BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karyakin AA. Advances of Prussian blue and its analogues in (bio)sensors. Current Opinion in Electrochemistry 2017;5:92-8. [DOI: 10.1016/j.coelec.2017.07.006] [Cited by in Crossref: 58] [Cited by in F6Publishing: 27] [Article Influence: 11.6] [Reference Citation Analysis]
Number Citing Articles
1 Banavath R, Srivastava R, Bhargava P. Nanoporous Cobalt Hexacyanoferrate Nanospheres for Screen-Printed H 2 O 2 Sensors. ACS Appl Nano Mater 2021;4:5564-76. [DOI: 10.1021/acsanm.1c01068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
2 Ciftci S, Cánovas R, Neumann F, Paulraj T, Nilsson M, Crespo GA, Madaboosi N. The sweet detection of rolling circle amplification: Glucose-based electrochemical genosensor for the detection of viral nucleic acid. Biosens Bioelectron 2020;151:112002. [PMID: 31999596 DOI: 10.1016/j.bios.2019.112002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
3 Khramtsov P, Kropaneva M, Minin A, Bochkova M, Timganova V, Maximov A, Puzik A, Zamorina S, Rayev M. Prussian Blue Nanozymes with Enhanced Catalytic Activity: Size Tuning and Application in ELISA-like Immunoassay. Nanomaterials (Basel) 2022;12:1630. [PMID: 35630852 DOI: 10.3390/nano12101630] [Reference Citation Analysis]
4 Rojas D, Hernández-rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Microchim Acta 2022;189. [DOI: 10.1007/s00604-022-05185-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Suprun EV, Karpova EV, Radko SP, Karyakin AA. Advanced electrochemical detection of amino acids and proteins through flow injection analysis and catalytic oxidation on Prussian Blue. Electrochimica Acta 2020;331:135289. [DOI: 10.1016/j.electacta.2019.135289] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 9.5] [Reference Citation Analysis]
6 Komkova MA, Ibragimova OA, Karyakina EE, Karyakin AA. Catalytic Pathway of Nanozyme “Artificial Peroxidase” with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme. J Phys Chem Lett 2021;12:171-6. [DOI: 10.1021/acs.jpclett.0c03014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
7 Höfs S, Greiner T, Göbel G, Talke A, Lisdat F. Activity determination of human monoamine oxidase B (Mao B) by selective capturing and amperometric hydrogen peroxide detection. Sensors and Actuators B: Chemical 2021;328:129020. [DOI: 10.1016/j.snb.2020.129020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu B, Yeasmin S, Liu Y, Cheng L. Ferrocene-grafted carbon nanotubes for sensitive non-enzymatic electrochemical detection of hydrogen peroxide. Journal of Electroanalytical Chemistry 2022;908:116101. [DOI: 10.1016/j.jelechem.2022.116101] [Reference Citation Analysis]
9 Komkova MA, Karyakina EE, Karyakin AA. Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. J Am Chem Soc 2018;140:11302-7. [PMID: 30118222 DOI: 10.1021/jacs.8b05223] [Cited by in Crossref: 98] [Cited by in F6Publishing: 68] [Article Influence: 24.5] [Reference Citation Analysis]
10 Rekertaitė AI, Valiūnienė A, Virbickas P, Ramanavicius A. Physicochemical Characteristics of Polypyrrole/(Glucose oxidase)/(Prussian Blue)-based Biosensor Modified with Ni- and Co-Hexacyanoferrates. Electroanalysis 2019;31:50-7. [DOI: 10.1002/elan.201800526] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
11 Wu B, Yeasmin S, Liu Y, Cheng L. Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes. Sensors and Actuators B: Chemical 2022;354:131216. [DOI: 10.1016/j.snb.2021.131216] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Komkova MA, Pasquarelli A, Andreev EA, Galushin AA, Karyakin AA. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochimica Acta 2020;339:135924. [DOI: 10.1016/j.electacta.2020.135924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 5] [Article Influence: 10.5] [Reference Citation Analysis]
13 Virbickas P, Kavaliauskaitė G, Valiūnienė A, Plaušinaitienė V, Rekertaitė AI, Ramanavičius A. Cobalt hexacyanoferrate based optical sensor for continuous optical sensing of hydrogen peroxide. Electrochimica Acta 2020;362:137202. [DOI: 10.1016/j.electacta.2020.137202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
14 Taglietti A, Pallavicini P, Dacarro G. Prussian Blue and Its Analogs as Novel Nanostructured Antibacterial Materials. Applied Nano 2021;2:85-97. [DOI: 10.3390/applnano2020008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02290-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rossi TS, Tenório LN, Guedes-sobrinho D, Winnischofer H, Vidotti M. Influence of electrosynthesis methods in the electrocatalytical and morphological properties of cobalt and nickel hexacyanoferrate films. Electrochimica Acta 2020;361:137021. [DOI: 10.1016/j.electacta.2020.137021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Han L, Galán-mascarós JR. The Positive Effect of Iron Doping in the Electrocatalytic Activity of Cobalt Hexacyanoferrate. Catalysts 2020;10:130. [DOI: 10.3390/catal10010130] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
18 Rojas D, Della Pelle F, Del Carlo M, d’Angelo M, Dominguez-benot R, Cimini A, Escarpa A, Compagnone D. Electrodeposited Prussian Blue on carbon black modified disposable electrodes for direct enzyme-free H2O2 sensing in a Parkinson’s disease in vitro model. Sensors and Actuators B: Chemical 2018;275:402-8. [DOI: 10.1016/j.snb.2018.08.040] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
19 Uzunçar S, Özdoğan N, Ak M. Amperometric detection of glucose and H2O2 using peroxide selective electrode based on carboxymethylcellulose/polypyrrole and Prussian Blue nanocomposite. Materials Today Communications 2021;26:101839. [DOI: 10.1016/j.mtcomm.2020.101839] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Asai M, Takahashi A, Jiang Y, Ishizaki M, Kurihara M, Kawamoto T. Trace Alcohol Adsorption by Metal Hexacyanocobaltate Nanoparticles and the Adsorption Mechanism. J Phys Chem C 2018;122:11918-25. [DOI: 10.1021/acs.jpcc.8b03015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 Matos-peralta Y, Antuch M. Review—Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J Electrochem Soc 2019;167:037510. [DOI: 10.1149/2.0102003jes] [Cited by in Crossref: 29] [Article Influence: 9.7] [Reference Citation Analysis]
22 Ledo A, Fernandes E, Brett CM, Barbosa RM. Enhanced selectivity and stability of ruthenium purple-modified carbon fiber microelectrodes for detection of hydrogen peroxide in brain tissue. Sensors and Actuators B: Chemical 2020;311:127899. [DOI: 10.1016/j.snb.2020.127899] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xie J, Dong B. Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. Chinese Journal of Catalysis 2021;42:1843-64. [DOI: 10.1016/s1872-2067(21)63833-0] [Reference Citation Analysis]
24 Habibi MM, Mirhosseini SA, Sajjadi S, Keihan AH. A novel label-free electrochemical immunesensor for ultrasensitive detection of LT toxin using prussian blue@gold nanoparticles composite as a signal amplification. Bioelectrochemistry 2021;142:107887. [PMID: 34298495 DOI: 10.1016/j.bioelechem.2021.107887] [Reference Citation Analysis]
25 Antuch M, Matos‐peralta Y, Llanes D, Echevarría F, Rodríguez‐hernández J, Marin MH, Díaz‐garcía AM, Reguera L. Bimetallic Co 2+ and Mn 2+ Hexacyanoferrate for Hydrogen Peroxide Electrooxidation and Its Application in a Highly Sensitive Cholesterol Biosensor. ChemElectroChem 2019;6:1567-73. [DOI: 10.1002/celc.201900190] [Cited by in Crossref: 15] [Article Influence: 5.0] [Reference Citation Analysis]
26 Karpova EV, Shcherbacheva EV, Komkova MA, Eliseev AA, Karyakin AA. Core-Shell Nanozymes "Artificial Peroxidase": Stability with Superior Catalytic Properties. J Phys Chem Lett 2021;12:5547-51. [PMID: 34101473 DOI: 10.1021/acs.jpclett.1c01200] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Poletti F, Zanfrognini B, Favaretto L, Quintano V, Sun J, Treossi E, Melucci M, Palermo V, Zanardi C. Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sensors and Actuators B: Chemical 2021;344:130253. [DOI: 10.1016/j.snb.2021.130253] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
28 Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coordination Chemistry Reviews 2020;419:213393. [DOI: 10.1016/j.ccr.2020.213393] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
29 Aller-pellitero M, Santiago-malagón S, Ruiz J, Alonso Y, Lakard B, Hihn J, Guirado G, del Campo FJ. Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification. Sensors and Actuators B: Chemical 2020;306:127535. [DOI: 10.1016/j.snb.2019.127535] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
30 Esmail Tehrani S, Quang Nguyen L, Garelli G, Jensen BM, Ruzgas T, Emnéus J, Sylvest Keller S. Hydrogen Peroxide Detection Using Prussian Blue‐modified 3D Pyrolytic Carbon Microelectrodes. Electroanalysis 2021;33:2516-28. [DOI: 10.1002/elan.202100387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Virbickas P, Valiūnienė A, Kavaliauskaitė G, Ramanavicius A. Prussian White-Based Optical Glucose Biosensor. J Electrochem Soc 2019;166:B927-32. [DOI: 10.1149/2.0511912jes] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
32 Cai S, Xu C, Jiang D, Yuan M, Zhang Q, Li Z, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022;93:106904. [DOI: 10.1016/j.nanoen.2021.106904] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
33 Vokhmyanina DV, Andreeva KD, Komkova MA, Karyakina EE, Karyakin AA. ‘Artificial peroxidase’ nanozyme – enzyme based lactate biosensor. Talanta 2020;208:120393. [DOI: 10.1016/j.talanta.2019.120393] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
34 Rajarathinam T, Kwon M, Thirumalai D, Kim S, Lee S, Yoon JH, Paik HJ, Kim S, Lee J, Ha HK, Chang SC. Polymer-dispersed reduced graphene oxide nanosheets and Prussian blue modified biosensor for amperometric detection of sarcosine. Anal Chim Acta 2021;1175:338749. [PMID: 34330447 DOI: 10.1016/j.aca.2021.338749] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Reference Citation Analysis]
36 Rafatmah E, Hemmateenejad B. Colorimetric and visual determination of hydrogen peroxide and glucose by applying paper-based closed bipolar electrochemistry. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3793-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
37 Sakdaphetsiri K, Thaweeskulchai T, Schulte A. Rapid sub-micromolar amperometric enzyme biosensing with free substrate access but without nanomaterial signalling support: oxidase-based glucose detection as a proof-of-principle example. Chem Commun (Camb) 2020;56:7132-5. [PMID: 32459232 DOI: 10.1039/d0cc01976c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
38 Perekalin DS, Shved DS, Nelyubina YV. Organometallic cyanotype: formation of Prussian blue by a photochemical decomposition of the arene iron complex. Mendeleev Communications 2019;29:71-3. [DOI: 10.1016/j.mencom.2019.01.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
39 Komkova MA, Vetoshev KR, Andreev EA, Karyakin AA. Flow-electrochemical synthesis of Prussian Blue based nanozyme 'artificial peroxidase'. Dalton Trans 2021;50:11385-9. [PMID: 34612266 DOI: 10.1039/d1dt02107a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Karpova EV, Shcherbacheva EV, Galushin AA, Vokhmyanina DV, Karyakina EE, Karyakin AA. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal Chem 2019;91:3778-83. [DOI: 10.1021/acs.analchem.8b05928] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 19.3] [Reference Citation Analysis]
41 Valiūnienė A, Kavaliauskaitė G, Virbickas P, Ramanavičius A. Prussian blue based impedimetric urea biosensor. Journal of Electroanalytical Chemistry 2021;895:115473. [DOI: 10.1016/j.jelechem.2021.115473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Khramtsov P, Kropaneva M, Bochkova M, Timganova V, Kiselkov D, Zamorina S, Rayev M. Synthesis and Application of Albumin Nanoparticles Loaded with Prussian Blue Nanozymes. Colloids and Interfaces 2022;6:29. [DOI: 10.3390/colloids6020029] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Bhat VS, S. S, Hegde G. Review—Biomass Derived Carbon Materials for Electrochemical Sensors. J Electrochem Soc 2020;167:037526. [DOI: 10.1149/2.0262003jes] [Cited by in Crossref: 22] [Article Influence: 11.0] [Reference Citation Analysis]
44 Vokhmyanina DV, Shcherbacheva EV, Daboss EV, Karyakina EE, Karyakin AA. Core-Shell Iron-Nickel Hexacyanoferrate Nanoparticle-Based Sensors for Hydrogen Peroxide Scavenging Activity. Chemosensors 2021;9:344. [DOI: 10.3390/chemosensors9120344] [Reference Citation Analysis]
45 Komkova MA, Zarochintsev AA, Karyakina EE, Karyakin AA. Electrochemical and sensing properties of Prussian Blue based nanozymes “artificial peroxidase”. Journal of Electroanalytical Chemistry 2020;872:114048. [DOI: 10.1016/j.jelechem.2020.114048] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
46 Carminati SA, da Silva BL, Bott-neto JL, de Melo MA, Galante MT, Fernández PS, Longo C, Bonacin JA, Nogueira AF. Hematite Nanorods Photoanodes Decorated by Cobalt Hexacyanoferrate: The Role of Mixed Oxidized States on the Enhancement of Photoelectrochemical Performance. ACS Appl Energy Mater 2020;3:10097-107. [DOI: 10.1021/acsaem.0c01782] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Komkova MA, Andreev EA, Ibragimova OA, Karyakin AA. Prussian Blue based flow-through (bio)sensors in power generation mode: New horizons for electrochemical analyzers. Sensors and Actuators B: Chemical 2019;292:284-8. [DOI: 10.1016/j.snb.2019.04.134] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Yokus MA, Songkakul T, Pozdin VA, Bozkurt A, Daniele MA. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosensors and Bioelectronics 2020;153:112038. [DOI: 10.1016/j.bios.2020.112038] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
49 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
50 Celiesiute R, Ramanaviciene A, Gicevicius M, Ramanavicius A. Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes. Crit Rev Anal Chem 2019;49:195-208. [PMID: 30285474 DOI: 10.1080/10408347.2018.1499009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
51 Banavath R, Srivastava R, Bhargava P. EDTA derived graphene supported porous cobalt hexacyanoferrate nanospheres as a highly electroactive nanocomposite for hydrogen peroxide sensing. Catal Sci Technol 2022;12:2369-83. [DOI: 10.1039/d2cy00003b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Haji-hashemi H, Norouzi P, Safarnejad MR, Larijani B, Habibi MM, Raeisi H, Ganjali MR. Sensitive electrochemical immunosensor for citrus bacterial canker disease detection using fast Fourier transformation square-wave voltammetry method. Journal of Electroanalytical Chemistry 2018;820:111-7. [DOI: 10.1016/j.jelechem.2018.04.062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
53 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
54 Komkova MA, Zarochintsev AA, Karyakin AA. Nanozymes ‘artificial peroxidase’ in reduction and detection of organic peroxides. Journal of Electroanalytical Chemistry 2022;904:115902. [DOI: 10.1016/j.jelechem.2021.115902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Ferrer-Vilanova A, Alonso Y, J Ezenarro J, Santiago S, Muñoz-Berbel X, Guirado G. Electrochromogenic Detection of Live Bacteria Using Soluble and Insoluble Prussian Blue. ACS Omega 2021;6:30989-97. [PMID: 34841141 DOI: 10.1021/acsomega.1c03434] [Reference Citation Analysis]
56 Lin Y, Bariya M, Nyein HYY, Kivimäki L, Uusitalo S, Jansson E, Ji W, Yuan Z, Happonen T, Liedert C, Hiltunen J, Fan Z, Javey A. Porous Enzymatic Membrane for Nanotextured Glucose Sweat Sensors with High Stability toward Reliable Noninvasive Health Monitoring. Adv Funct Mater 2019;29:1902521. [DOI: 10.1002/adfm.201902521] [Cited by in Crossref: 70] [Cited by in F6Publishing: 47] [Article Influence: 23.3] [Reference Citation Analysis]
57 Jirakunakorn R, Khumngern S, Choosang J, Thavarungkul P, Kanatharana P, Numnuam A. Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel. Microchemical Journal 2020;154:104624. [DOI: 10.1016/j.microc.2020.104624] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
58 Ying S, Chen C, Wang J, Lu C, Liu T, Kong Y, Yi FY. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Chempluschem 2021;86:1608-22. [PMID: 34907675 DOI: 10.1002/cplu.202100423] [Reference Citation Analysis]
59 Guerrieri A, Ciriello R, Crispo F, Bianco G. Detection of choline in biological fluids from patients on haemodialysis by an amperometric biosensor based on a novel anti-interference bilayer. Bioelectrochemistry 2019;129:135-43. [PMID: 31158798 DOI: 10.1016/j.bioelechem.2019.05.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
60 Chen J, Wei L, Mahmood A, Pei Z, Zhou Z, Chen X, Chen Y. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials 2020;25:585-612. [DOI: 10.1016/j.ensm.2019.09.024] [Cited by in Crossref: 63] [Cited by in F6Publishing: 15] [Article Influence: 31.5] [Reference Citation Analysis]
61 Avila Y, Acevedo-peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality. Coordination Chemistry Reviews 2022;453:214274. [DOI: 10.1016/j.ccr.2021.214274] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Li Y, Pan F, Yin S, Tong C, Zhu R, Li G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchemical Journal 2022;177:107278. [DOI: 10.1016/j.microc.2022.107278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]