BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pan D, Luo S, Feng Y, Zhang X, Su F, Liu H, Liu C, Mai X, Naik N, Guo Z. Highly thermally conductive 3D BN/MWCNTs/C spatial network composites with improved electrically insulating and flame retardancy prepared by biological template assisted method. Composites Part B: Engineering 2021;222:109039. [DOI: 10.1016/j.compositesb.2021.109039] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Yan Z, Wang S, Bi J, He Q, Song H, El Azab IH, El-bahy SM, Elnaggar AY, Huang M, Mahmoud MHH, Wang J, Shao Q. Strengthening waterborne acrylic resin modified with trimethylolpropane triacrylate and compositing with carbon nanotubes for enhanced anticorrosion. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00554-8] [Reference Citation Analysis]
2 Yin L, Gong K, Pan H, Guo L, Zhou K. Column-to-Beam Architecture Inspires Interface-Engineered MXene Nanosheet/Boron Nitride Nanosheet/Polydopamine Hybrids for Fire Retardants. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02902] [Reference Citation Analysis]
3 Li M, Li L, Chen Y, Qin Y, Wei X, Kong X, Zhang Z, Xiong S, Do H, Greer JC, Pan Z, Shui X, Cai T, Dai W, Nishimura K, Lin C, Jiang N, Yu J. Epoxy composite with metal-level thermal conductivity achieved by synergistic effect inspired by lamian noodles. Composites Science and Technology 2022;228:109677. [DOI: 10.1016/j.compscitech.2022.109677] [Reference Citation Analysis]
4 Yang G, Wang M, Dong J, Su F, Ji Y, Liu C, Shen C. Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110253] [Reference Citation Analysis]
5 Lin B, Yuen ACY, Oliver S, Liu J, Yu B, Yang W, Wu S, Yeoh GH, Wang CH. Dual functionalisation of polyurethane foam for unprecedented flame retardancy and antibacterial properties using layer-by-layer assembly of MXene chitosan with antibacterial metal particles. Composites Part B: Engineering 2022. [DOI: 10.1016/j.compositesb.2022.110147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kumar GR, M RP, Cao G, Manimuthu RP. Reinforced Hydroxylated Boron Nitride on Porous Sulfonated Poly(ether sulfone) with Excellent Electrolyte Properties for H 2 /O 2 Fuel Cells. Energy Fuels 2022;36:6445-58. [DOI: 10.1021/acs.energyfuels.2c00604] [Reference Citation Analysis]
7 Wu X, Liu W, Shi F, Yang L, Zhang C. Constructing three‐dimensional boron nitride network for highly thermally conductive epoxy resin composites. Polymer Composites. [DOI: 10.1002/pc.26490] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Pan D, Dong J, Yang G, Su F, Chang B, Liu C, Zhu Y, Guo Z. Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites. Adv Compos Hybrid Mater 2022;5:58-70. [DOI: 10.1007/s42114-021-00362-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 34] [Article Influence: 23.0] [Reference Citation Analysis]
9 Bai Y, Shi Y, Zhou S, Zou H, Liang M. Highly Thermally Conductive Yet Electrically Insulative Polycarbonate Composites with Oriented Hybrid Networks Assisted by High Shear Injection Molding. Macro Materials & Eng 2022;307:2100632. [DOI: 10.1002/mame.202100632] [Cited by in F6Publishing: 2] [Reference Citation Analysis]