BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ou X, Chen S, Lu X, Lu Q. Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Composites Communications 2021;23:100549. [DOI: 10.1016/j.coco.2020.100549] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Li C, Gu T, Sun D, Qi X, Zhao C, Lei Y, Wang Y. High performances of polyimide/boron nitride nanosheets composites via integrative interfacial decoration strategy. Composites Science and Technology 2022;229:109681. [DOI: 10.1016/j.compscitech.2022.109681] [Reference Citation Analysis]
2 Wang H, Dong J, Yao Y, Zhang Q, Cheng J, Yang H, Xia Z, Zhang Y, Qin X. Flexible substrate based on sandwich-structure hydrocarbon resin/aligned boron nitride composites with high thermal conductivity and low dielectric loss. Composites Science and Technology 2022;228:109654. [DOI: 10.1016/j.compscitech.2022.109654] [Reference Citation Analysis]
3 Zhang Y, He J, Yang R. Ultra-low dielectric constant and high thermal stability of low-crosslinked polyimide with zinc tetraamino phthalocyanine. J Mater Sci. [DOI: 10.1007/s10853-022-07641-7] [Reference Citation Analysis]
4 Feng CP, Wei F, Sun KY, Wang Y, Lan HB, Shang HJ, Ding FZ, Bai L, Yang J, Yang W. Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application. Nanomicro Lett 2022;14:127. [PMID: 35699776 DOI: 10.1007/s40820-022-00868-8] [Reference Citation Analysis]
5 Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules. [DOI: 10.1021/acs.macromol.2c00491] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
6 Jiao L, Zhang Y, Du Z, Dai X, Wang H, Dong Z, Yao H, Qiu X. Ultra‐high Tg and ultra‐low coefficient of thermal expansion polyimide films based on hydrogen bond interaction. Journal of Polymer Science. [DOI: 10.1002/pol.20220177] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Jiao D, Song N, Ding P, Shi L. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composites Communications 2022;31:101101. [DOI: 10.1016/j.coco.2022.101101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Jiao L, Du Z, Dai X, Wang H, Yao H, Qiu X. Multifunctional polyimide films with superheat-resistance, low coefficient of thermal expansion and fluorescence performance. Polymer 2022;247:124792. [DOI: 10.1016/j.polymer.2022.124792] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Sun M, Wang X, Ye Z, Chen X, Xue Y, Yang G. Highly Thermal Conductive Graphite Films Derived from the Graphitization of Chemically Imidized Polyimide Films. Nanomaterials 2022;12:367. [DOI: 10.3390/nano12030367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zuo H, Qian G, Li H, Gan F, Fang Y, Li X, Dong J, Zhao X, Zhang Q. Reduced coefficient of linear thermal expansion for colorless and transparent polyimide by introducing rigid-rod amide units: synthesis and properties. Polym Chem 2022;13:2999-3008. [DOI: 10.1039/d2py00062h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
11 Wang S, He H, Li Q, Huang B, Wang H, Zhang C. Improving thermal conductivity of ethylene-vinyl acetate composites by covalent bond-connected carbon nanotubes@boron nitride hybrids. Composites Communications 2022;29:100986. [DOI: 10.1016/j.coco.2021.100986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lee J, Kim J. Improved through-plane thermal conductivity of 3D structured composites via BN alignment and AlN surface modification. Composites Communications 2021;28:100935. [DOI: 10.1016/j.coco.2021.100935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Han W, Chen M, Li W, Li Y, Ge C, Zhang X. Solvent-assisted encapsulation of boron nitride in polystyrene for high-efficient heat dissipation. Polymer Testing 2021;102:107325. [DOI: 10.1016/j.polymertesting.2021.107325] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Morimune-moriya S, Obara K, Fuseya M, Katanosaka M. Development and characterization of strong, heat-resistant and thermally conductive polyimide/nanodiamond nanocomposites. Polymer 2021;230:124098. [DOI: 10.1016/j.polymer.2021.124098] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 He X, Ou D, Wu S, Luo Y, Ma Y, Sun J. A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv Compos Hybrid Mater 2022;5:21-38. [DOI: 10.1007/s42114-021-00321-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
16 Wang Y, Tang B, Gao Y, Wu X, Chen J, Shan L, Sun K, Zhao Y, Yang K, Yu J, Li W. Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method. ACS Omega 2021;6:19238-51. [PMID: 34337262 DOI: 10.1021/acsomega.1c02694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ruan K, Guo Y, Gu J. Liquid Crystalline Polyimide Films with High Intrinsic Thermal Conductivities and Robust Toughness. Macromolecules 2021;54:4934-44. [DOI: 10.1021/acs.macromol.1c00686] [Cited by in Crossref: 26] [Cited by in F6Publishing: 41] [Article Influence: 26.0] [Reference Citation Analysis]