1 |
Yoo S, Mun Y, Kang N, Koo JM, Lee DH, Yoo JH, Lee SM, Koh S, Park JC, Kim T, Shin EK, Lee HS, Sim J, Kang KW, Kim SK, Cho C, Kim MG, Kim D, Lee J. Enhancement of the therapeutic efficacy of the MAP regimen using thiamine pyrophosphate‐decorated albumin nanoclusters in osteosarcoma treatment. Bioengineering & Transla Med 2022. [DOI: 10.1002/btm2.10472] [Reference Citation Analysis]
|
2 |
Le XT, Lee J, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Shin BS, Youn YS. Combined phototherapy with metabolic reprogramming-targeted albumin nanoparticles for treating breast cancer. Biomater Sci 2022;10:7117-32. [PMID: 36350285 DOI: 10.1039/d2bm01281b] [Reference Citation Analysis]
|
3 |
Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv 2022;:1-22. [PMID: 36253957 DOI: 10.1080/17425247.2022.2134341] [Reference Citation Analysis]
|
4 |
Zhao Z, Yin XN, Wang J, Chen X, Cai ZL, Zhang B. Prognostic significance of hemoglobin, albumin, lymphocyte, platelet in gastrointestinal stromal tumors: A propensity matched retrospective cohort study. World J Gastroenterol 2022; 28(27): 3476-3487 [DOI: 10.3748/wjg.v28.i27.3476] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Kulig K, Ziąbka M, Pilarczyk K, Owczarzy A, Rogóż W, Maciążek-jurczyk M. Physicochemical Study of Albumin Nanoparticles with Chlorambucil. Processes 2022;10:1170. [DOI: 10.3390/pr10061170] [Reference Citation Analysis]
|
6 |
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Adv Sci (Weinh) 2022;9:e2104012. [PMID: 35077010 DOI: 10.1002/advs.202104012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
7 |
Chan Y, Ng SW, Soon L. Polymeric and Inorganic Nanoparticles Targeting Chronic Respiratory Diseases. Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases 2022. [DOI: 10.1007/978-981-16-4392-7_18] [Reference Citation Analysis]
|
8 |
Lee WT, Lee J, Kim H, Nguyen NT, Lee ES, Oh KT, Choi HG, Youn YS. Photoreactive-proton-generating hyaluronidase/albumin nanoparticles-loaded PEG-hydrogel enhances antitumor efficacy and disruption of the hyaluronic acid extracellular matrix in AsPC-1 tumors. Mater Today Bio 2021;12:100164. [PMID: 34877519 DOI: 10.1016/j.mtbio.2021.100164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Xu Y, Liu Y, Liu Q, Lu S, Chen X, Xu W, Shi F. Co-delivery of bufalin and nintedanib via albumin sub-microspheres for synergistic cancer therapy. J Control Release 2021;338:705-18. [PMID: 34481023 DOI: 10.1016/j.jconrel.2021.08.049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
10 |
Pham LM, Poudel K, Phung CD, Nguyen TT, Pandit M, Nguyen HT, Chang JH, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Preparation and evaluation of dabrafenib-loaded, CD47-conjugated human serum albumin-based nanoconstructs for chemoimmunomodulation. Colloids Surf B Biointerfaces 2021;208:112093. [PMID: 34482192 DOI: 10.1016/j.colsurfb.2021.112093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
11 |
Trindade LR, da Silva DVT, Baião DDS, Paschoalin VMF. Increasing the Power of Polyphenols through Nanoencapsulation for Adjuvant Therapy against Cardiovascular Diseases. Molecules 2021;26:4621. [PMID: 34361774 DOI: 10.3390/molecules26154621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Pham LM, Poudel K, Ou W, Phung CD, Nguyen HT, Nguyen BL, Karmacharya P, Pandit M, Chang JH, Jeong JH, Ku SK, Yong CS, Choi HG, Kim JO. Combination chemotherapeutic and immune-therapeutic anticancer approach via anti-PD-L1 antibody conjugated albumin nanoparticles. Int J Pharm 2021;605:120816. [PMID: 34161810 DOI: 10.1016/j.ijpharm.2021.120816] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
13 |
Hirakawa N, Ishima Y, Kinoshita R, Nakano R, Chuang VTG, Ando H, Shimizu T, Okuhira K, Maruyama T, Otagiri M, Ishida T. Reduction-Responsive and Multidrug Deliverable Albumin Nanoparticles: An Antitumor Drug to Abraxane against Human Pancreatic Tumor-Bearing Mice. ACS Appl Bio Mater 2021;4:4302-9. [PMID: 35006842 DOI: 10.1021/acsabm.1c00110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Du X, Li D, Wang G, Fan Y, Li N, Chai L, Li G, Li J. Chemoprotective effect of atorvastatin against benzo(a)pyrene-induced lung cancer via the inhibition of oxidative stress and inflammatory parameters. Ann Transl Med 2021;9:355. [PMID: 33708982 DOI: 10.21037/atm-20-7770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Rahman M, Alam K, Hafeez A, Ilyas R, Beg S. Protein-based nanomedicines as anticancer drug delivery platforms. Nanoformulation Strategies for Cancer Treatment 2021. [DOI: 10.1016/b978-0-12-821095-6.00005-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
16 |
Jain S, Raza K, Agrawal AK, Vaidya A. Lung cancer: Improving efficacy and reducing side effects. Nanotechnology Applications for Cancer Chemotherapy 2021. [DOI: 10.1016/b978-0-12-817846-1.00017-5] [Reference Citation Analysis]
|
17 |
Shi L, Sun G, Zhang Y. Demethoxycurcumin analogue DMC-BH exhibits potent anticancer effects on orthotopic glioblastomas. Aging (Albany NY) 2020;12:23795-807. [PMID: 33221748 DOI: 10.18632/aging.103981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. Cancer Drug Resist 2020;3:930-46. [PMID: 35582218 DOI: 10.20517/cdr.2020.68] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
19 |
Pham PTT, Le XT, Kim H, Kim HK, Lee ES, Oh KT, Choi HG, Youn YS. Indocyanine Green and Curcumin Co-Loaded Nano-Fireball-Like Albumin Nanoparticles Based on Near-Infrared-Induced Hyperthermia for Tumor Ablation. Int J Nanomedicine 2020;15:6469-84. [PMID: 32943865 DOI: 10.2147/IJN.S262690] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
20 |
Song YJ, Jung SY, Kim JH, Park K. Optimization of the Preparation and Characterization of Tannylated-Albumin Nanoagents. Macromol Res 2020;28:969-72. [DOI: 10.1007/s13233-020-8141-x] [Reference Citation Analysis]
|
21 |
Kim SS, Kim HK, Kim H, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers. Arch Pharm Res 2021;44:182-93. [PMID: 32803685 DOI: 10.1007/s12272-020-01264-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
|
22 |
Cao X, Tan T, Zhu D, Yu H, Liu Y, Zhou H, Jin Y, Xia Q. Paclitaxel-Loaded Macrophage Membrane Camouflaged Albumin Nanoparticles for Targeted Cancer Therapy. Int J Nanomedicine 2020;15:1915-28. [PMID: 32256068 DOI: 10.2147/IJN.S244849] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]
|
23 |
Wang Q, Liu F, Wang L, Xie C, Wu P, Du S, Zhou S, Sun Z, Liu Q, Yu L, Liu B, Li R. Enhanced and Prolonged Antitumor Effect of Salinomycin-Loaded Gelatinase-Responsive Nanoparticles via Targeted Drug Delivery and Inhibition of Cervical Cancer Stem Cells. Int J Nanomedicine 2020;15:1283-95. [PMID: 32161458 DOI: 10.2147/IJN.S234679] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
24 |
Wang Z, Zhi K, Ding Z, Sun Y, Li S, Li M, Pu K, Zou J. Emergence in protein derived nanomedicine as anticancer therapeutics: More than a tour de force. Semin Cancer Biol 2021;69:77-90. [PMID: 31962173 DOI: 10.1016/j.semcancer.2019.11.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
25 |
Vaidya B, Kulkarni NS, Shukla SK, Parvathaneni V, Chauhan G, Damon JK, Sarode A, Garcia JV, Kunda N, Mitragotri S, Gupta V. Development of inhalable quinacrine loaded bovine serum albumin modified cationic nanoparticles: Repurposing quinacrine for lung cancer therapeutics. Int J Pharm 2020;577:118995. [PMID: 31935471 DOI: 10.1016/j.ijpharm.2019.118995] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
|
26 |
Mehta T, Dave HV, Shah J, Hariharan K, Memon H, Soni M, Johnson J. Nanomedicine for Challenging Solid Tumors: Recent Trends and Future Ahead. Nano Medicine and Nano Safety 2020. [DOI: 10.1007/978-981-15-6255-6_17] [Reference Citation Analysis]
|
27 |
Krishnan UM. Protein and peptide nanostructures for drug and gene delivery. Artificial Protein and Peptide Nanofibers 2020. [DOI: 10.1016/b978-0-08-102850-6.00013-9] [Reference Citation Analysis]
|
28 |
Zhao Y, Cai C, Liu M, Zhao Y, Pei W, Chu X, Zhang H, Wang Z, Han J. An organic solvent-free technology for the fabrication of albumin-based paclitaxel nanoparticles for effective cancer therapy. Colloids and Surfaces B: Biointerfaces 2019;183:110394. [DOI: 10.1016/j.colsurfb.2019.110394] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
29 |
Wang X, Ouyang F, Cui L, Xiong T, Guan X, Guo Y, Duan S. Surface coating–modulated peroxidase-like activity of maghemite nanoparticles for a chromogenic analysis of cholesterol. J Nanopart Res 2019;21. [DOI: 10.1007/s11051-019-4662-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
|
30 |
Lee SY, Koo JS, Yang M, Cho HJ. Application of temporary agglomeration of chitosan-coated nanoparticles for the treatment of lung metastasis of melanoma. J Colloid Interface Sci 2019;544:266-75. [PMID: 30852352 DOI: 10.1016/j.jcis.2019.02.092] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
31 |
Rezaei L, Safavi MS, Shojaosadati SA. Protein Nanocarriers for Targeted Drug Delivery. Characterization and Biology of Nanomaterials for Drug Delivery 2019. [DOI: 10.1016/b978-0-12-814031-4.00008-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
32 |
Hashem L, Swedrowska M, Vllasaliu D. Intestinal uptake and transport of albumin nanoparticles: potential for oral delivery. Nanomedicine (Lond) 2018;13:1255-65. [PMID: 29949465 DOI: 10.2217/nnm-2018-0029] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
|
33 |
Phuong PTT, Lee S, Lee C, Seo B, Park S, Oh KT, Lee ES, Choi H, Shin BS, Youn YS. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids and Surfaces B: Biointerfaces 2018;171:123-33. [DOI: 10.1016/j.colsurfb.2018.07.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
|
34 |
Mendes M, Sousa J, Pais A, Vitorino C. Clinical applications of nanostructured drug delivery systems. Core-Shell Nanostructures for Drug Delivery and Theranostics 2018. [DOI: 10.1016/b978-0-08-102198-9.00004-1] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Manzur A, Oluwasanmi A, Moss D, Curtis A, Hoskins C. Nanotechnologies in Pancreatic Cancer Therapy. Pharmaceutics 2017;9:E39. [PMID: 28946666 DOI: 10.3390/pharmaceutics9040039] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
|