BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dreiss CA. Hydrogel design strategies for drug delivery. Current Opinion in Colloid & Interface Science 2020;48:1-17. [DOI: 10.1016/j.cocis.2020.02.001] [Cited by in Crossref: 83] [Cited by in F6Publishing: 56] [Article Influence: 41.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhou Y, Zhai Z, Yao Y, Stant JC, Landrum SL, Bortner MJ, Frazier CE, Edgar KJ. Oxidized hydroxypropyl cellulose/carboxymethyl chitosan hydrogels permit pH-responsive, targeted drug release. Carbohydrate Polymers 2023;300:120213. [DOI: 10.1016/j.carbpol.2022.120213] [Reference Citation Analysis]
2 Vanoli V, Massobrio G, Pizzetti F, Mele A, Rossi F, Castiglione F. Bijels as a Fluid Labyrinth for Drugs: The Effect of Nanoparticles on the Release Kinetics of Ethosuximide and Dimethyl Fumarate. ACS Omega 2022. [DOI: 10.1021/acsomega.2c04834] [Reference Citation Analysis]
3 Jeshvaghani PA, Pourmadadi M, Yazdian F, Rashedi H, Khoshmaram K, Nigjeh MN. Synthesis and characterization of a novel, pH-responsive sustained release nanocarrier using polyethylene glycol, graphene oxide, and natural silk fibroin protein by a green nano emulsification method to enhance cancer treatment. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.11.226] [Reference Citation Analysis]
4 Doghish AS, Hashem AH, Shehabeldine AM, Sallam AM, El-sayyad GS, Salem SS. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: Synthesis, characterization, antimicrobial, and anticancer activities. Journal of Drug Delivery Science and Technology 2022;77:103874. [DOI: 10.1016/j.jddst.2022.103874] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Oliveira CBP, Pereira RB, Pereira DM, Hilliou L, Castro TG, Martins JA, Jervis PJ, Ferreira PMT. Aryl-Capped Lysine-Dehydroamino Acid Dipeptide Supergelators as Potential Drug Release Systems. IJMS 2022;23:11811. [DOI: 10.3390/ijms231911811] [Reference Citation Analysis]
6 Owh C, Ow V, Lin Q, Wong JHM, Ho D, Loh XJ, Xue K. Bottom-up design of hydrogels for programmable drug release. Biomaterials Advances 2022;141:213100. [DOI: 10.1016/j.bioadv.2022.213100] [Reference Citation Analysis]
7 Nawaz A, Ullah S, Alnuwaiser MA, Rehman FU, Selim S, Al Jaouni SK, Farid A. Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022;8:537. [DOI: 10.3390/gels8090537] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kim J, Sapp L, Sands M. Simultaneous and Contactless Characterization of the Young’s and Shear Moduli of Gelatin-Based Hydrogels. Exp Mech. [DOI: 10.1007/s11340-022-00891-1] [Reference Citation Analysis]
9 Soh WWM, Teoh RYP, Zhu J, Xun Y, Wee CY, Ding J, Thian ES, Li J. Facile Construction of a Two-in-One Injectable Micelleplex-Loaded Thermogel System for the Prolonged Delivery of Plasmid DNA. Biomacromolecules 2022. [PMID: 35878156 DOI: 10.1021/acs.biomac.2c00648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, Sheikhaleslami S, Akbarzadeh AR, Hashemi SM, Gorab MG, Maleki A, Cohan RA, Mahdavi M, Poodat R, Keyvanlou F, Esmaeili MS. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022;217:1-18. [PMID: 35809676 DOI: 10.1016/j.ijbiomac.2022.07.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Enev V, Sedláček P, Řihák M, Kalina M, Pekař M. IR-Supported Thermogravimetric Analysis of Water in Hydrogels. Front Mater 2022;9:931303. [DOI: 10.3389/fmats.2022.931303] [Reference Citation Analysis]
12 Svarca A, Grava A, Dubnika A, Ramata-stunda A, Narnickis R, Aunina K, Rieksta E, Boroduskis M, Jurgelane I, Locs J, Loca D. Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Front Bioeng Biotechnol 2022;10:917765. [DOI: 10.3389/fbioe.2022.917765] [Reference Citation Analysis]
13 Hughes MDG, Cussons S, Mahmoudi N, Brockwell DJ, Dougan L. Tuning Protein Hydrogel Mechanics through Modulation of Nanoscale Unfolding and Entanglement in Postgelation Relaxation. ACS Nano 2022. [PMID: 35731007 DOI: 10.1021/acsnano.2c02369] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Zhang M, Chan CHH, Pauls JP, Semenzin C, Ainola C, Peng H, Fu C, Whittaker AK, Heinsar S, Fraser JF. Investigation of heparin-loaded poly(ethylene glycol)-based hydrogels as anti-thrombogenic surface coatings for extracorporeal membrane oxygenation. J Mater Chem B 2022. [PMID: 35695541 DOI: 10.1039/d2tb00379a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zu S, Wang Z, Zhang S, Guo Y, Chen C, Zhang Q, Wang Z, Liu T, Liu Q, Zhang Z. A bioinspired 4D printed hydrogel capsule for smart controlled drug release. Materials Today Chemistry 2022;24:100789. [DOI: 10.1016/j.mtchem.2022.100789] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Oliveira CBP, Veloso SRS, Castanheira EMS, Figueiredo PR, Carvalho ATP, Hilliou L, Pereira RB, Pereira DM, Martins JA, Ferreira PMT, Jervis PJ. An injectable, naproxen-conjugated, supramolecular hydrogel with ultra-low critical gelation concentration-prepared from a known folate receptor ligand. Soft Matter 2022;18:3955-66. [PMID: 35551321 DOI: 10.1039/d2sm00121g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhan Y, Xing Y, Ji Q, Ma X, Xia Y. Strain-sensitive alginate/polyvinyl alcohol composite hydrogels with Janus hierarchy and conductivity mediated by tannic acid. Int J Biol Macromol 2022;212:202-10. [PMID: 35569679 DOI: 10.1016/j.ijbiomac.2022.05.071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Liao J, Hou B, Huang H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydrate Polymers 2022;283:119177. [DOI: 10.1016/j.carbpol.2022.119177] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
19 Nazary Abrbekoh F, Salimi L, Saghati S, Amini H, Fathi Karkan S, Moharamzadeh K, Sokullu E, Rahbarghazi R. Application of microneedle patches for drug delivery; doorstep to novel therapies. J Tissue Eng 2022;13:204173142210853. [DOI: 10.1177/20417314221085390] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Sungoradee T, Srikulkit K. Preparation and Characterizations of PSS/PDADMACPolyelectrolyte Complex Hydrogel. Polymers 2022;14:1699. [DOI: 10.3390/polym14091699] [Reference Citation Analysis]
21 Sands M, Sapp L, Kim J. Characterization of hydrogel structures using video-based vibration analysis. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI 2022. [DOI: 10.1117/12.2613248] [Reference Citation Analysis]
22 Parsaei M, Akhbari K. MOF-801 as a Nanoporous Water-Based Carrier System for In Situ Encapsulation and Sustained Release of 5-FU for Effective Cancer Therapy. Inorg Chem 2022. [PMID: 35377632 DOI: 10.1021/acs.inorgchem.2c00380] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Bahmani M, Akbarian M, Tayebi L, Farjadian F. The inhibitory effect of curcumin loaded poly (vinyl caprolactam) nanohydrogel on insulin fibrillation. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.04.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Omar J, Dreiss CA, Loh XJ. Recent progress in the use of thermogelling polymers for treatment of ophthalmic conditions. Prog Biomed Eng 2022;4:022004. [DOI: 10.1088/2516-1091/ac6641] [Reference Citation Analysis]
25 Bordbar-khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. IJMS 2022;23:3665. [DOI: 10.3390/ijms23073665] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
26 Rahman S, Al-harbi FF, Ajmal M, Naseem A, Farooqi ZH, Siddiq M. Engineering of micron-sized spherical anionic microgel fabricated with silver nanoparticles with antimicrobial and catalytic potential. J Mater Sci 2022;57:6763-79. [DOI: 10.1007/s10853-022-07042-w] [Reference Citation Analysis]
27 Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022;:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
28 Shang Q, Su Y, Leslie F, Sun M, Wang F. Advances in peptide drug conjugate-based supramolecular hydrogel systems for local drug delivery. Medicine in Drug Discovery 2022. [DOI: 10.1016/j.medidd.2022.100125] [Reference Citation Analysis]
29 Zu S, Zhang Z, Liu Q, Wang Z, Song Z, Guo Y, Xin Y, Zhang S. 4D printing of core–shell hydrogel capsules for smart controlled drug release. Bio-des Manuf . [DOI: 10.1007/s42242-021-00175-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
30 Dib T, Pan H, Chen S. Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability. Food Reviews International. [DOI: 10.1080/87559129.2021.2012796] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Madau M, Morandi G, Lapinte V, Le Cerf D, Dulong V, Picton L. Thermo-responsive hydrogels from hyaluronic acid functionalized with poly(2-alkyl-2-oxazoline) copolymers with tuneable transition temperature. Polymer 2022. [DOI: 10.1016/j.polymer.2022.124643] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Pinelli F, Saadati M, Zare EN, Makvandi P, Masi M, Sacchetti A, Rossi F. A perspective on the applications of functionalized nanogels: promises and challenges. International Materials Reviews. [DOI: 10.1080/09506608.2022.2026864] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
33 Cao J, Zhang D, Zhou Y, Zhang Q, Wu S. Controlling Properties and Functions of Polymer Gels Using Photochemical Reactions. Macromol Rapid Commun 2022;:e2100703. [PMID: 35038195 DOI: 10.1002/marc.202100703] [Reference Citation Analysis]
34 Xue W, Liu B, Zhang H, Ryu S, Kuss M, Shukla D, Hu G, Shi W, Jiang X, Lei Y, Duan B. Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers. Acta Biomater 2022;138:182-92. [PMID: 34774784 DOI: 10.1016/j.actbio.2021.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
35 Wang JT, Pei YY, Qu CH, Wang Y, Rong X, Niu XY, Wang J, Li QF. Color-tunable, self-healing albumin-based lanthanide luminescent hydrogels fabricated by reductant-triggered gelation. Int J Biol Macromol 2022;195:530-7. [PMID: 34920063 DOI: 10.1016/j.ijbiomac.2021.12.017] [Reference Citation Analysis]
36 Singha I, Basu A. Chitosan based injectable hydrogels for smart drug delivery applications. Sensors International 2022;3:100168. [DOI: 10.1016/j.sintl.2022.100168] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Patra S, Swain SK. Biological aspects of polymer nanocomposites. Advanced Polymer Nanocomposites 2022. [DOI: 10.1016/b978-0-12-824492-0.00003-9] [Reference Citation Analysis]
38 Colorado HA, Mendoza DE, Lin H, Gutierrez-velasquez E. Additive manufacturing against the Covid-19 pandemic: a technological model for the adaptability and networking. Journal of Materials Research and Technology 2022;16:1150-64. [DOI: 10.1016/j.jmrt.2021.12.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
39 Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022;137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Salahshoori I, Ramezani Z, Cacciotti I, Yazdanbakhsh A, Hossain MK, Hassanzadeganroudsari M. Cisplatin uptake and release assessment from hydrogel synthesized in acidic and neutral medium: An experimental and molecular dynamics simulation study. Journal of Molecular Liquids 2021;344:117890. [DOI: 10.1016/j.molliq.2021.117890] [Reference Citation Analysis]
41 Hiew SH, Wang JK, Koh K, Yang H, Bacha A, Lin J, Yip YS, Vos MIG, Chen L, Sobota RM, Tan NS, Tay CY, Miserez A. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics. Acta Biomater 2021;136:111-23. [PMID: 34551327 DOI: 10.1016/j.actbio.2021.09.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
42 Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2021. [PMID: 34784170 DOI: 10.1021/acsbiomaterials.1c00741] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
43 Nambiar M, Schneider JP. Peptide hydrogels for affinity-controlled release of therapeutic cargo: Current and potential strategies. J Pept Sci 2021;:e3377. [PMID: 34747114 DOI: 10.1002/psc.3377] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
44 Abdellatif AAH, Mohammed HA, Khan RA, Singh V, Bouazzaoui A, Yusuf M, Akhtar N, Khan M, Al-subaiyel A, Mohammed SAA, Al-omar MS. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. Nanotechnology Reviews 2021;10:1493-559. [DOI: 10.1515/ntrev-2021-0096] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
45 Jin W, Yoo K, Elesta PP, Go Y, Yoon J. Tuning of volume phase transition of ionogels based on the chemical structure of ionic liquids. Soft Matter 2021;17:9162-9. [PMID: 34585710 DOI: 10.1039/d1sm01127h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Hanson BS, Dougan L. Intermediate Structural Hierarchy in Biological Networks Modulates the Fractal Dimension and Force Distribution of Percolating Clusters. Biomacromolecules 2021;22:4191-8. [PMID: 34420304 DOI: 10.1021/acs.biomac.1c00751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Makeiff D, Cho J, Godbert N, Smith B, Azyat K, Wagner A, Kulka M, Carlini R. Supramolecular gels from alkylated benzimidazolone derivatives. Journal of Molecular Liquids 2021;339:116723. [DOI: 10.1016/j.molliq.2021.116723] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Shen KH, Lu CH, Kuo CY, Li BY, Yeh YC. Smart near infrared-responsive nanocomposite hydrogels for therapeutics and diagnostics. J Mater Chem B 2021;9:7100-16. [PMID: 34212171 DOI: 10.1039/d1tb00980j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
49 Hanson BS, Dougan L. Intermediate structural hierarchy in biological networks modulates the fractal dimension and force distribution of percolating clusters.. [DOI: 10.1101/2021.06.01.446578] [Reference Citation Analysis]
50 Boughriba S, Souissi N, Nasri R, Nasri M, Li S. pH sensitive composite hydrogels based on gelatin and reinforced with cellulose microcrystals: In depth physicochemical and microstructural analyses for controlled release of vitamin B2. Materials Today Communications 2021;27:102334. [DOI: 10.1016/j.mtcomm.2021.102334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Levin M, Valentine MT, Cohen N. Tuning the response of fluid filled hydrogel core-shell structures. J Mech Behav Biomed Mater 2021;120:104605. [PMID: 34023588 DOI: 10.1016/j.jmbbm.2021.104605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Ghosh T, Das T, Purwar R. Review of electrospun hydrogel nanofiber system: Synthesis, Properties and Applications. Polym Eng Sci 2021;61:1887-911. [DOI: 10.1002/pen.25709] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
53 Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021;13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 62.0] [Reference Citation Analysis]
54 Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021;217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
55 Rajabi N, Rezaei A, Kharaziha M, Bakhsheshi-Rad HR, Luo H, RamaKrishna S, Berto F. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Tissue Eng Part A 2021;27:679-702. [PMID: 33499750 DOI: 10.1089/ten.TEA.2020.0350] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 20.0] [Reference Citation Analysis]
56 Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021;121:119-33. [PMID: 33285323 DOI: 10.1016/j.actbio.2020.12.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 31.0] [Reference Citation Analysis]
57 Puig-rigall J, Blanco-prieto MJ, Aydillo C, Radulescu A, Molero-vilchez D, Dreiss CA, González-gaitano G. Poloxamine/D-α-Tocopheryl polyethylene glycol succinate (TPGS) mixed micelles and gels: Morphology, loading capacity and skin drug permeability. Journal of Molecular Liquids 2021;324:114930. [DOI: 10.1016/j.molliq.2020.114930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Debone Piazza R, Brandt JV, Carvalho dos Santos C, Fernando Costa Marques R, Jafelicci Junior M. Gelatin/dextran‐based hydrogel cross‐linked by Diels–Alder click chemistry: the swelling and potassium diclofenac releasing. Med Devices Sens 2021;4. [DOI: 10.1002/mds3.10151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Li X, Shou Y, Tay A. Hydrogels for Engineering the Immune System. Adv NanoBio Res 2021;1:2000073. [DOI: 10.1002/anbr.202000073] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
60 Bisht R, Raveena P, Nirmal S, Gayen S, Jain GK, Nirmal J. Biopolymeric hydrogels prepared via click chemistry as carriers of therapeutic modalities. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00010-4] [Reference Citation Analysis]
61 Layek B. Functionalized biopolymer-based drug delivery systems: current status and future perspectives. Tailor-Made and Functionalized Biopolymer Systems 2021. [DOI: 10.1016/b978-0-12-821437-4.00020-7] [Reference Citation Analysis]
62 Mañas-torres MC, Gila-vilchez C, Durán JD, Lopez-lopez MT, Álvarez de Cienfuegos L. Biomedical applications of magnetic hydrogels. Magnetic Nanoparticle-Based Hybrid Materials 2021. [DOI: 10.1016/b978-0-12-823688-8.00020-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Liu S, Guo R, Li C, Lu C, Yang G, Wang F, Nie J, Ma C, Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. European Polymer Journal 2021;143:110180. [DOI: 10.1016/j.eurpolymj.2020.110180] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 24.0] [Reference Citation Analysis]
64 Abbasi A, Hajipour N, Hasannezhad P, Baghbanzadeh A, Aghebati-maleki L. Potential in vivo delivery routes of postbiotics. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2020.1865260] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
65 Massarelli E, Silva D, Pimenta AFR, Fernandes AI, Mata JLG, Armês H, Salema-Oom M, Saramago B, Serro AP. Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. Int J Pharm 2021;593:120110. [PMID: 33246052 DOI: 10.1016/j.ijpharm.2020.120110] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 9.5] [Reference Citation Analysis]
66 Costa AMS, Rodrigues JMM, Pérez-Madrigal MM, Dove AP, Mano JF. Modular Functionalization of Laminarin to Create Value-Added Naturally Derived Macromolecules. J Am Chem Soc 2020;142:19689-97. [PMID: 33166121 DOI: 10.1021/jacs.0c09489] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
67 Maiz-fernández S, Guaresti O, Pérez-álvarez L, Ruiz-rubio L, Gabilondo N, Vilas-vilela JL, Lanceros-mendez S. β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers 2020;248:116811. [DOI: 10.1016/j.carbpol.2020.116811] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
68 Abebe MW, Appiah-ntiamoah R, Kim H. Gallic acid modified alginate self-adhesive hydrogel for strain responsive transdermal delivery. International Journal of Biological Macromolecules 2020;163:147-55. [DOI: 10.1016/j.ijbiomac.2020.06.257] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 9.5] [Reference Citation Analysis]
69 da Silva JB, Dos Santos RS, da Silva MB, Braga G, Cook MT, Bruschi ML. Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance. Mater Sci Eng C Mater Biol Appl 2021;119:111643. [PMID: 33321681 DOI: 10.1016/j.msec.2020.111643] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
70 Puig-Rigall J, Blanco-Prieto MJ, Radulescu A, Dreiss CA, González-Gaitano G. Morphology, gelation and cytotoxicity evaluation of D-α-Tocopheryl polyethylene glycol succinate (TPGS) - Tetronic mixed micelles. J Colloid Interface Sci 2021;582:353-63. [PMID: 32858401 DOI: 10.1016/j.jcis.2020.08.004] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
71 Saraydın D, Öztop HN, Hepokur C. Nanocomposite smart hydrogel based on sepiolite nanochannels/N-isopropyl acrylamide/itaconic acid/acrylamide for invertase immobilization. Polymer-Plastics Technology and Materials 2021;60:25-36. [DOI: 10.1080/25740881.2020.1784223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Niamlaem M, Phuakkong O, Garrigue P, Goudeau B, Ravaine V, Kuhn A, Warakulwit C, Zigah D. Asymmetric Modification of Carbon Nanotube Arrays with Thermoresponsive Hydrogel for Controlled Delivery. ACS Appl Mater Interfaces 2020;12:23378-87. [PMID: 32343544 DOI: 10.1021/acsami.0c01017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]