fry RC, Rager JE. Comparing the Predictivity of Human Placental Gene, microRNA, and CpG Methylation Signatures in Relation to Perinatal Outcomes. Toxicol Sci 2021:kfab089. [PMID: 34255065 DOI: 10.1093/toxsci/kfab089] [Reference Citation Analysis]
6 Carberry CK, Turla T, Koval LE, Hartwell H, Fry RC, Rager JE. Chemical Mixtures in Household Environments: In Silico Predictions and In Vitro Testing of Potential Joint Action on PPARγ in Human Liver Cells. Toxics 2022;10:199. [DOI: 10.3390/toxics10050199] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Carberry CK, Koval LE, Payton A, Hartwell H, Ho Kim Y, Smith GJ, Reif DM, Jaspers I, Ian Gilmour M, Rager JE. Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. Environ Int 2022;167:107419. [PMID: 35863239 DOI: 10.1016/j.envint.2022.107419] [Reference Citation Analysis]
8 Matsuzaka Y, Totoki S, Handa K, Shiota T, Kurosaki K, Uesawa Y. Prediction Models for Agonists and Antagonists of Molecular Initiation Events for Toxicity Pathways Using an Improved Deep-Learning-Based Quantitative Structure-Activity Relationship System. Int J Mol Sci 2021;22:10821. [PMID: 34639159 DOI: 10.3390/ijms221910821] [Reference Citation Analysis]
9 Chao A, Grossman J, Carberry C, Lai Y, Williams AJ, Minucci JM, Thomas Purucker S, Szilagyi J, Lu K, Boggess K, Fry RC, Sobus JR, Rager JE. Integrative Exposomic, Transcriptomic, Epigenomic Analyses of Human Placental Samples Links Understudied Chemicals to Preeclampsia. Environment International 2022. [DOI: 10.1016/j.envint.2022.107385] [Reference Citation Analysis]
10 Edwards SW, Nelms M, Hench VK, Ponder J, Sullivan K. Mapping Mechanistic Pathways of Acute Oral Systemic Toxicity Using Chemical Structure and Bioactivity Measurements. Front Toxicol 2022;4:824094. [DOI: 10.3389/ftox.2022.824094] [Reference Citation Analysis]
11 Chang X, Tan Y, Allen DG, Bell S, Brown PC, Browning L, Ceger P, Gearhart J, Hakkinen PJ, Kabadi SV, Kleinstreuer NC, Lumen A, Matheson J, Paini A, Pangburn HA, Petersen EJ, Reinke EN, Ribeiro AJS, Sipes N, Sweeney LM, Wambaugh JF, Wange R, Wetmore BA, Mumtaz M. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022;10:232. [DOI: 10.3390/toxics10050232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Jeong J, Choi J. Advancing the Adverse Outcome Pathway for PPARγ Inactivation Leading to Pulmonary Fibrosis Using Bradford-Hill Consideration and the Comparative Toxicogenomics Database. Chem Res Toxicol 2022. [PMID: 35143163 DOI: 10.1021/acs.chemrestox.1c00257] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]