BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, Perumal MK, Mudliar SN. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - A molecular docking and simulation study. Comput Biol Med 2021;136:104683. [PMID: 34329860 DOI: 10.1016/j.compbiomed.2021.104683] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
Number Citing Articles
1 Pitsillou E, Liang JJ, Beh RC, Hung A, Karagiannis TC. Molecular dynamics simulations highlight the altered binding landscape at the spike-ACE2 interface between the Delta and Omicron variants compared to the SARS-CoV-2 original strain. Computers in Biology and Medicine 2022;149:106035. [DOI: 10.1016/j.compbiomed.2022.106035] [Reference Citation Analysis]
2 Liu J, Zhang L, Gao J, Zhang B, Liu X, Yang N, Liu X, Liu X, Cheng Y. Discovery of genistein derivatives as potential SARS-CoV-2 main protease inhibitors by virtual screening, molecular dynamics simulations and ADMET analysis. Front Pharmacol 2022;13:961154. [DOI: 10.3389/fphar.2022.961154] [Reference Citation Analysis]
3 Mahaboob Ali AA, Bugarcic A, Naumovski N, Ghildyal R. Ayurvedic formulations: Potential COVID-19 therapeutics? Phytomedicine Plus 2022;2:100286. [DOI: 10.1016/j.phyplu.2022.100286] [Reference Citation Analysis]
4 Xie J, Chen R, Wang Q, Mao H. Exploration and validation of Taraxacum mongolicum anti-cancer effect. Comput Biol Med 2022;148:105819. [PMID: 35810695 DOI: 10.1016/j.compbiomed.2022.105819] [Reference Citation Analysis]
5 Zahid S, Gul M, Shafique S, Rashid S. E2UbcH5B-derived peptide ligands target HECT E3-E2 binding site and block the Ub-dependent SARS-CoV-2 egression: A computational study. Computers in Biology and Medicine 2022;146:105660. [DOI: 10.1016/j.compbiomed.2022.105660] [Reference Citation Analysis]
6 Kanchibhotla D, Subramanian S, Ravi Kumar RM, Venkatesh Hari KR, Pathania M. An In-vitro evaluation of a polyherbal formulation, against SARS-Cov-2. J Ayurveda Integr Med 2022;13:100581. [PMID: 35753154 DOI: 10.1016/j.jaim.2022.100581] [Reference Citation Analysis]
7 Dwivedi M, Mukhopadhyay S, Yadav S, Dubey KD. A multidrug efflux protein in Mycobacterium tuberculosis; tap as a potential drug target for drug repurposing. Comput Biol Med 2022;146:105607. [PMID: 35617724 DOI: 10.1016/j.compbiomed.2022.105607] [Reference Citation Analysis]
8 Umar AK, Zothantluanga JH, Aswin K, Maulana S, Sulaiman Zubair M, Lalhlenmawia H, Rudrapal M, Chetia D. Antiviral phytocompounds “ellagic acid” and “(+)-sesamin” of Bridelia retusa identified as potential inhibitors of SARS-CoV-2 3CL pro using extensive molecular docking, molecular dynamics simulation studies, binding free energy calculations, and bioactivity prediction. Struct Chem. [DOI: 10.1007/s11224-022-01959-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yousaf R, Navid A, Azam SS. Discovery of novel Glutaminase allosteric inhibitors through drug repurposing and comparative MMGB/PBSA and molecular dynamics simulation. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.105669] [Reference Citation Analysis]
10 Singh R, Bhardwaj VK, Das P, Bhattacherjee D, Zyryanov GV, Purohit R. Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Comput Biol Med 2022;146:105572. [PMID: 35551011 DOI: 10.1016/j.compbiomed.2022.105572] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Prasetyo WE, Purnomo H, Sadrini M, Wibowo FR, Firdaus M, Kusumaningsih T. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro ) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2068071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Van Doan H, Lumsangkul C, Sringarm K, Hoseinifar SH, Dawood MA, El-haroun E, Harikrishnan R, Jaturasitha S, Paolucci M. Impacts of Amla (Phyllanthus emblica) fruit extract on growth, skin mucosal and serum immunities, and disease resistance of Nile tilapia (Oreochromis niloticus) raised under biofloc system. Aquaculture Reports 2022;22:100953. [DOI: 10.1016/j.aqrep.2021.100953] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Alici H, Tahtaci H, Demir K. Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes. Computational Biology and Chemistry 2022. [DOI: 10.1016/j.compbiolchem.2022.107657] [Reference Citation Analysis]
14 Prathiviraj R, Chellapandi P, Begum A, Kiran GS, Selvin J. Identification of genotypic variants and its proteomic mutations of Brazilian SARS-CoV-2 isolates. Virus Res 2022;307:198618. [PMID: 34740719 DOI: 10.1016/j.virusres.2021.198618] [Reference Citation Analysis]
15 Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021;8:747956. [PMID: 34621776 DOI: 10.3389/fnut.2021.747956] [Cited by in F6Publishing: 3] [Reference Citation Analysis]