BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Daroit DJ, Brandelli A. In vivo bioactivities of food protein-derived peptides – a current review. Current Opinion in Food Science 2021;39:120-9. [DOI: 10.1016/j.cofs.2021.01.002] [Cited by in Crossref: 37] [Cited by in F6Publishing: 45] [Article Influence: 18.5] [Reference Citation Analysis]
Number Citing Articles
1 Ma K, Wang Z, Ju X, Huang J, He R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. J Sci Food Agric 2023;103:1474-83. [PMID: 36168817 DOI: 10.1002/jsfa.12243] [Reference Citation Analysis]
2 dos Santos Alves MJ, Dalsasso RR, Valencia GA, Monteiro AR. Natural Antioxidants. Natural Additives in Foods 2023. [DOI: 10.1007/978-3-031-17346-2_2] [Reference Citation Analysis]
3 Takamiya D, Takahashi H, Nakamura A, Xia Y, Kuda T. Effect of Lactiplantibacillus plantarum fermentation on the in-vitro antioxidant and angiotensin I-converting enzyme-inhibitory properties of turmeric, coriander, cumin, and red chili pepper suspensions. Biocatalysis and Agricultural Biotechnology 2023. [DOI: 10.1016/j.bcab.2023.102610] [Reference Citation Analysis]
4 Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023;22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Reference Citation Analysis]
5 Rojas ML, Kubo MT, Caetano-silva ME, Carvalho GR, Augusto PE. How food structure influences the physical, sensorial, and nutritional quality of food products. Food Structure Engineering and Design for Improved Nutrition, Health and Well-Being 2023. [DOI: 10.1016/b978-0-323-85513-6.00012-8] [Reference Citation Analysis]
6 Garmidolova A, Desseva I, Mihaylova D, Fidan H, Terziyska M, Pavlov A. Papain Hydrolysates of Lupin Proteins with Antioxidant, Antimicrobial, and Acetylcholinesterase Inhibitory Activities. Applied Sciences 2022;12:12370. [DOI: 10.3390/app122312370] [Reference Citation Analysis]
7 Brandelli A, Daroit DJ. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Critical Reviews in Food Science and Nutrition 2022. [DOI: 10.1080/10408398.2022.2145262] [Reference Citation Analysis]
8 Irankunda R, Camaño Echavarría JA, Paris C, Stefan L, Desobry S, Selmeczi K, Muhr L, Canabady-rochelle L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations 2022;9:370. [DOI: 10.3390/separations9110370] [Reference Citation Analysis]
9 Marín-morales MS, Ibarra-herrera CC, Luna-vital DA, Monribot-villanueva JL, Guerrero-analco JA. Biological activity of extracts and hydrolysates from early- and adult-stage edible grasshopper Sphenarium purpurascens. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.1028543] [Reference Citation Analysis]
10 Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. Int J of Dairy Tech 2022. [DOI: 10.1111/1471-0307.12910] [Reference Citation Analysis]
11 Du Z, Li Y. Computer-Aided Approaches for Screening Antioxidative Dipeptides and Application to Sorghum Proteins. ACS Food Sci Technol 2022. [DOI: 10.1021/acsfoodscitech.2c00286] [Reference Citation Analysis]
12 Naeem M, Malik MI, Umar T, Ashraf S, Ahmad A. A Comprehensive Review About Bioactive Peptides: Sources to Future Perspective. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10465-3] [Reference Citation Analysis]
13 Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022;8:e10861. [PMID: 36217466 DOI: 10.1016/j.heliyon.2022.e10861] [Reference Citation Analysis]
14 Sharma R, Diwan B, Singh BP, Kulshrestha S. Probiotic fermentation of polyphenols: potential sources of novel functional foods. Food Prod Process and Nutr 2022;4:21. [DOI: 10.1186/s43014-022-00101-4] [Reference Citation Analysis]
15 Castañeda-valbuena D, Berenguer-murcia Á, Fernandez-lafuente R, Morellon-sterling R, Tacias-pascacio VG. Biological activities of peptides obtained by pepsin hydrolysis of fishery products. Process Biochemistry 2022;120:53-63. [DOI: 10.1016/j.procbio.2022.05.029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. Journal of Food Biochemistry. [DOI: 10.1111/jfbc.14365] [Reference Citation Analysis]
17 Millan GCL, Veras FF, Stincone P, Pailliè-jiménez ME, Brandelli A. Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. Biocatalysis and Agricultural Biotechnology 2022;43:102415. [DOI: 10.1016/j.bcab.2022.102415] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Rafique H, Dong R, Wang X, Alim A, Aadil RM, Li L, Zou L, Hu X. Dietary-Nutraceutical Properties of Oat Protein and Peptides. Front Nutr 2022;9:950400. [DOI: 10.3389/fnut.2022.950400] [Reference Citation Analysis]
19 Pratama IS, Putra Y, Pangestuti R, Kim S, Siahaan EA. Bioactive peptides-derived from marine by-products: development, health benefits and potential application in biomedicine. Fish Aquat Sci 2022;25:357-379. [DOI: 10.47853/fas.2022.e33] [Reference Citation Analysis]
20 Resende D, Costas B, Sá T, Golfetto U, Machado M, Pereira M, Pereira C, Marques B, Rocha CM, Pintado M, Valente LM. Innovative swine blood hydrolysates as promising ingredients for European seabass diets: Impact on growth performance and resistance to Tenacibaculum maritimum infection. Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.738657] [Reference Citation Analysis]
21 Chai TT, Wong CC, Sabri MZ, Wong FC. Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules 2022;27:3864. [PMID: 35744987 DOI: 10.3390/molecules27123864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Okoye CO, Ezeorba TP, Okeke ES, Okagu IU. Recent Findings on the Isolation, Identification and Quantification of Bioactive Peptides. Applied Food Research 2022;2:100065. [DOI: 10.1016/j.afres.2022.100065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Fan H, Liu H, Zhang Y, Zhang S, Liu T, Wang D. Review on plant-derived bioactive peptides: biological activities, mechanism of action and utilizations in food development. Journal of Future Foods 2022;2:143-59. [DOI: 10.1016/j.jfutfo.2022.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
24 Ewert J, Eisele T, Stressler T. Enzymatic production and analysis of antioxidative protein hydrolysates. Eur Food Res Technol. [DOI: 10.1007/s00217-022-04022-x] [Reference Citation Analysis]
25 Manzoor M, Singh J, Gani A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022;373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
26 Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J Agric Food Chem 2022. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
27 Chen W, Ma H, Wang Y. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. Ultrasonics Sonochemistry 2022. [DOI: 10.1016/j.ultsonch.2022.105993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Wang L, Shao X, Cheng M, Fan X, Wang C, Jiang H, Zhang X. Mechanisms and applications of milk‐derived bioactive peptides in Food for Special Medical Purposes. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15622] [Reference Citation Analysis]
29 Lermen AM, Clerici NJ, Borchartt Maciel D, Daroit DJ. Characterization and application of a crude bacterial protease to produce antioxidant hydrolysates from whey protein. Prep Biochem Biotechnol 2023;53:12-21. [PMID: 35156901 DOI: 10.1080/10826068.2022.2033997] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Yathisha UG, Vaidya S, Sheshappa MB. Functional Properties of Protein Hydrolyzate from Ribbon Fish (Lepturacanthus Savala) as Prepared by Enzymatic hydrolysis. International Journal of Food Properties 2022;25:187-203. [DOI: 10.1080/10942912.2022.2027964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sentandreu E, Sentandreu MÁ. Technological developments of food peptidomics. Food Proteomics 2022. [DOI: 10.1016/b978-0-323-90889-4.00009-9] [Reference Citation Analysis]
32 Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2021;148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
33 Singh PP, Gupta V, Prakash B. Recent advancement in functional properties and toxicity assessment of plant-derived bioactive peptides using bioinformatic approaches. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34783283 DOI: 10.1080/10408398.2021.2002807] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Çavaş L, Bilgin Y. Bioactivities from Novel Toxins of Pterois volitans: A Bioinformatics Approach. Gazi University Journal of Science Part A: Engineering and Innovation 2021. [DOI: 10.54287/gujsa.1002703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Wang Q, Zhi T, Han P, Li S, Xia J, Chen Z, Wang C, Wu Y, Jia Y, Ma A. Potential anti-inflammatory activity of walnut protein derived peptide leucine-proline-phenylalanine in lipopolysaccharides-irritated RAW264.7 cells. Food and Agricultural Immunology 2021;32:663-78. [DOI: 10.1080/09540105.2021.1982870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Daniloski D, Mccarthy NA, Vasiljevic T. Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends in Food Science & Technology 2021;116:681-700. [DOI: 10.1016/j.tifs.2021.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
37 Vogel C, Paglia EB, Moroni LS, Demiate IM, Prestes RC, Kempka AP. Swine plasma peptides obtained using pepsin: In silico and in vitro properties and biological activities. Biocatalysis and Biotransformation. [DOI: 10.1080/10242422.2021.1981880] [Reference Citation Analysis]
38 Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, Vela-Gutiérrez G, Rather IA, Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int J Biol Macromol 2021;184:415-28. [PMID: 34157329 DOI: 10.1016/j.ijbiomac.2021.06.076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
39 Ghorbel S, Bkhairia I, Dhibi S, Maisto M, Alghamdi OA, Nasri M, Tenore GC. Peptides from Liza aurata: Natural Source Attenuate Paracetamol Induced Nephrotoxicity by Modulation of the Inflammatory Response and DNA Damage. Int J Pept Res Ther 2021;27:2069-82. [DOI: 10.1007/s10989-021-10235-7] [Reference Citation Analysis]
40 Mizushige T. Neuromodulatory peptides: Orally active anxiolytic-like and antidepressant-like peptides derived from dietary plant proteins. Peptides 2021;142:170569. [PMID: 33984426 DOI: 10.1016/j.peptides.2021.170569] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Katayama S, Corpuz HM, Nakamura S. Potential of plant-derived peptides for the improvement of memory and cognitive function. Peptides 2021;142:170571. [PMID: 33965441 DOI: 10.1016/j.peptides.2021.170571] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]