BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu D, Liu H, Ma W. Rational design of nanohybrids for highly thermally conductive polymer composites. Composites Communications 2020;21:100427. [DOI: 10.1016/j.coco.2020.100427] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu N, Yang W, Li H, Che S, Gao C, Jiang B, Li Z, Xu C, Wang X, Li Y. Amino acid functionalized boron nitride nanosheets towards enhanced thermal and mechanical performance of epoxy composite. Journal of Colloid and Interface Science 2022;619:388-98. [DOI: 10.1016/j.jcis.2022.03.115] [Reference Citation Analysis]
2 Wang Y, Wei X, Cai H, Zhang B, Chen Y, Li M, Qin Y, Li L, Kong X, Gong P, Chen H, Ruan X, Jiao C, Cai T, Zhou W, Wang Z, Nishimura K, Lin CT, Jiang N, Yu J. Enhanced thermal transportation across an electrostatic self-assembly of black phosphorene and boron nitride nanosheets in flexible composite films. Nanoscale 2022. [PMID: 35765953 DOI: 10.1039/d2nr02421g] [Reference Citation Analysis]
3 Yu S, Huang M, Hao R, He S, Liu H, Liu W, Zhu C. Recent advances in thermally conductive polymer composites. High Performance Polymers. [DOI: 10.1177/09540083221106058] [Reference Citation Analysis]
4 Hu D, Liu H, Yang M, Guo Y, Ma W. Construction of boron nitride nanosheets-based nanohybrids by electrostatic self-assembly for highly thermally conductive composites. Adv Compos Hybrid Mater. [DOI: 10.1007/s42114-022-00463-w] [Reference Citation Analysis]
5 Jiao D, Song N, Ding P, Shi L. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composites Communications 2022;31:101101. [DOI: 10.1016/j.coco.2022.101101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhou X, Zong J, Lei J, Li Z. Enhancing thermal conductivity of silicone rubber via constructing hybrid spherical boron nitride thermal network. J of Applied Polymer Sci 2022;139:51943. [DOI: 10.1002/app.51943] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wu N, Che S, Li H, Wang C, Tian X, Li Y. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications. New Carbon Materials 2021;36:911-26. [DOI: 10.1016/s1872-5805(21)60089-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Su Y, Ma Q, Liang T, Yao Y, Jiao Z, Han M, Pang Y, Ren L, Zeng X, Xu J, Sun R. Optimization of Effective Thermal Conductivity of Thermal Interface Materials Based on the Genetic Algorithm-Driven Random Thermal Network Model. ACS Appl Mater Interfaces 2021;13:45050-8. [PMID: 34495646 DOI: 10.1021/acsami.1c11963] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sun H, Ji T, Bi H, Xu M, Cai L, Manzo M. Synergistic effect of carbon nanotubes and wood-derived carbon scaffold on natural rubber-based high-performance thermally conductive composites. Composites Science and Technology 2021;213:108963. [DOI: 10.1016/j.compscitech.2021.108963] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Cai X, Liu Y, Yang T, Dong X, Zhang X, Jiang Z, Chou A, Gao T, Zhang X. Matching micro‐ and nano‐boron nitride hybrid fillers for high‐thermal conductive composites. J Appl Polym Sci 2021;138:50575. [DOI: 10.1002/app.50575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Xia W, Xiang H, Zhou Z, Fei X, Zhu M. Hybridizing rational designed hydrophobic PEG-based derivatives into nanoporous F–SiO2 as form-stable phase change materials for melt-spun PA6 phase change fibers with a superior washing durability. Composites Communications 2021;24:100633. [DOI: 10.1016/j.coco.2021.100633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
12 He X, Wang Y. Recent Advances in the Rational Design of Thermal Conductive Polymer Composites. Ind Eng Chem Res 2021;60:1137-54. [DOI: 10.1021/acs.iecr.0c05509] [Cited by in Crossref: 10] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
13 Hu D, Ma W. Nanocellulose as a Sustainable Building Block to Construct Eco-Friendly Thermally Conductive Composites. Ind Eng Chem Res 2020;59:19465-84. [DOI: 10.1021/acs.iecr.0c04319] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu H, Hu D, Chen X, Ma W. Surface engineering of nanoparticles for highly efficient UV ‐shielding composites. Polym Adv Technol 2021;32:6-16. [DOI: 10.1002/pat.5081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]