BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Andrejeva G, Rathmell JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab. 2017;26:49-70. [PMID: 28683294 DOI: 10.1016/j.cmet.2017.06.004] [Cited by in Crossref: 118] [Cited by in F6Publishing: 110] [Article Influence: 29.5] [Reference Citation Analysis]
Number Citing Articles
1 Jung JG, Le A. Metabolism of Immune Cells in the Tumor Microenvironment. Adv Exp Med Biol 2021;1311:173-85. [PMID: 34014543 DOI: 10.1007/978-3-030-65768-0_13] [Reference Citation Analysis]
2 Liu M, Zhao Z, Cai Y, Bi P, Liang Q, Yan Y, Xu Z. YTH domain family: potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Aging (Albany NY) 2021;13:24205-18. [PMID: 34747720 DOI: 10.18632/aging.203674] [Reference Citation Analysis]
3 Sugiura A, Rathmell JC. Metabolic Barriers to T Cell Function in Tumors. J Immunol 2018;200:400-7. [PMID: 29311381 DOI: 10.4049/jimmunol.1701041] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 18.0] [Reference Citation Analysis]
4 Wang H, You S, Fang M, Fang Q. Recognition of Immune Microenvironment Landscape and Immune-Related Prognostic Genes in Breast Cancer. Biomed Res Int 2020;2020:3909416. [PMID: 33274208 DOI: 10.1155/2020/3909416] [Reference Citation Analysis]
5 Santos AF, Póvoa P, Paixão P, Mendonça A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID-19. Front Chem 2021;9:685196. [PMID: 34568275 DOI: 10.3389/fchem.2021.685196] [Reference Citation Analysis]
6 Notarangelo G, Haigis MC. Sweet Temptation: From Sugar Metabolism to Gene Regulation. Immunity 2019;51:980-1. [PMID: 31851904 DOI: 10.1016/j.immuni.2019.11.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Trempolec N, Degavre C, Doix B, Brusa D, Corbet C, Feron O. Acidosis-Induced TGF-β2 Production Promotes Lipid Droplet Formation in Dendritic Cells and Alters Their Potential to Support Anti-Mesothelioma T Cell Response. Cancers (Basel) 2020;12:E1284. [PMID: 32438640 DOI: 10.3390/cancers12051284] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gruenbacher G, Thurnher M. Mevalonate Metabolism in Immuno-Oncology. Front Immunol 2017;8:1714. [PMID: 29250078 DOI: 10.3389/fimmu.2017.01714] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
9 Zhang Q, Lou Y, Bai XL, Liang TB. Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World J Gastroenterol 2018; 24(31): 3500-3512 [PMID: 30131656 DOI: 10.3748/wjg.v24.i31.3500] [Cited by in CrossRef: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
10 Kim J. Regulation of Immune Cell Functions by Metabolic Reprogramming. J Immunol Res 2018;2018:8605471. [PMID: 29651445 DOI: 10.1155/2018/8605471] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
11 Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021;697:108659. [PMID: 33144083 DOI: 10.1016/j.abb.2020.108659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, Kajaste-Rudnitski A, Sumpton D, Ryan KM, Cardaci S. D-mannose suppresses macrophage IL-1β production. Nat Commun 2020;11:6343. [PMID: 33311467 DOI: 10.1038/s41467-020-20164-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
13 Renaudin F, Orliaguet L, Castelli F, Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y, Cohen-Solal M, Richette P, Bardin T, Riveline JP, Venteclef N, Lioté F, Campillo-Gimenez L, Ea HK. Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis 2020;79:1506-14. [PMID: 32699039 DOI: 10.1136/annrheumdis-2020-217342] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
14 Sarobe P, Corrales F. Getting insights into hepatocellular carcinoma tumour heterogeneity by multiomics dissection. Gut 2019;68:1913-4. [PMID: 31375598 DOI: 10.1136/gutjnl-2019-319410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
15 Bleve A, Durante B, Sica A, Consonni FM. Lipid Metabolism and Cancer Immunotherapy: Immunosuppressive Myeloid Cells at the Crossroad. Int J Mol Sci 2020;21:E5845. [PMID: 32823961 DOI: 10.3390/ijms21165845] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Alexander RK, Liou YH, Knudsen NH, Starost KA, Xu C, Hyde AL, Liu S, Jacobi D, Liao NS, Lee CH. Bmal1 integrates mitochondrial metabolism and macrophage activation. Elife 2020;9:e54090. [PMID: 32396064 DOI: 10.7554/eLife.54090] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
17 Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020;42:279-313. [PMID: 32519148 DOI: 10.1007/s00281-020-00798-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
18 Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 2018;19:526-37. [PMID: 29777212 DOI: 10.1038/s41590-018-0113-3] [Cited by in Crossref: 124] [Cited by in F6Publishing: 119] [Article Influence: 31.0] [Reference Citation Analysis]
19 Hofer F, Di Sario G, Musiu C, Sartoris S, De Sanctis F, Ugel S. A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells 2021;10:2700. [PMID: 34685679 DOI: 10.3390/cells10102700] [Reference Citation Analysis]
20 Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 2020;8:1030. [PMID: 32953830 DOI: 10.21037/atm-20-2037] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
21 [DOI: 10.1101/2020.06.23.166603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Ruan H, Li X, Xu X, Leibowitz BJ, Tong J, Chen L, Ao L, Xing W, Luo J, Yu Y, Schoen RE, Sonenberg N, Lu X, Zhang L, Yu J. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. Elife 2020;9:e60151. [PMID: 33135632 DOI: 10.7554/eLife.60151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
23 Zhang M, Iwata S, Hajime M, Ohkubo N, Todoroki Y, Miyata H, Ueno M, Hao H, Zhang T, Fan J, Nakayamada S, Yamagata K, Tanaka Y. Methionine Commits Cells to Differentiate Into Plasmablasts Through Epigenetic Regulation of BTB and CNC Homolog 2 by the Methyltransferase EZH 2. Arthritis Rheumatol 2020;72:1143-53. [DOI: 10.1002/art.41208] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Zeng X, Liu G, Pan Y, Li Y. Prognostic Value of Clinical Biochemistry-Based Indexes in Nasopharyngeal Carcinoma. Front Oncol 2020;10:146. [PMID: 32211311 DOI: 10.3389/fonc.2020.00146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
25 Zhang X, Gao F, Li N, Zhang J, Dai L, Yang H. Peroxiredoxins and Immune Infiltrations in Colon Adenocarcinoma: Their Negative Correlations and Clinical Significances, an In Silico Analysis. J Cancer 2020;11:3124-43. [PMID: 32231717 DOI: 10.7150/jca.38057] [Reference Citation Analysis]
26 Reddy VP, Chinta KC, Saini V, Glasgow JN, Hull TD, Traylor A, Rey-Stolle F, Soares MP, Madansein R, Rahman MA, Barbas C, Nargan K, Naidoo T, Ramdial PK, George JF, Agarwal A, Steyn AJC. Ferritin H Deficiency in Myeloid Compartments Dysregulates Host Energy Metabolism and Increases Susceptibility to Mycobacterium tuberculosis Infection. Front Immunol 2018;9:860. [PMID: 29774023 DOI: 10.3389/fimmu.2018.00860] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
27 García-Cañaveras JC, Chen L, Rabinowitz JD. The Tumor Metabolic Microenvironment: Lessons from Lactate. Cancer Res 2019;79:3155-62. [PMID: 31171526 DOI: 10.1158/0008-5472.CAN-18-3726] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 12.7] [Reference Citation Analysis]
28 Li Y, Wang Y, Wu P. 5'-Methylthioadenosine and Cancer: old molecules, new understanding. J Cancer 2019;10:927-36. [PMID: 30854099 DOI: 10.7150/jca.27160] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
29 Domblides C, Lartigue L, Faustin B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019;8:E104. [PMID: 30708988 DOI: 10.3390/cells8020104] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
30 Hyder F, Coman D. Imaging Extracellular Acidification and Immune Activation in Cancer. Curr Opin Biomed Eng 2021;18:100278. [PMID: 33997581 DOI: 10.1016/j.cobme.2021.100278] [Reference Citation Analysis]
31 Kerk SA, Papagiannakopoulos T, Shah YM, Lyssiotis CA. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat Rev Cancer 2021;21:510-25. [PMID: 34244683 DOI: 10.1038/s41568-021-00375-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer. Cancers (Basel) 2021;13:5365. [PMID: 34771527 DOI: 10.3390/cancers13215365] [Reference Citation Analysis]
33 Leone RD, Powell JD. Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy. Cancer Immunol Res 2021;9:255-60. [PMID: 33648947 DOI: 10.1158/2326-6066.CIR-20-0791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Luby A, Alves-Guerra MC. Targeting Metabolism to Control Immune Responses in Cancer and Improve Checkpoint Blockade Immunotherapy. Cancers (Basel) 2021;13:5912. [PMID: 34885023 DOI: 10.3390/cancers13235912] [Reference Citation Analysis]
35 Kurniawan H, Soriano-Baguet L, Brenner D. Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. Eur J Immunol 2020;50:1626-42. [PMID: 33067808 DOI: 10.1002/eji.201948470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Brocker CN, Kim D, Melia T, Karri K, Velenosi TJ, Takahashi S, Aibara D, Bonzo JA, Levi M, Waxman DJ, Gonzalez FJ. Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nat Commun 2020;11:5847. [PMID: 33203882 DOI: 10.1038/s41467-020-19554-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
37 Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020;20:741-56. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Leeuwenburgh VC, Urzúa-Traslaviña CG, Bhattacharya A, Walvoort MTC, Jalving M, de Jong S, Fehrmann RSN. Robust metabolic transcriptional components in 34,494 patient-derived cancer-related samples and cell lines. Cancer Metab 2021;9:35. [PMID: 34565468 DOI: 10.1186/s40170-021-00272-7] [Reference Citation Analysis]
39 DePeaux K, Delgoffe GM. Metabolic barriers to cancer immunotherapy. Nat Rev Immunol 2021. [PMID: 33927375 DOI: 10.1038/s41577-021-00541-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
40 Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, Li Y, Li G, Zeng Z, Xiong W, Xiong F, Guo C. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 2019;10:3789-97. [PMID: 31333796 DOI: 10.7150/jca.31166] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
41 Frades I, Foguet C, Cascante M, Araúzo-Bravo MJ. Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers (Basel) 2021;13:4609. [PMID: 34572839 DOI: 10.3390/cancers13184609] [Reference Citation Analysis]
42 Wang Y, Wang F, Wang L, Qiu S, Yao Y, Yan C, Xiong X, Chen X, Ji Q, Cao J, Gao G, Li D, Zhang L, Guo Z, Wang R, Wang H, Fan G. NAD+ supplement potentiates tumor-killing function by rescuing defective TUB-mediated NAMPT transcription in tumor-infiltrated T cells. Cell Rep 2021;36:109516. [PMID: 34380043 DOI: 10.1016/j.celrep.2021.109516] [Reference Citation Analysis]
43 Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, Lin X, Han X, Luo Z, Miao J, Yin Y. Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice. Front Immunol 2021;12:696101. [PMID: 34177964 DOI: 10.3389/fimmu.2021.696101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 O'Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020;10:E453. [PMID: 33182676 DOI: 10.3390/metabo10110453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Bazer FW, Seo H, Johnson GA, Wu G. One-Carbon Metabolism and Development of the Conceptus During Pregnancy: Lessons from Studies with Sheep and Pigs. Adv Exp Med Biol 2021;1285:1-15. [PMID: 33770399 DOI: 10.1007/978-3-030-54462-1_1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
46 Mehta MM, Weinberg SE, Steinert EM, Chhiba K, Martinez CA, Gao P, Perlman HR, Bryce P, Hay N, Chandel NS. Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer Metab 2018;6:10. [PMID: 30140438 DOI: 10.1186/s40170-018-0184-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
47 Cai Y, Wu G, Peng B, Li J, Zeng S, Yan Y, Xu Z. Expression and molecular profiles of the AlkB family in ovarian serous carcinoma. Aging (Albany NY) 2021;13:9679-92. [PMID: 33744868 DOI: 10.18632/aging.202716] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Madden MZ, Rathmell JC. The Complex Integration of T-cell Metabolism and Immunotherapy. Cancer Discov 2021;11:1636-43. [PMID: 33795235 DOI: 10.1158/2159-8290.CD-20-0569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
49 Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 2019;10:3763. [PMID: 31434891 DOI: 10.1038/s41467-019-11738-0] [Cited by in Crossref: 97] [Cited by in F6Publishing: 88] [Article Influence: 32.3] [Reference Citation Analysis]
50 García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021;13:3230. [PMID: 34203535 DOI: 10.3390/cancers13133230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, Fenga C, Stratakis CA, Spandidos DA, Tsatsakis AM. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol 2019;9:348. [PMID: 31139559 DOI: 10.3389/fonc.2019.00348] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 15.3] [Reference Citation Analysis]
52 Jiang T, Zhu AS, Yang CQ, Xu CY, Yang DQ, Lou ZH, Zhang GJ. Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma. FEBS Open Bio 2021;11:670-83. [PMID: 33455085 DOI: 10.1002/2211-5463.13089] [Reference Citation Analysis]
53 Gerbec ZJ, Hashemi E, Nanbakhsh A, Holzhauer S, Yang C, Mei A, Tsaih SW, Lemke A, Flister MJ, Riese MJ, Thakar MS, Malarkannan S. Conditional Deletion of PGC-1α Results in Energetic and Functional Defects in NK Cells. iScience 2020;23:101454. [PMID: 32858341 DOI: 10.1016/j.isci.2020.101454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
54 Conde TA, Mendes L, Gaspar VM, Mano JF, Melo T, Domingues MR, Duarte IF. Differential Modulation of the Phospholipidome of Proinflammatory Human Macrophages by the Flavonoids Quercetin, Naringin and Naringenin. Molecules 2020;25:E3460. [PMID: 32751373 DOI: 10.3390/molecules25153460] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy. Mol Cell 2020;78:1019-33. [PMID: 32559423 DOI: 10.1016/j.molcel.2020.05.034] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 22.5] [Reference Citation Analysis]
56 Ali L, Schnitzler JG, Kroon J. Metabolism: The road to inflammation and atherosclerosis. Curr Opin Lipidol 2018;29:474-80. [PMID: 30234554 DOI: 10.1097/MOL.0000000000000550] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
57 Bazer FW, Seo H, Wu G, Johnson GA. Interferon tau: Influences on growth and development of the conceptus. Theriogenology 2020;150:75-83. [PMID: 32088030 DOI: 10.1016/j.theriogenology.2020.01.069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
58 Afonso J, Santos LL, Longatto-Filho A, Baltazar F. Competitive glucose metabolism as a target to boost bladder cancer immunotherapy. Nat Rev Urol 2020;17:77-106. [PMID: 31953517 DOI: 10.1038/s41585-019-0263-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 13.5] [Reference Citation Analysis]
59 Vasan K, Werner M, Chandel NS. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020;32:341-52. [PMID: 32668195 DOI: 10.1016/j.cmet.2020.06.019] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 22.0] [Reference Citation Analysis]
60 Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L. Macrophages and Metabolism in the Tumor Microenvironment. Cell Metab 2019;30:36-50. [PMID: 31269428 DOI: 10.1016/j.cmet.2019.06.001] [Cited by in Crossref: 205] [Cited by in F6Publishing: 219] [Article Influence: 102.5] [Reference Citation Analysis]
61 Saito T, Wei Y, Wen L, Srinivasan C, Wolthers BO, Tsai CY, Harris MH, Stevenson K, Byersdorfer C, Oparaji JA, Fernandez C, Mukherjee A, Abu-El-Haija M, Agnihotri S, Schmiegelow K, Showalter MR, Fogle PW, McCulloch S, Contrepois K, Silverman LB, Ding Y, Husain SZ. Impact of acute lymphoblastic leukemia induction therapy: findings from metabolomics on non-fasted plasma samples from a biorepository. Metabolomics 2021;17:64. [PMID: 34175981 DOI: 10.1007/s11306-021-01814-2] [Reference Citation Analysis]
62 Li Y, Shen Y, Jin K, Wen Z, Cao W, Wu B, Wen R, Tian L, Berry GJ, Goronzy JJ, Weyand CM. The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation. Cell Metab 2019;30:477-492.e6. [PMID: 31327667 DOI: 10.1016/j.cmet.2019.06.016] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 8.7] [Reference Citation Analysis]
63 Reinfeld BI, Rathmell WK, Kim TK, Rathmell JC. The therapeutic implications of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 2021. [PMID: 34239083 DOI: 10.1038/s41423-021-00727-3] [Reference Citation Analysis]
64 Cutmore LC, Brown NF, Raj D, Chauduri S, Wang P, Maher J, Wang Y, Lemoine NR, Marshall JF. Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020;20:394-408. [PMID: 32173257 DOI: 10.1016/j.pan.2020.02.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
65 Guillermier C, Doherty SP, Whitney AG, Babaev VR, Linton MF, Steinhauser ML, Brown JD. Imaging mass spectrometry reveals heterogeneity of proliferation and metabolism in atherosclerosis. JCI Insight 2019;4:128528. [PMID: 31167964 DOI: 10.1172/jci.insight.128528] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
66 Mirabile A, Rivoltini L, Daveri E, Vernieri C, Mele R, Porcu L, Lazzari C, Bulotta A, Viganò MG, Cascinu S, Gregorc V. Metabolism and Immune Modulation in Patients with Solid Tumors: Systematic Review of Preclinical and Clinical Evidence. Cancers (Basel) 2020;12:E1153. [PMID: 32375310 DOI: 10.3390/cancers12051153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
67 Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic Cell Metabolism and Function in Tumors. Trends Immunol 2019;40:699-718. [PMID: 31301952 DOI: 10.1016/j.it.2019.06.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
68 Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021. [PMID: 34862480 DOI: 10.1038/s41573-021-00339-6] [Reference Citation Analysis]
69 Krug A, Martinez-Turtos A, Verhoeyen E. Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer Therapy: A Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Cancer Therapies. Cancers (Basel) 2021;14:183. [PMID: 35008348 DOI: 10.3390/cancers14010183] [Reference Citation Analysis]
70 Krishnamoorthy G, Kaiser P, Abu Abed U, Weiner J 3rd, Moura-Alves P, Brinkmann V, Kaufmann SHE. FX11 limits Mycobacterium tuberculosis growth and potentiates bactericidal activity of isoniazid through host-directed activity. Dis Model Mech 2020;13:dmm041954. [PMID: 32034005 DOI: 10.1242/dmm.041954] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
71 Roux C, Mucciolo G, Kopecka J, Novelli F, Riganti C, Cappello P. IL17A Depletion Affects the Metabolism of Macrophages Treated with Gemcitabine. Antioxidants (Basel) 2021;10:422. [PMID: 33802061 DOI: 10.3390/antiox10030422] [Reference Citation Analysis]
72 Fries GR, Zamzow MJ, Andrews T, Pink O, Scaini G, Quevedo J. Accelerated aging in bipolar disorder: A comprehensive review of molecular findings and their clinical implications. Neuroscience & Biobehavioral Reviews 2020;112:107-16. [DOI: 10.1016/j.neubiorev.2020.01.035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
73 Wu Q, Yu X, Li J, Sun S, Tu Y. Metabolic regulation in the immune response to cancer. Cancer Commun (Lond) 2021;41:661-94. [PMID: 34145990 DOI: 10.1002/cac2.12182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
74 Indini A, Grossi F, Mandalà M, Taverna D, Audrito V. Metabolic Interplay between the Immune System and Melanoma Cells: Therapeutic Implications. Biomedicines 2021;9:607. [PMID: 34073463 DOI: 10.3390/biomedicines9060607] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Huang ZZ, Song CG, Huang JJ, Xia W, Bi XW, Hua X, He ZY, Yuan ZY. Prognostic significance of the Controlling Nutritional Status (CONUT) score in surgically treated breast cancer patients. Gland Surg 2020;9:1370-9. [PMID: 33224812 DOI: 10.21037/gs-20-294] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
76 Leftin A, Ben-Chetrit N, Joyce JA, Koutcher JA. Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Sci Rep 2019;9:857. [PMID: 30696910 DOI: 10.1038/s41598-018-37408-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
77 Choi EJ, Jeon SM. NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res 2020;43:321-36. [PMID: 32130657 DOI: 10.1007/s12272-020-01224-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
78 Sacco A, Battaglia AM, Botta C, Aversa I, Mancuso S, Costanzo F, Biamonte F. Iron Metabolism in the Tumor Microenvironment-Implications for Anti-Cancer Immune Response. Cells 2021;10:303. [PMID: 33540645 DOI: 10.3390/cells10020303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
79 He Z, Zhang S. Tumor-Associated Macrophages and Their Functional Transformation in the Hypoxic Tumor Microenvironment. Front Immunol 2021;12:741305. [PMID: 34603327 DOI: 10.3389/fimmu.2021.741305] [Reference Citation Analysis]
80 Kazemi MH, Najafi A, Karami J, Ghazizadeh F, Yousefi H, Falak R, Safari E. Immune and metabolic checkpoints blockade: Dual wielding against tumors. Int Immunopharmacol 2021;94:107461. [PMID: 33592403 DOI: 10.1016/j.intimp.2021.107461] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
81 Jung J, Zeng H, Horng T. Metabolism as a guiding force for immunity. Nat Cell Biol 2019;21:85-93. [PMID: 30602764 DOI: 10.1038/s41556-018-0217-x] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 25.7] [Reference Citation Analysis]
82 Morita M, Kudo K, Shima H, Tanuma N. Dietary intervention as a therapeutic for cancer. Cancer Sci 2021;112:498-504. [PMID: 33340176 DOI: 10.1111/cas.14777] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
83 Xu L, Lu Z, Yu S, Li G, Chen Y. Quantitative global proteome and phosphorylome analyses reveal potential biomarkers in kidney cancer. Oncol Rep 2021;46:237. [PMID: 34528699 DOI: 10.3892/or.2021.8188] [Reference Citation Analysis]
84 Mobeen F, Sharma V, Prakash T. Functional signature analysis of extreme Prakriti endophenotypes in gut microbiome of western Indian rural population. Bioinformation 2019;15:490-505. [PMID: 31485135 DOI: 10.6026/97320630015490] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
85 Xu R, Jones W, Wilcz-Villega E, Costa AS, Rajeeve V, Bentham RB, Bryson K, Nagano A, Yaman B, Olendo Barasa S, Wang Y, Chelala C, Cutillas P, Szabadkai G, Frezza C, Bianchi K. The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Rep 2020;21:e48260. [PMID: 32783398 DOI: 10.15252/embr.201948260] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
86 Yang C, Zhao K, Chen X, Jiang L, Li P, Huang P. Pellino1 deficiency reprograms cardiomyocytes energy metabolism in lipopolysaccharide-induced myocardial dysfunction. Amino Acids 2021;53:713-37. [PMID: 33885999 DOI: 10.1007/s00726-021-02978-w] [Reference Citation Analysis]
87 Missiroli S, Genovese I, Perrone M, Vezzani B, Vitto VAM, Giorgi C. The Role of Mitochondria in Inflammation: From Cancer to Neurodegenerative Disorders. J Clin Med 2020;9:E740. [PMID: 32182899 DOI: 10.3390/jcm9030740] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 21.0] [Reference Citation Analysis]
88 Diebner HH, Zerjatke T, Griehl M, Roeder I. Metabolism is the tie: The Bertalanffy-type cancer growth model as common denominator of various modelling approaches. Biosystems 2018;167:1-23. [PMID: 29605248 DOI: 10.1016/j.biosystems.2018.03.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Buckley AM, Bibby BA, Dunne MR, Kennedy SA, Davern MB, Kennedy BN, Maher SG, O'Sullivan J. Characterisation of an Isogenic Model of Cisplatin Resistance in Oesophageal Adenocarcinoma Cells. Pharmaceuticals (Basel) 2019;12:E33. [PMID: 30791601 DOI: 10.3390/ph12010033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
90 Wang T, Jiao Y, Zhang X. Immunometabolic Pathways and Its Therapeutic Implication in Autoimmune Diseases. Clin Rev Allergy Immunol 2021;60:55-67. [PMID: 33179144 DOI: 10.1007/s12016-020-08821-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
91 Zhang Z, Wang M, Zhang Y, Zhang Y, Bartkuhn M, Markmann M, Hossain H, Chakraborty T, Hake SB, Jia Z, Meinhardt A, Bhushan S. Uropathogenic Escherichia coli Virulence Factor α-Hemolysin Reduces Histone Acetylation to Inhibit Expression of Proinflammatory Cytokine Genes. J Infect Dis 2021;223:1040-51. [PMID: 33453118 DOI: 10.1093/infdis/jiab018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Meng X, Feng C, Fang E, Feng J, Zhao X. Combined analysis of RNA-sequence and microarray data reveals effective metabolism-based prognostic signature for neuroblastoma. J Cell Mol Med 2020;24:10367-81. [PMID: 32683778 DOI: 10.1111/jcmm.15650] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
93 Ishii H, Saitoh M, Sakamoto K, Sakamoto K, Saigusa D, Kasai H, Ashizawa K, Miyazawa K, Takeda S, Masuyama K, Yoshimura K. Lipidome-based rapid diagnosis with machine learning for detection of TGF-β signalling activated area in head and neck cancer. Br J Cancer 2020;122:995-1004. [PMID: 32020064 DOI: 10.1038/s41416-020-0732-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
94 Wang Y, Zhou Y, Zhou K, Li J, Che G. Prognostic value of pre-treatment red blood cell distribution width in lung cancer: a meta-analysis. Biomarkers 2020;25:241-7. [PMID: 32064949 DOI: 10.1080/1354750X.2020.1731763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Levine LS, Hiam-Galvez KJ, Marquez DM, Tenvooren I, Madden MZ, Contreras DC, Dahunsi DO, Irish JM, Oluwole OO, Rathmell JC, Spitzer MH. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 2021;54:829-844.e5. [PMID: 33705706 DOI: 10.1016/j.immuni.2021.02.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
96 Ke ZB, Chen H, Chen JY, Cai H, Lin YZ, Sun XL, Huang JB, Zheng QS, Wei Y, Xue XY, Xu N. Preoperative abdominal fat distribution and systemic immune inflammation were associated with response to intravesical Bacillus Calmette-Guerin immunotherapy in patients with non-muscle invasive bladder cancer. Clin Nutr 2021;40:5792-801. [PMID: 34775222 DOI: 10.1016/j.clnu.2021.10.019] [Reference Citation Analysis]
97 Lin SY, Zhang CS, Lin SC. Carbohydrates: Not All that Bad? Cell Metab 2018;28:671-2. [PMID: 30403985 DOI: 10.1016/j.cmet.2018.10.004] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
98 Pers YM, Jorgensen C, Khoury M. Editorial: The Role of Metabolism in MSC-Mediated Immunomodulation. Front Immunol 2021;12:751865. [PMID: 34512675 DOI: 10.3389/fimmu.2021.751865] [Reference Citation Analysis]
99 Liu Y, Wang L, Fang L, Liu H, Tian H, Zheng Y, Fan T, Li C, He J. A Multi-Center Validated Subtyping Model of Esophageal Cancer Based on Three Metabolism-Related Genes. Front Oncol 2021;11:772145. [PMID: 34760709 DOI: 10.3389/fonc.2021.772145] [Reference Citation Analysis]
100 O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019;19:324-35. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Cited by in Crossref: 93] [Cited by in F6Publishing: 86] [Article Influence: 31.0] [Reference Citation Analysis]
101 Tomita M, Yasui H, Higashikawa K, Nakajima K, Takakura H, Shiga T, Kuge Y, Ogawa M. Anti PD-1 treatment increases [18F]FDG uptake by cancer cells in a mouse B16F10 melanoma model. EJNMMI Res 2018;8:82. [PMID: 30117062 DOI: 10.1186/s13550-018-0433-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
102 Sbirkov Y, Burnusuzov H, Sarafian V. Metabolic reprogramming in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2020;67:e28255. [PMID: 32293782 DOI: 10.1002/pbc.28255] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
103 Nishide S, Matsunaga S, Shiota M, Yamaguchi T, Kitajima S, Maekawa Y, Takeda N, Tomura M, Uchida J, Miura K, Nakatani T, Tomita S. Controlling the Phenotype of Tumor-Infiltrating Macrophages via the PHD-HIF Axis Inhibits Tumor Growth in a Mouse Model. iScience 2019;19:940-54. [PMID: 31518902 DOI: 10.1016/j.isci.2019.08.033] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
104 Wang K, Guan D, Zhao X, Qiao D, Yang Y, Cui Y. Proteomics and metabolomics of raw rhubarb and wine-processed rhubarb in the treatment of rats with intracerebral hemorrhage. Ann Transl Med 2020;8:1670. [PMID: 33490182 DOI: 10.21037/atm-20-7831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Monferrer E, Sanegre S, Vieco-Martí I, López-Carrasco A, Fariñas F, Villatoro A, Abanades S, Mañes S, de la Cruz-Merino L, Noguera R, Álvaro Naranjo T. Immunometabolism Modulation in Therapy. Biomedicines 2021;9:798. [PMID: 34356862 DOI: 10.3390/biomedicines9070798] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
106 Montilla A, Zabala A, Matute C, Domercq M. Functional and Metabolic Characterization of Microglia Culture in a Defined Medium. Front Cell Neurosci 2020;14:22. [PMID: 32116565 DOI: 10.3389/fncel.2020.00022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
107 Larionova I, Kazakova E, Patysheva M, Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages. Cancers (Basel) 2020;12:E1411. [PMID: 32486098 DOI: 10.3390/cancers12061411] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
108 Liu Y, Colby JK, Zuo X, Jaoude J, Wei D, Shureiqi I. The Role of PPAR-δ in Metabolism, Inflammation, and Cancer: Many Characters of a Critical Transcription Factor. Int J Mol Sci 2018;19:E3339. [PMID: 30373124 DOI: 10.3390/ijms19113339] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 13.3] [Reference Citation Analysis]
109 Chen W, Tang D, Ou M, Dai Y. Mining Prognostic Biomarkers of Hepatocellular Carcinoma Based on Immune-Associated Genes. DNA Cell Biol 2020;39:499-512. [PMID: 32069130 DOI: 10.1089/dna.2019.5099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
110 Dastmalchi F, Deleyrolle LP, Karachi A, Mitchell DA, Rahman M. Metabolomics Monitoring of Treatment Response to Brain Tumor Immunotherapy. Front Oncol 2021;11:691246. [PMID: 34150663 DOI: 10.3389/fonc.2021.691246] [Reference Citation Analysis]
111 Schmidt NM, Wing PAC, Diniz MO, Pallett LJ, Swadling L, Harris JM, Burton AR, Jeffery-Smith A, Zakeri N, Amin OE, Kucykowicz S, Heemskerk MH, Davidson B, Meyer T, Grove J, Stauss HJ, Pineda-Torra I, Jolly C, Jury EC, McKeating JA, Maini MK. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat Commun 2021;12:2814. [PMID: 33990561 DOI: 10.1038/s41467-021-22967-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Meng G, Fei Z, Fang M, Li B, Chen A, Xu C, Xia M, Yu D, Wei J. Fludarabine as an Adjuvant Improves Newcastle Disease Virus-Mediated Antitumor Immunity in Hepatocellular Carcinoma. Mol Ther Oncolytics 2019;13:22-34. [PMID: 31011625 DOI: 10.1016/j.omto.2019.03.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
113 Yang D, Kim J. Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells 2019;8:E275. [PMID: 30909478 DOI: 10.3390/cells8030275] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
114 Kletukhina S, Neustroeva O, James V, Rizvanov A, Gomzikova M. Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Epithelial-Mesenchymal Transition. Int J Mol Sci 2019;20:E4813. [PMID: 31569731 DOI: 10.3390/ijms20194813] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
115 Xu Y, Hu J, Cao C, Zhang M, Liu Y, Chen H, Wei S, Zhu Z, Yang Y, Yu L, Li J. Distinct Hypoxia-Related Gene Profiling Characterizes Clinicopathological Features and Immune Status of Mismatch Repair-Deficient Colon Cancer. J Oncol 2021;2021:2427427. [PMID: 34917146 DOI: 10.1155/2021/2427427] [Reference Citation Analysis]
116 Ikari R, Mukaisho KI, Kageyama S, Nagasawa M, Kubota S, Nakayama T, Murakami S, Taniura N, Tanaka H, Kushima RP, Kawauchi A. Differences in the Central Energy Metabolism of Cancer Cells between Conventional 2D and Novel 3D Culture Systems. Int J Mol Sci 2021;22:1805. [PMID: 33670390 DOI: 10.3390/ijms22041805] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
117 Angioni R, Sánchez-Rodríguez R, Viola A, Molon B. TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021;13:401. [PMID: 33499083 DOI: 10.3390/cancers13030401] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
118 Huang H, Li S, Tang Q, Zhu G. Metabolic Reprogramming and Immune Evasion in Nasopharyngeal Carcinoma. Front Immunol 2021;12:680955. [PMID: 34566954 DOI: 10.3389/fimmu.2021.680955] [Reference Citation Analysis]
119 Cai W, Bao W, Chen S, Yang Y, Li Y. Metabolic syndrome related gene signature predicts the prognosis of patients with pancreatic ductal carcinoma. A novel link between metabolic dysregulation and pancreatic ductal carcinoma. Cancer Cell Int 2021;21:698. [PMID: 34930261 DOI: 10.1186/s12935-021-02378-w] [Reference Citation Analysis]
120 Tomita M, Suzuki M, Kono Y, Nakajima K, Matsuda T, Kuge Y, Ogawa M. Influence on [18F]FDG uptake by cancer cells after anti-PD-1 therapy in an enforced-immune activated mouse tumor. EJNMMI Res 2020;10:24. [PMID: 32189078 DOI: 10.1186/s13550-020-0608-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]