BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, Kim JK, Heo Y, Lee HS, Lee MY, Lee CW, Kang JS, Kim YH, Lee J, Choi J, Hwang GS, Bang S, Han JM. A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic Reprogramming in Cancer Cells. Cell Metab 2020;31:267-283.e12. [PMID: 31866442 DOI: 10.1016/j.cmet.2019.11.020] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Polat IH, Tarrado-Castellarnau M, Benito A, Hernandez-Carro C, Centelles J, Marin S, Cascante M. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells. Antioxidants (Basel) 2021;10:1349. [PMID: 34572981 DOI: 10.3390/antiox10091349] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Asantewaa G, Harris IS. Glutathione and its precursors in cancer. Curr Opin Biotechnol 2021;68:292-9. [PMID: 33819793 DOI: 10.1016/j.copbio.2021.03.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021;10:3351-68. [PMID: 34430372 DOI: 10.21037/tlcr-21-448] [Reference Citation Analysis]
4 Stine ZE, Dang CV. Glutamine Skipping the Q into Mitochondria. Trends Mol Med 2020;26:6-7. [PMID: 31866300 DOI: 10.1016/j.molmed.2019.11.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Shuvalov O, Daks A, Fedorova O, Petukhov A, Barlev N. Linking Metabolic Reprogramming, Plasticity and Tumor Progression. Cancers (Basel) 2021;13:762. [PMID: 33673109 DOI: 10.3390/cancers13040762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Nachef M, Ali AK, Almutairi SM, Lee SH. Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment. Front Immunol 2021;12:624324. [PMID: 33953707 DOI: 10.3389/fimmu.2021.624324] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Vadlakonda L, Indracanti M, Kalangi SK, Gayatri BM, Naidu NG, Reddy ABM. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer. J Diabetes Metab Disord 2020;19:1731-75. [PMID: 33520860 DOI: 10.1007/s40200-020-00566-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020;2:1190-203. [DOI: 10.1038/s42255-020-00285-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
9 Sniegowski T, Korac K, Bhutia YD, Ganapathy V. SLC6A14 and SLC38A5 Drive the Glutaminolysis and Serine-Glycine-One-Carbon Pathways in Cancer. Pharmaceuticals (Basel) 2021;14:216. [PMID: 33806675 DOI: 10.3390/ph14030216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Cunningham CN, Rutter J. 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep 2020;21:e50071. [PMID: 32329174 DOI: 10.15252/embr.202050071] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
11 Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021;11:112. [PMID: 33669382 DOI: 10.3390/metabo11020112] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Wu ZH, Tang Y, Zhou Y. A Metabolic Gene Signature to Predict Overall Survival in Head and Neck Squamous Cell Carcinoma. Mediators Inflamm 2020;2020:6716908. [PMID: 33456371 DOI: 10.1155/2020/6716908] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Dernie F. Characterisation of a mitochondrial glutamine transporter provides a new opportunity for targeting glutamine metabolism in acute myeloid leukaemia. Blood Cells Mol Dis 2021;88:102422. [PMID: 32197941 DOI: 10.1016/j.bcmd.2020.102422] [Reference Citation Analysis]
14 Bröer S, Gauthier-Coles G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J Nutr 2021:nxab342. [PMID: 34718668 DOI: 10.1093/jn/nxab342] [Reference Citation Analysis]
15 Ye C, Li N, Niu Y, Lin Q, Luo X, Liang H, Liu L, Fu X. Characterization and function of mandarin fish c-Myc during viral infection process. Fish Shellfish Immunol 2021;120:686-94. [PMID: 34968711 DOI: 10.1016/j.fsi.2021.12.045] [Reference Citation Analysis]
16 Yao X, Li W, Fang, Xiao C, Wu X, Li M, Luo Z. Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells. Adv Sci (Weinh) 2021;8:e2100997. [PMID: 34632727 DOI: 10.1002/advs.202100997] [Reference Citation Analysis]
17 Hayasaka R, Tabata S, Hasebe M, Ikeda S, Ohnuma S, Mori M, Soga T, Tomita M, Hirayama A. Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia. Metabolites 2021;11:215. [PMID: 33915936 DOI: 10.3390/metabo11040215] [Reference Citation Analysis]
18 Gyimesi G, Hediger MA. Sequence Features of Mitochondrial Transporter Protein Families. Biomolecules 2020;10:E1611. [PMID: 33260588 DOI: 10.3390/biom10121611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Auger C, Vinaik R, Appanna VD, Jeschke MG. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 2021;118:154733. [PMID: 33631145 DOI: 10.1016/j.metabol.2021.154733] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020;21:E6014. [PMID: 32825551 DOI: 10.3390/ijms21176014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
21 Bai Y, Yang J, Cui Y, Yao Y, Wu F, Liu C, Fan X, Zhang Y. Research Progress of Sirtuin4 in Cancer. Front Oncol 2020;10:562950. [PMID: 33585187 DOI: 10.3389/fonc.2020.562950] [Reference Citation Analysis]
22 Papalazarou V, Maddocks ODK. Supply and demand: Cellular nutrient uptake and exchange in cancer. Mol Cell 2021;81:3731-48. [PMID: 34547236 DOI: 10.1016/j.molcel.2021.08.026] [Reference Citation Analysis]
23 Li X, Zhu H, Sun W, Yang X, Nie Q, Fang X. Role of glutamine and its metabolite ammonia in crosstalk of cancer-associated fibroblasts and cancer cells. Cancer Cell Int 2021;21:479. [PMID: 34503536 DOI: 10.1186/s12935-021-02121-5] [Reference Citation Analysis]
24 Raho S, Capobianco L, Malivindi R, Vozza A, Piazzolla C, De Leonardis F, Gorgoglione R, Scarcia P, Pezzuto F, Agrimi G, Barile SN, Pisano I, Reshkin SJ, Greco MR, Cardone RA, Rago V, Li Y, Marobbio CMT, Sommergruber W, Riley CL, Lasorsa FM, Mills E, Vegliante MC, De Benedetto GE, Fratantonio D, Palmieri L, Dolce V, Fiermonte G. KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth. Nat Metab 2020;2:1373-81. [PMID: 33230296 DOI: 10.1038/s42255-020-00315-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bush SJ, McCulloch MEB, Lisowski ZM, Muriuki C, Clark EL, Young R, Pridans C, Prendergast JGD, Summers KM, Hume DA. Species-Specificity of Transcriptional Regulation and the Response to Lipopolysaccharide in Mammalian Macrophages. Front Cell Dev Biol 2020;8:661. [PMID: 32793601 DOI: 10.3389/fcell.2020.00661] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Lv D, Zou Y, Zeng Z, Yao H, Ding S, Bian Y, Wen L, Xie X. Comprehensive metabolomic profiling of osteosarcoma based on UHPLC-HRMS. Metabolomics 2020;16:120. [PMID: 33210231 DOI: 10.1007/s11306-020-01745-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Hua Q, Zhang B, Xu G, Wang L, Wang H, Lin Z, Yu D, Ren J, Zhang D, Zhao L, Zhang T. CEMIP, a novel adaptor protein of OGT, promotes colorectal cancer metastasis through glutamine metabolic reprogramming via reciprocal regulation of β-catenin. Oncogene 2021;40:6443-55. [PMID: 34608265 DOI: 10.1038/s41388-021-02023-w] [Reference Citation Analysis]
28 Okamatsu-Ogura Y, Kuroda M, Tsutsumi R, Tsubota A, Saito M, Kimura K, Sakaue H. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism 2020;113:154396. [PMID: 33065161 DOI: 10.1016/j.metabol.2020.154396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021;:1-20. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Reference Citation Analysis]
30 Zhang H, Cui K, Yao S, Yin Y, Liu D, Huang Z. Comprehensive molecular and clinical characterization of SLC1A5 in human cancers. Pathol Res Pract 2021;224:153525. [PMID: 34171602 DOI: 10.1016/j.prp.2021.153525] [Reference Citation Analysis]
31 Jin H, Wang S, Zaal EA, Wang C, Wu H, Bosma A, Jochems F, Isima N, Jin G, Lieftink C, Beijersbergen R, Berkers CR, Qin W, Bernards R. A powerful drug combination strategy targeting glutamine addiction for the treatment of human liver cancer.Elife. 2020;9. [PMID: 33016874 DOI: 10.7554/eLife.56749] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
32 Wu Z, Xu J, Liang C, Meng Q, Hua J, Wang W, Zhang B, Liu J, Yu X, Shi S. Emerging roles of the solute carrier family in pancreatic cancer. Clin Transl Med 2021;11:e356. [PMID: 33783998 DOI: 10.1002/ctm2.356] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021;12:722889. [PMID: 34447313 DOI: 10.3389/fphar.2021.722889] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021;13:E125. [PMID: 33401748 DOI: 10.3390/cancers13010125] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2020;7:627842. [PMID: 33585567 DOI: 10.3389/fmolb.2020.627842] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Chisari A, Golán I, Campisano S, Gélabert C, Moustakas A, Sancho P, Caja L. Glucose and Amino Acid Metabolic Dependencies Linked to Stemness and Metastasis in Different Aggressive Cancer Types. Front Pharmacol 2021;12:723798. [PMID: 34588983 DOI: 10.3389/fphar.2021.723798] [Reference Citation Analysis]
37 Liu Y, Tu CE, Guo X, Wu C, Gu C, Lai Q, Fang Y, Huang J, Wang Z, Li A, Liu S. Tumor-suppressive function of EZH2 is through inhibiting glutaminase. Cell Death Dis 2021;12:975. [PMID: 34671029 DOI: 10.1038/s41419-021-04212-7] [Reference Citation Analysis]
38 Scalise M, Console L, Cosco J, Pochini L, Galluccio M, Indiveri C. ASCT1 and ASCT2: Brother and Sister? SLAS Discov 2021;:24725552211030288. [PMID: 34269129 DOI: 10.1177/24725552211030288] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021;176:203-21. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Reference Citation Analysis]
40 Bouthelier A, Aragonés J. Role of the HIF oxygen sensing pathway in cell defense and proliferation through the control of amino acid metabolism. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2020;1867:118733. [DOI: 10.1016/j.bbamcr.2020.118733] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Ye X, Wei X, Liao J, Chen P, Li X, Chen Y, Yang Y, Zhao Q, Sun H, Pan L, Chen G, He X, Lyu J, Fang H. 4-Hydroxyphenylpyruvate Dioxygenase-Like Protein Promotes Pancreatic Cancer Cell Progression and Is Associated With Glutamine-Mediated Redox Balance. Front Oncol 2020;10:617190. [PMID: 33537239 DOI: 10.3389/fonc.2020.617190] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
42 Lv Z, Wang J, Wang X, Mo M, Tang G, Xu H, Wang J, Li Y, Liu M. Identifying a Ferroptosis-Related Gene Signature for Predicting Biochemical Recurrence of Prostate Cancer. Front Cell Dev Biol 2021;9:666025. [PMID: 34778244 DOI: 10.3389/fcell.2021.666025] [Reference Citation Analysis]
43 Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin 2021;71:333-58. [PMID: 33982817 DOI: 10.3322/caac.21670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Cui Y, Han B, Zhang H, Liu H, Zhang F, Niu R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma. Onco Targets Ther 2021;14:2259-77. [PMID: 33833525 DOI: 10.2147/OTT.S297134] [Reference Citation Analysis]
45 Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021;:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Reference Citation Analysis]
46 Li J, Duan W, Wang L, Lu Y, Shi Z, Lu T. Metabolomics Study Revealing the Potential Risk and Predictive Value of Fragmented QRS for Acute Myocardial Infarction. J Proteome Res 2020;19:3386-95. [PMID: 32538096 DOI: 10.1021/acs.jproteome.0c00247] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Páez-Franco JC, Torres-Ruiz J, Sosa-Hernández VA, Cervantes-Díaz R, Romero-Ramírez S, Pérez-Fragoso A, Meza-Sánchez DE, Germán-Acacio JM, Maravillas-Montero JL, Mejía-Domínguez NR, Ponce-de-León A, Ulloa-Aguirre A, Gómez-Martín D, Llorente L. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci Rep 2021;11:6350. [PMID: 33737694 DOI: 10.1038/s41598-021-85788-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
48 Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021;521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020;130:5074-87. [PMID: 32870818 DOI: 10.1172/JCI137552] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
50 Xu R, Yang J, Ren B, Wang H, Yang G, Chen Y, You L, Zhao Y. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies. Front Oncol 2020;10:572722. [PMID: 33117704 DOI: 10.3389/fonc.2020.572722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
51 Ma G, Li C, Zhang Z, Liang Y, Liang Z, Chen Y, Wang L, Li D, Zeng M, Shan W, Niu H. Targeted Glucose or Glutamine Metabolic Therapy Combined With PD-1/PD-L1 Checkpoint Blockade Immunotherapy for the Treatment of Tumors - Mechanisms and Strategies. Front Oncol 2021;11:697894. [PMID: 34327138 DOI: 10.3389/fonc.2021.697894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Encarnación-Rosado J, Kimmelman AC. Harnessing metabolic dependencies in pancreatic cancers. Nat Rev Gastroenterol Hepatol 2021;18:482-92. [PMID: 33742165 DOI: 10.1038/s41575-021-00431-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021;11:727778. [PMID: 34604067 DOI: 10.3389/fonc.2021.727778] [Reference Citation Analysis]
54 Bröer S. Amino Acid Transporters as Targets for Cancer Therapy: Why, Where, When, and How. Int J Mol Sci 2020;21:E6156. [PMID: 32859034 DOI: 10.3390/ijms21176156] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
55 Di Martino L, Tosello V, Peroni E, Piovan E. Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia. Int J Mol Sci 2021;22:8738. [PMID: 34445444 DOI: 10.3390/ijms22168738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Scalise M, Console L, Rovella F, Galluccio M, Pochini L, Indiveri C. Membrane Transporters for Amino Acids as Players of Cancer Metabolic Rewiring. Cells 2020;9:E2028. [PMID: 32899180 DOI: 10.3390/cells9092028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
57 Fu Y, Ricciardiello F, Yang G, Qiu J, Huang H, Xiao J, Cao Z, Zhao F, Liu Y, Luo W, Chen G, You L, Chiaradonna F, Zheng L, Zhang T. The Role of Mitochondria in the Chemoresistance of Pancreatic Cancer Cells. Cells 2021;10:497. [PMID: 33669111 DOI: 10.3390/cells10030497] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Louie MC, Ton J, Brady ML, Le DT, Mar JN, Lerner CA, Gerencser AA, Mookerjee SA. Total Cellular ATP Production Changes With Primary Substrate in MCF7 Breast Cancer Cells. Front Oncol 2020;10:1703. [PMID: 33224868 DOI: 10.3389/fonc.2020.01703] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
59 Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021;14:14. [PMID: 33436044 DOI: 10.1186/s13045-020-01030-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
60 Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, Dong Q, Bruns CJ, Zhao Y. Targeting Glutaminolysis: New Perspectives to Understand Cancer Development and Novel Strategies for Potential Target Therapies. Front Oncol 2020;10:589508. [PMID: 33194749 DOI: 10.3389/fonc.2020.589508] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
61 Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med 2020;52:1496-516. [PMID: 32943735 DOI: 10.1038/s12276-020-00504-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
62 Okuro K, Fukuhara A, Minemura T, Hayakawa T, Nishitani S, Okuno Y, Otsuki M, Shimomura I. Glutamine deficiency induces lipolysis in adipocytes. Biochem Biophys Res Commun 2021;585:155-61. [PMID: 34801935 DOI: 10.1016/j.bbrc.2021.11.043] [Reference Citation Analysis]
63 Chang Z, Fu Y, Jia Y, Gao M, Song L, Zhang W, Zhao R, Qin Y. Circ-SFMBT2 drives the malignant phenotypes of esophageal cancer by the miR-107-dependent regulation of SLC1A5. Cancer Cell Int 2021;21:495. [PMID: 34530825 DOI: 10.1186/s12935-021-02156-8] [Reference Citation Analysis]
64 Marsico M, Santarsiero A, Pappalardo I, Convertini P, Chiummiento L, Sardone A, Di Noia MA, Infantino V, Todisco S. Mitochondria-Mediated Apoptosis of HCC Cells Triggered by Knockdown of Glutamate Dehydrogenase 1: Perspective for Its Inhibition through Quercetin and Permethylated Anigopreissin A. Biomedicines 2021;9:1664. [PMID: 34829892 DOI: 10.3390/biomedicines9111664] [Reference Citation Analysis]
65 Jaggupilli A, Ly S, Nguyen K, Anand V, Yuan B, El-Dana F, Yan Y, Arvanitis Z, Piyarathna DWB, Putluri N, Piwnica-Worms H, Manning HC, Andreeff M, Battula VL. Metabolic stress induces GD2+ cancer stem cell-like phenotype in triple-negative breast cancer. Br J Cancer 2021. [PMID: 34811508 DOI: 10.1038/s41416-021-01636-y] [Reference Citation Analysis]
66 Bedi M, Ray M, Ghosh A. Active mitochondrial respiration in cancer: a target for the drug. Mol Cell Biochem 2021. [PMID: 34716860 DOI: 10.1007/s11010-021-04281-4] [Reference Citation Analysis]
67 Zhao J, Yang Z, Tu M, Meng W, Gao H, Li MD, Li L. Correlation Between Prognostic Biomarker SLC1A5 and Immune Infiltrates in Various Types of Cancers Including Hepatocellular Carcinoma. Front Oncol 2021;11:608641. [PMID: 34367941 DOI: 10.3389/fonc.2021.608641] [Reference Citation Analysis]
68 Słotwiński R, Lech G, Słotwińska SM. Molecular aspects of pancreatic cancer: focus on reprogrammed metabolism in a nutrient-deficient environment and potential therapeutic targets. Cent Eur J Immunol 2021;46:258-63. [PMID: 34764796 DOI: 10.5114/ceji.2021.107027] [Reference Citation Analysis]
69 Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021;12:215. [PMID: 33637686 DOI: 10.1038/s41419-021-03505-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]