BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013;25:578-85. [PMID: 23849504 DOI: 10.1016/j.clon.2013.06.007] [Cited by in Crossref: 279] [Cited by in F6Publishing: 247] [Article Influence: 31.0] [Reference Citation Analysis]
Number Citing Articles
1 Yusufi N, Mall S, Bianchi HO, Steiger K, Reder S, Klar R, Audehm S, Mustafa M, Nekolla S, Peschel C, Schwaiger M, Krackhardt AM, D'Alessandria C. In-depth Characterization of a TCR-specific Tracer for Sensitive Detection of Tumor-directed Transgenic T Cells by Immuno-PET. Theranostics 2017;7:2402-16. [PMID: 28744323 DOI: 10.7150/thno.17994] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
2 Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021;10:3041. [PMID: 34831262 DOI: 10.3390/cells10113041] [Reference Citation Analysis]
3 Francés-Monerris A, Hognon C, Miranda MA, Lhiaubet-Vallet V, Monari A. Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Phys Chem Chem Phys 2018;20:25666-75. [PMID: 30298156 DOI: 10.1039/c8cp04866e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
4 Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021;287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Reference Citation Analysis]
5 Smith AO, Ju W, Adzraku SY, Wenyi L, Yuting C, Qiao J, Xu K, Zeng L. Gamma Radiation Induce Inflammasome Signaling and Pyroptosis in Microvascular Endothelial Cells. J Inflamm Res 2021;14:3277-88. [PMID: 34290514 DOI: 10.2147/JIR.S318812] [Reference Citation Analysis]
6 Vitti ET, Parsons JL. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers (Basel) 2019;11:E946. [PMID: 31284432 DOI: 10.3390/cancers11070946] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
7 Conforti A, Starc N, Biagini S, Tomao L, Pitisci A, Algeri M, Sirleto P, Novelli A, Grisendi G, Candini O, Carella C, Dominici M, Locatelli F, Bernardo ME. Resistance to neoplastic transformation of ex-vivo expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget 2016;7:77416-29. [PMID: 27764806 DOI: 10.18632/oncotarget.12678] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
8 Hosseinimehr SJ. The protective effects of trace elements against side effects induced by ionizing radiation. Radiat Oncol J 2015;33:66-74. [PMID: 26157675 DOI: 10.3857/roj.2015.33.2.66] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
9 Calabrò E, Goswami HK, Magazù S. Chromosome aberration in typical biological systems under exposure to low- and high-intensity magnetic fields. Electromagn Biol Med 2020;39:97-108. [PMID: 32138556 DOI: 10.1080/15368378.2020.1737812] [Reference Citation Analysis]
10 Xiao L, Tsutsui T, Miwa N. The lipophilic vitamin C derivative, 6-o-palmitoylascorbate, protects human lymphocytes, preferentially over ascorbate, against X-ray-induced DNA damage, lipid peroxidation, and protein carbonylation. Mol Cell Biochem 2014;394:247-59. [DOI: 10.1007/s11010-014-2101-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
11 Zheng X, Cui L, Chen M, Soto LA, Graves EE, Rao J. A Near-Infrared Phosphorescent Nanoprobe Enables Quantitative, Longitudinal Imaging of Tumor Hypoxia Dynamics during Radiotherapy. Cancer Res 2019;79:4787-97. [PMID: 31311808 DOI: 10.1158/0008-5472.CAN-19-0530] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
12 He C, C.l. Chow J; 1 Division of Engineering Science, University of Toronto, Toronto, ON, M5S 1A4 Canada. . AIMS Bioengineering 2016;3:352-61. [DOI: 10.3934/bioeng.2016.3.352] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
13 Vivek Kumar PR, Karuppasamy CV, Ramachandran EN, Anil Kumar V, Jaikrishan G, Das B. Premature chromosome condensation assay to study influence of high-level natural radiation on the initial DNA double strand break repair in human G0 lymphocytes. Mutat Res Genet Toxicol Environ Mutagen 2020;849:503141. [PMID: 32087855 DOI: 10.1016/j.mrgentox.2020.503141] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Babayan N, Hovhannisyan G, Grigoryan B, Grigoryan R, Sarkisyan N, Tsakanova G, Haroutiunian S, Aroutiounian R. Dose-rate effect of ultrashort electron beam radiation on DNA damage and repair in vitro. J Radiat Res 2017;58:894-7. [PMID: 28992052 DOI: 10.1093/jrr/rrx035] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
15 Kotagiri N, Laforest R, Achilefu S. Reply to ‘Is Cherenkov luminescence bright enough for photodynamic therapy?’. Nature Nanotech 2018;13:354-5. [DOI: 10.1038/s41565-018-0143-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Fernandes C, Monteiro S, Belchior A, Marques F, Gano L, Correia JD, Santos I. Novel (188)Re multi-functional bone-seeking compounds: Synthesis, biological and radiotoxic effects in metastatic breast cancer cells. Nucl Med Biol 2016;43:150-7. [PMID: 26872439 DOI: 10.1016/j.nucmedbio.2015.11.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
17 Goldsweig AM, Abbott JD, Aronow HD. Physician and Patient Radiation Exposure During Endovascular Procedures. Curr Treat Options Cardiovasc Med 2017;19:10. [PMID: 28275940 DOI: 10.1007/s11936-017-0507-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Matsuno Y, Hyodo M, Fujimori H, Shimizu A, Yoshioka KI. Sensitization of Cancer Cells to Radiation and Topoisomerase I Inhibitor Camptothecin Using Inhibitors of PARP and Other Signaling Molecules. Cancers (Basel). 2018;10:pii: E364. [PMID: 30274183 DOI: 10.3390/cancers10100364] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
19 Yeung AM, Wells JR, Grossniklaus HE. Secondary ocular malignancies: A review. Clin Exp Ophthalmol 2021;49:161-8. [PMID: 33426794 DOI: 10.1111/ceo.13889] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist 2021;4:244-63. [PMID: 34337349 DOI: 10.20517/cdr.2020.89] [Reference Citation Analysis]
21 Ramdzan ZM, Ginjala V, Pinder JB, Chung D, Donovan CM, Kaur S, Leduy L, Dellaire G, Ganesan S, Nepveu A. The DNA repair function of CUX1 contributes to radioresistance. Oncotarget 2017;8:19021-38. [PMID: 28147323 DOI: 10.18632/oncotarget.14875] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
22 Aranza-Martínez A, Sánchez-Pérez J, Brito-Elias L, López-Camarillo C, Cantú de León D, Pérez-Plasencia C, López-Urrutia E. Non-Coding RNAs Associated With Radioresistance in Triple-Negative Breast Cancer. Front Oncol 2021;11:752270. [PMID: 34804940 DOI: 10.3389/fonc.2021.752270] [Reference Citation Analysis]
23 Nakagawa K, Narayanan K, Wada M, Popov VL, Cajimat M, Baric RS, Makino S. The Endonucleolytic RNA Cleavage Function of nsp1 of Middle East Respiratory Syndrome Coronavirus Promotes the Production of Infectious Virus Particles in Specific Human Cell Lines. J Virol 2018;92:e01157-18. [PMID: 30111568 DOI: 10.1128/JVI.01157-18] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
24 Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. International Journal of Radiation Biology 2018;94:335-56. [DOI: 10.1080/09553002.2018.1440092] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 13.5] [Reference Citation Analysis]
25 Dutta A, Eckelmann B, Adhikari S, Ahmed KM, Sengupta S, Pandey A, Hegde PM, Tsai MS, Tainer JA, Weinfeld M, Hegde ML, Mitra S. Microhomology-mediated end joining is activated in irradiated human cells due to phosphorylation-dependent formation of the XRCC1 repair complex. Nucleic Acids Res 2017;45:2585-99. [PMID: 27994036 DOI: 10.1093/nar/gkw1262] [Cited by in Crossref: 12] [Cited by in F6Publishing: 32] [Article Influence: 2.4] [Reference Citation Analysis]
26 Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 2017;31:353-69. [PMID: 28279982 DOI: 10.1101/gad.289769.116] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 17.2] [Reference Citation Analysis]
27 Maqsudur Rashid A, Ramalingam L, Al-jawadi A, Moustaid-moussa N, Moussa H. Low dose radiation, inflammation, cancer and chemoprevention. International Journal of Radiation Biology 2019;95:506-15. [DOI: 10.1080/09553002.2018.1484194] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Fuller N, Smith JT, Ford AT. Impacts of ionising radiation on sperm quality, DNA integrity and post-fertilisation development in marine and freshwater crustaceans. Ecotoxicology and Environmental Safety 2019;186:109764. [DOI: 10.1016/j.ecoenv.2019.109764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Semmeq A, Ouaskit S, Monari A, Badawi M. Ionization and fragmentation of uracil upon microhydration. Phys Chem Chem Phys 2019;21:4810-21. [PMID: 30773577 DOI: 10.1039/c8cp07452f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Saliev T, Baiskhanova D, Beznosko D, Begimbetova D, Umbayev B, Nurgozhin T, Fakhradiyev I, Tanabayev B, Pavalkis D. A New Insight on the Radioprotective Potential of Epsilon-Aminocaproic Acid. Medicina (Kaunas) 2020;56:E663. [PMID: 33266046 DOI: 10.3390/medicina56120663] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Wei J, Meng L, Hou X, Qu C, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res 2019;11:167-77. [PMID: 30613164 DOI: 10.2147/CMAR.S188655] [Cited by in Crossref: 35] [Cited by in F6Publishing: 11] [Article Influence: 8.8] [Reference Citation Analysis]
32 Hognon C, Gebus A, Barone G, Monari A. Human DNA Telomeres in Presence of Oxidative Lesions: The Crucial Role of Electrostatic Interactions on the Stability of Guanine Quadruplexes. Antioxidants (Basel) 2019;8:E337. [PMID: 31443537 DOI: 10.3390/antiox8090337] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Allison RR. Radiobiological modifiers in clinical radiation oncology: current reality and future potential. Future Oncol 2014;10:2359-79. [PMID: 25525845 DOI: 10.2217/fon.14.174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
34 Zhang H, Gattuso H, Dumont E, Cai W, Monari A, Chipot C, Dehez F. Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA. Molecules 2018;23:E228. [PMID: 29370096 DOI: 10.3390/molecules23020228] [Cited by in Crossref: 51] [Cited by in F6Publishing: 15] [Article Influence: 12.8] [Reference Citation Analysis]
35 Aleksandrov R, Dotchev A, Poser I, Krastev D, Georgiev G, Panova G, Babukov Y, Danovski G, Dyankova T, Hubatsch L, Ivanova A, Atemin A, Nedelcheva-Veleva MN, Hasse S, Sarov M, Buchholz F, Hyman AA, Grill SW, Stoynov SS. Protein Dynamics in Complex DNA Lesions. Mol Cell 2018;69:1046-1061.e5. [PMID: 29547717 DOI: 10.1016/j.molcel.2018.02.016] [Cited by in Crossref: 70] [Cited by in F6Publishing: 60] [Article Influence: 23.3] [Reference Citation Analysis]
36 Ravanat J, Douki T. UV and ionizing radiations induced DNA damage, differences and similarities. Radiation Physics and Chemistry 2016;128:92-102. [DOI: 10.1016/j.radphyschem.2016.07.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 11] [Article Influence: 5.8] [Reference Citation Analysis]
37 Hume AJ, Ames J, Rennick LJ, Duprex WP, Marzi A, Tonkiss J, Mühlberger E. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors. Viruses 2016;8:E204. [PMID: 27455307 DOI: 10.3390/v8070204] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
38 Wang Y, Liu ZG, Yuan H, Deng W, Li J, Huang Y, Kim BYS, Story MD, Jiang W. The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clin Cancer Res 2019;25:1709-17. [PMID: 30413527 DOI: 10.1158/1078-0432.CCR-18-2581] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 6.8] [Reference Citation Analysis]
39 Yu C. Don't be Caught Half-dressed When Working with Radiation. Cardiovasc Intervent Radiol 2020;43:369-75. [PMID: 31844952 DOI: 10.1007/s00270-019-02391-7] [Reference Citation Analysis]
40 Feldmann F, Shupert WL, Haddock E, Twardoski B, Feldmann H. Gamma Irradiation as an Effective Method for Inactivation of Emerging Viral Pathogens. Am J Trop Med Hyg 2019;100:1275-7. [PMID: 30860018 DOI: 10.4269/ajtmh.18-0937] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 25.0] [Reference Citation Analysis]
41 Zhang C, Xiang B. The underlying mechanisms and strategies of DNA damage and repair in radiation sialadenitis. Oral Dis 2021. [PMID: 34773326 DOI: 10.1111/odi.14078] [Reference Citation Analysis]
42 Li Q, Zhang Y, Jiang Q. SETD3 reduces KLC4 expression to improve the sensitization of cervical cancer cell to radiotherapy. Biochemical and Biophysical Research Communications 2019;516:619-25. [DOI: 10.1016/j.bbrc.2019.06.058] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol 2017;95:1236-44. [PMID: 28679064 DOI: 10.1139/cjpp-2016-0741] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
44 Kohutova A, Raška J, Kruta M, Seneklova M, Barta T, Fojtik P, Jurakova T, Walter CA, Hampl A, Dvorak P, Rotrekl V. Ligase 3–mediated end‐joining maintains genome stability of human embryonic stem cells. FASEB j 2019;33:6778-88. [DOI: 10.1096/fj.201801877rr] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Bhartiya A, Batey D, Cipiccia S, Shi X, Rau C, Botchway S, Yusuf M, Robinson IK. X-ray Ptychography Imaging of Human Chromosomes After Low-dose Irradiation. Chromosome Res 2021;29:107-26. [PMID: 33786705 DOI: 10.1007/s10577-021-09660-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 Yap J, De Franco A, Sheehy S. Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Front Oncol 2021;11:780025. [PMID: 34956897 DOI: 10.3389/fonc.2021.780025] [Reference Citation Analysis]
47 Sun H, Wang X, Zhai S. The Rational Design and Biological Mechanisms of Nanoradiosensitizers. Nanomaterials (Basel) 2020;10:E504. [PMID: 32168899 DOI: 10.3390/nano10030504] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
48 Seiwert N, Neitzel C, Stroh S, Frisan T, Audebert M, Toulany M, Kaina B, Fahrer J. AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell Death Dis 2017;8:e3019. [PMID: 28837154 DOI: 10.1038/cddis.2017.418] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
49 Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019;9:6845-58. [DOI: 10.1039/c8ra10168j] [Cited by in Crossref: 12] [Article Influence: 4.0] [Reference Citation Analysis]
50 Chan CC, Hsiao YY. The Effects of Dimethylsulfoxide and Oxygen on DNA Damage Induction and Repair Outcomes for Cells Irradiated by 62 MeV Proton and 3.31 MeV Helium Ions. J Pers Med 2021;11:286. [PMID: 33917956 DOI: 10.3390/jpm11040286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Ando K, Goodhead DT. Dependence and independence of survival parameters on linear energy transfer in cells and tissues. J Radiat Res 2016;57:596-606. [PMID: 27380803 DOI: 10.1093/jrr/rrw058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
52 Qiu G. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation. Mutation Research/Reviews in Mutation Research 2015;764:108-17. [DOI: 10.1016/j.mrrev.2015.04.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
53 Pham N, Ludwig MS, Wang M, Ebrahimpour A, Bonnen MD, Diwan AH, Kim SJ, Bryan J, Newton JM, Sikora AG, Donovan DT, Sandulache V, Ghebre YT. Topical Esomeprazole Mitigates Radiation-Induced Dermal Inflammation and Fibrosis. Radiat Res 2019;192:473-82. [PMID: 31415221 DOI: 10.1667/RR15398.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
54 Bignon E, Gattuso H, Morell C, Dehez F, Georgakilas AG, Monari A, Dumont E. Correlation of bistranded clustered abasic DNA lesion processing with structural and dynamic DNA helix distortion. Nucleic Acids Res 2016;44:8588-99. [PMID: 27587587 DOI: 10.1093/nar/gkw773] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
55 Pincinato EC, Costa EFD, Lopes-Aguiar L, Nogueira GAS, Lima TRP, Visacri MB, Costa APL, Lourenço GJ, Calonga L, Mariano FV, Altemani AMAM, Coutinho-Camillo C, Chone CT, Ramos CD, Altemani JMC, Moriel P, Lima CSP. GSTM1, GSTT1 and GSTP1 Ile105Val polymorphisms in outcomes of head and neck squamous cell carcinoma patients treated with cisplatin chemoradiation. Sci Rep 2019;9:9312. [PMID: 31249357 DOI: 10.1038/s41598-019-45808-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Dahiya R, Hu Q, Ly P. Mechanistic origins of diverse genome rearrangements in cancer. Semin Cell Dev Biol 2021:S1084-9521(21)00035-5. [PMID: 33824062 DOI: 10.1016/j.semcdb.2021.03.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Liu T, Shen S, Huang Y, Zhang X, Lai Z, Tran TH, Liu Z, Cheng L. Controllable growth of Au nanostructures onto MoS 2 nanosheets for dual-modal imaging and photothermal–radiation combined therapy. Nanoscale 2019;11:22788-95. [DOI: 10.1039/c9nr06513j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Wang S, Wang S, Wang W, Dai Y, Qiu Z, Ke W, Geng M, Li J, Li K, Ma Q, Li F. In Vitro and In Vivo Efficacy of Albendazole Chitosan Microspheres with Intensity-Modulated Radiation Therapy in the Treatment of Spinal Echinococcosis. Antimicrob Agents Chemother 2021;65:e0079521. [PMID: 34460300 DOI: 10.1128/AAC.00795-21] [Reference Citation Analysis]
59 Tan HQ, Mi Z, Bettiol AA. Simple and universal model for electron-impact ionization of complex biomolecules. Phys Rev E 2018;97:032403. [PMID: 29776024 DOI: 10.1103/PhysRevE.97.032403] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
60 Li J, Zhang Y, Sun J, Chen L, Gou W, Chen CW, Zhou Y, Li Z, Chan DW, Huang R, Pei H, Zheng W, Li Y, Xia M, Zhu W. Discovery and characterization of potent And-1 inhibitors for cancer treatment. Clin Transl Med 2021;11:e627. [PMID: 34923765 DOI: 10.1002/ctm2.627] [Reference Citation Analysis]
61 Au KM, Min Y, Tian X, Zhang L, Perello V, Caster JM, Wang AZ. Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles. ACS Nano 2015;9:8976-96. [PMID: 26267360 DOI: 10.1021/acsnano.5b02913] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 7.7] [Reference Citation Analysis]
62 Sabol M, Akbudak MA, Fricova D, Beck I, Sedlacek R. Novel TALEN-generated mCitrine-FANCD2 fusion reporter mouse model for in vivo research of DNA damage response. DNA Repair (Amst) 2020;94:102936. [PMID: 32717583 DOI: 10.1016/j.dnarep.2020.102936] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Konrad CV, Murali R, Varghese BA, Nair R. The role of cancer stem cells in tumor heterogeneity and resistance to therapy. Can J Physiol Pharmacol 2017;95:1-15. [DOI: 10.1139/cjpp-2016-0079] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
64 Whitehouse JP, Howlett M, Federico A, Kool M, Endersby R, Gottardo NG. Defining the molecular features of radiation-induced glioma: A systematic review and meta-analysis. Neurooncol Adv 2021;3:vdab109. [PMID: 34859225 DOI: 10.1093/noajnl/vdab109] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Hsiao YY, Chen FH, Chan CC, Tsai CC. Monte Carlo Simulation of Double-Strand Break Induction and Conversion after Ultrasoft X-rays Irradiation. Int J Mol Sci 2021;22:11713. [PMID: 34769142 DOI: 10.3390/ijms222111713] [Reference Citation Analysis]
66 Dominietto MD, Capobianco E. Expected Impacts of Connected Multimodal Imaging in Precision Oncology. Front Pharmacol 2016;7:451. [PMID: 27965577 DOI: 10.3389/fphar.2016.00451] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
67 Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and Exosomal MicroRNAs in Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;98:982-995. [PMID: 28721912 DOI: 10.1016/j.ijrobp.2017.03.031] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
68 Seeber A, Gasser SM. Chromatin organization and dynamics in double-strand break repair. Curr Opin Genet Dev 2017;43:9-16. [PMID: 27810555 DOI: 10.1016/j.gde.2016.10.005] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 7.3] [Reference Citation Analysis]
69 Lippert TP, Greenberg RA. The abscopal effect: a sense of DNA damage is in the air. J Clin Invest 2021;131:148274. [PMID: 33938453 DOI: 10.1172/JCI148274] [Reference Citation Analysis]
70 Alhmoud JF, Mustafa AG, Malki MI. Targeting DNA Repair Pathways in Hematological Malignancies. Int J Mol Sci 2020;21:E7365. [PMID: 33036137 DOI: 10.3390/ijms21197365] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
71 Leblond MM, Pérès EA, Helaine C, Gérault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M, Valable S. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 2017;8:72597-612. [PMID: 29069812 DOI: 10.18632/oncotarget.19994] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 8.8] [Reference Citation Analysis]
72 Zheng Y, Sanche L. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules. Applied Physics Reviews 2018;5:021302. [DOI: 10.1063/1.5010916] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
73 Wei J, Zhao Q, Zhang Y, Shi W, Wang H, Zheng Z, Meng L, Xin Y, Jiang X. Sulforaphane-Mediated Nrf2 Activation Prevents Radiation-Induced Skin Injury through Inhibiting the Oxidative-Stress-Activated DNA Damage and NLRP3 Inflammasome. Antioxidants (Basel) 2021;10:1850. [PMID: 34829721 DOI: 10.3390/antiox10111850] [Reference Citation Analysis]
74 Benjamin C, Shah JK, Kondziolka D. Radiation-induced meningiomas. Handb Clin Neurol 2020;169:273-84. [PMID: 32553295 DOI: 10.1016/B978-0-12-804280-9.00018-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021;210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Reference Citation Analysis]
76 Wang S, Gilbreath C, Kollipara RK, Sonavane R, Huo X, Yenerall P, Das A, Ma S, Raj GV, Kittler R. Mithramycin suppresses DNA damage repair via targeting androgen receptor in prostate cancer. Cancer Lett 2020;488:40-9. [PMID: 32485222 DOI: 10.1016/j.canlet.2020.05.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
77 Nikeghbal K, Zamanian Z, Shahidi S, Spagnuolo G, Soltani P. Designing and Fabricating Nano-structured and Micro-structured Radiation Shields for Protection against CBCT Exposure. Materials (Basel) 2020;13:E4371. [PMID: 33008078 DOI: 10.3390/ma13194371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018;94:1116-24. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
79 Georgantzoglou A, Merchant MJ, Jeynes JC, Mayhead N, Punia N, Butler RE, Jena R. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams. Front Oncol 2015;5:305. [PMID: 26835414 DOI: 10.3389/fonc.2015.00305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
80 Karwowski BT. (5'S) 5',8-Cyclo-2'-Deoxyadenosine Cannot Stop BER. Clustered DNA Lesion Studies. Int J Mol Sci 2021;22:5934. [PMID: 34072994 DOI: 10.3390/ijms22115934] [Reference Citation Analysis]
81 Zhang J, Dai Q, Park D, Deng X. Targeting DNA Replication Stress for Cancer Therapy. Genes (Basel) 2016;7:E51. [PMID: 27548226 DOI: 10.3390/genes7080051] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
82 Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, Navarro-Villarán E, Requejo-Aguilar R, Castejón-Vega B, Negrete M, Gallego P, Vega-Ochoa Á, Victor VM, Cordero MD, Del Campo JA, Bárcena JA, Padilla CA, Muntané J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol 2020;36:101510. [PMID: 32593127 DOI: 10.1016/j.redox.2020.101510] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
83 Martinez-Velez N, Marigil M, García-Moure M, Gonzalez-Huarriz M, Aristu JJ, Ramos-García LI, Tejada S, Díez-Valle R, Patiño-García A, Becher OJ, Gomez-Manzano C, Fueyo J, Alonso MM. Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathol Commun 2019;7:64. [PMID: 31036068 DOI: 10.1186/s40478-019-0714-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
84 Singh V, Johansson P, Torchinsky D, Lin YL, Öz R, Ebenstein Y, Hammarsten O, Westerlund F. Quantifying DNA damage induced by ionizing radiation and hyperthermia using single DNA molecule imaging. Transl Oncol 2020;13:100822. [PMID: 32652469 DOI: 10.1016/j.tranon.2020.100822] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
85 Wu Z, Wang Y. Studies of lncRNAs in DNA double strand break repair: what is new? Oncotarget 2017;8:102690-704. [PMID: 29254281 DOI: 10.18632/oncotarget.22090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
86 Wardman P. Approaches to modeling chemical reaction pathways in radiobiology. International Journal of Radiation Biology. [DOI: 10.1080/09553002.2022.2033342] [Reference Citation Analysis]
87 Kim JY, An YM, Choi WH, Kim JM, Cho S, Yoo BR, Kang JW, Lee YS, Lee YJ, Cho J. Pro-apoptotic Noxa is involved in ablative focal irradiation-induced lung injury. J Cell Mol Med 2017;21:711-9. [PMID: 27862899 DOI: 10.1111/jcmm.13014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
88 Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017;9:E91. [PMID: 28718816 DOI: 10.3390/cancers9070091] [Cited by in Crossref: 78] [Cited by in F6Publishing: 60] [Article Influence: 15.6] [Reference Citation Analysis]
89 Semmeq A, Monari A, Badawi M, Ouaskit S. Ab Initio Study of the Stepwise versus Concerted Fragmentation Pathways in Microhydrated Thymine Radical Cations. Chemistry 2019;25:15525-34. [PMID: 31373410 DOI: 10.1002/chem.201902462] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
90 Klement RJ. The influence of ketogenic therapy on the 5 R's of radiobiology. Int J Radiat Biol 2019;95:394-407. [PMID: 28905672 DOI: 10.1080/09553002.2017.1380330] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
91 Song Y, Feng D, Shao S, Liang J. Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation. Talanta 2018;187:308-13. [DOI: 10.1016/j.talanta.2018.05.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Yao M, Rogers L, Suchowerska N, Choe D, Al-Dabbas MA, Narula RS, Lyons JG, Sved P, Li Z, Dong Q. Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol 2018;128:283-300. [PMID: 29929859 DOI: 10.1016/j.radonc.2018.05.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
93 Bláha P, Feoli C, Agosteo S, Calvaruso M, Cammarata FP, Catalano R, Ciocca M, Cirrone GAP, Conte V, Cuttone G, Facoetti A, Forte GI, Giuffrida L, Magro G, Margarone D, Minafra L, Petringa G, Pucci G, Ricciardi V, Rosa E, Russo G, Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives. Front Oncol 2021;11:682647. [PMID: 34262867 DOI: 10.3389/fonc.2021.682647] [Reference Citation Analysis]
94 Ludovici GM, Oliveira de Souza S, Chierici A, Cascone MG, d'Errico F, Malizia A. Adaptation to ionizing radiation of higher plants: From environmental radioactivity to chernobyl disaster. J Environ Radioact 2020;222:106375. [PMID: 32791372 DOI: 10.1016/j.jenvrad.2020.106375] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Kumari N, Vartak SV, Dahal S, Kumari S, Desai SS, Gopalakrishnan V, Choudhary B, Raghavan SC. G-quadruplex Structures Contribute to Differential Radiosensitivity of the Human Genome. iScience 2019;21:288-307. [PMID: 31678912 DOI: 10.1016/j.isci.2019.10.033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
96 Toprani SM, Das B. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Mutagenesis 2015;30:663-76. [PMID: 25958388 DOI: 10.1093/mutage/gev032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.3] [Reference Citation Analysis]
97 Liamina D, Sibirnyj W, Khokhlova A, Saenko V, Rastorgueva E, Fomin A, Saenko Y. Radiation-Induced Changes of microRNA Expression Profiles in Radiosensitive and Radioresistant Leukemia Cell Lines with Different Levels of Chromosome Abnormalities. Cancers (Basel) 2017;9:E136. [PMID: 29027959 DOI: 10.3390/cancers9100136] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
98 Deng J, Xu S, Hu W, Xun X, Zheng L, Su M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 2018;154:24-33. [DOI: 10.1016/j.biomaterials.2017.10.048] [Cited by in Crossref: 80] [Cited by in F6Publishing: 65] [Article Influence: 20.0] [Reference Citation Analysis]
99 Manna K, Khan A, Biswas S, Das U, Sengupta A, Mukherjee D, Chakraborty A, Dey S. Naringin ameliorates radiation-induced hepatic damage through modulation of Nrf2 and NF-κB pathways. RSC Adv 2016;6:23058-73. [DOI: 10.1039/c6ra01102k] [Cited by in Crossref: 13] [Article Influence: 2.2] [Reference Citation Analysis]
100 Lee J, Jeong MI, Kim HR, Park H, Moon WK, Kim B. Plant Extracts as Possible Agents for Sequela of Cancer Therapies and Cachexia. Antioxidants (Basel) 2020;9:E836. [PMID: 32906727 DOI: 10.3390/antiox9090836] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
101 Marampon F, Gravina G, Ju X, Vetuschi A, Sferra R, Casimiro M, Pompili S, Festuccia C, Colapietro A, Gaudio E, Di Cesare E, Tombolini V, Pestell RG. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget 2016;7:5383-400. [PMID: 26689991 DOI: 10.18632/oncotarget.6579] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
102 Mantawy EM, Said RS, Kassem DH, Abdel-Aziz AK, Badr AM. Novel molecular mechanisms underlying the ameliorative effect of N-acetyl-L-cysteine against ϒ-radiation-induced premature ovarian failure in rats. Ecotoxicol Environ Saf 2020;206:111190. [PMID: 32871518 DOI: 10.1016/j.ecoenv.2020.111190] [Reference Citation Analysis]
103 Lee CM, Cradick TJ, Fine EJ, Bao G. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing. Mol Ther 2016;24:475-87. [PMID: 26750397 DOI: 10.1038/mt.2016.1] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 12.2] [Reference Citation Analysis]
104 Prajapati S, Locatelli M, Sawyer C, Holmes J, Bonin K, Black P, Vidi PA. Characterization and implementation of a miniature X-ray system for live cell microscopy. Mutat Res 2021;824:111772. [PMID: 34923215 DOI: 10.1016/j.mrfmmm.2021.111772] [Reference Citation Analysis]
105 Winter M, Dokic I, Schlegel J, Warnken U, Debus J, Abdollahi A, Schnölzer M. Deciphering the Acute Cellular Phosphoproteome Response to Irradiation with X-rays, Protons and Carbon Ions. Mol Cell Proteomics 2017;16:855-72. [PMID: 28302921 DOI: 10.1074/mcp.M116.066597] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
106 Yang X, Liu H, Jiang X, Jin C, Xu Z, Li T, Wang Z, Wang J. Cyclooxygenase‑2‑mediated upregulation of heme oxygenase 1 mitigates the toxicity of deuterium‑tritium fusion radiation. Int J Mol Med 2018;42:1945-54. [PMID: 30085341 DOI: 10.3892/ijmm.2018.3799] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
107 Muhtadi R, Lorenz A, Mpaulo SJ, Siebenwirth C, Scherthan H. Catalase T-Deficient Fission Yeast Meiocytes Show Resistance to Ionizing Radiation. Antioxidants (Basel) 2020;9:E881. [PMID: 32957622 DOI: 10.3390/antiox9090881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Chan CC, Chen FH, Hsiao YY. Impact of Hypoxia on Relative Biological Effectiveness and Oxygen Enhancement Ratio for a 62-MeV Therapeutic Proton Beam. Cancers (Basel) 2021;13:2997. [PMID: 34203882 DOI: 10.3390/cancers13122997] [Reference Citation Analysis]
109 Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018;4:117. [PMID: 30588339 DOI: 10.1038/s41420-018-0132-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
110 McConnell KA, Chang C, Giebeler A, Liu L, Zhu Qu L, Moiseenko V. Double-strand breaks measured along a 160 MeV proton Bragg curve using a novel FIESTA-DNA probe in a cell-free environment. Phys Med Biol 2021;66:054001. [PMID: 33470972 DOI: 10.1088/1361-6560/abdd89] [Reference Citation Analysis]
111 Li F, Shimizu A, Nishio T, Tsutsumi N, Kato H. Comparison and Characterization of Mutations Induced by Gamma-Ray and Carbon-Ion Irradiation in Rice (Oryza sativa L.) Using Whole-Genome Resequencing. G3 (Bethesda) 2019;9:3743-51. [PMID: 31519747 DOI: 10.1534/g3.119.400555] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
112 Rumiato E, Boldrin E, Amadori A, Saggioro D. Predictive role of host constitutive variants in neoadjuvant therapy of esophageal cancer. Pharmacogenomics 2016;17:805-20. [PMID: 27181132 DOI: 10.2217/pgs-2016-0009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
113 Pavlopoulou A, Asfa S, Gioukakis E, Mavragani IV, Nikitaki Z, Takan I, Pouget JP, Harrison L, Georgakilas AG. In Silico Investigation of the Biological Implications of Complex DNA Damage with Emphasis in Cancer Radiotherapy through a Systems Biology Approach. Molecules 2021;26:7602. [PMID: 34946681 DOI: 10.3390/molecules26247602] [Reference Citation Analysis]
114 Hardie ME, Gautam SD, Murray V. The genome-wide sequence preference of ionising radiation-induced cleavage in human DNA. Mol Biol Rep 2019;46:3731-45. [PMID: 31037547 DOI: 10.1007/s11033-019-04815-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
115 Liu Y, Li X, Shi Y, Wang Y, Zhao X, Gong X, Cai R, Song G, Chen M, Zhang X. Two-dimensional intermetallic PtBi/Pt core/shell nanoplates overcome tumor hypoxia for enhanced cancer therapy. Nanoscale 2021;13:14245-53. [PMID: 34477707 DOI: 10.1039/d1nr02561a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Ellerin BE, Demandante CGN, Martins JT. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother 2020;24:226-46. [PMID: 32192840 DOI: 10.1016/j.canrad.2020.01.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
117 Geng J, Zhang Y, Gao Q, Neumann K, Dong H, Porter H, Potter M, Ren H, Argyle D, Bradley M. Switching on prodrugs using radiotherapy. Nat Chem 2021;13:805-10. [PMID: 34112990 DOI: 10.1038/s41557-021-00711-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
118 Jiao D, Wu K, Xu K, Liu Y, Zhao D, Han X, Fan R. Development of A Decahedral Nanoenzyme Capable of Overcoming Hypoxia to Facilitate the Iodine-125 Radiosensitization of Esophageal Cancer. Front Bioeng Biotechnol 2021;9:764531. [PMID: 34692667 DOI: 10.3389/fbioe.2021.764531] [Reference Citation Analysis]
119 Pinzi V, Bisogno I, Prada F, Ciusani E, Fariselli L. Radiotherapy of meningioma: a treatment in need of radiobiological research. International Journal of Radiation Biology 2018;94:621-7. [DOI: 10.1080/09553002.2018.1478157] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
120 Kim HJ, Kang SU, Lee YS, Jang JY, Kang H, Kim CH. Protective Effects of N-Acetylcysteine against Radiation-Induced Oral Mucositis In Vitro and In Vivo. Cancer Res Treat 2020;52:1019-30. [PMID: 32599978 DOI: 10.4143/crt.2020.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Matsuno Y, Hyodo M, Suzuki M, Tanaka Y, Horikoshi Y, Murakami Y, Torigoe H, Mano H, Tashiro S, Yoshioka KI. Replication-stress-associated DSBs induced by ionizing radiation risk genomic destabilization and associated clonal evolution. iScience 2021;24:102313. [PMID: 33870130 DOI: 10.1016/j.isci.2021.102313] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020;9:E31. [PMID: 33374132 DOI: 10.3390/microorganisms9010031] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
123 Fennimore MA, Matsika S. Electronic Resonances of Nucleobases Using Stabilization Methods. J Phys Chem A 2018;122:4048-57. [DOI: 10.1021/acs.jpca.8b01523] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
124 Murray V, Hardie ME, Gautam SD. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel) 2019;11:E8. [PMID: 31861886 DOI: 10.3390/genes11010008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
125 Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet 2015;6:157. [PMID: 25954303 DOI: 10.3389/fgene.2015.00157] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 18.0] [Reference Citation Analysis]
126 van Oorschot B, Granata G, Di Franco S, Ten Cate R, Rodermond HM, Todaro M, Medema JP, Franken NA. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 2016;7:65504-13. [PMID: 27602767 DOI: 10.18632/oncotarget.11798] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
127 Li G, Lin H, Tian R, Zhao P, Huang Y, Pang X, Zhao L, Cao B. VEGFR-2 Inhibitor Apatinib Hinders Endothelial Cells Progression Triggered by Irradiated Gastric Cancer Cells-derived Exosomes. J Cancer 2018;9:4049-57. [PMID: 30410610 DOI: 10.7150/jca.25370] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
128 Yin W, Qiang M, Ke W, Han Y, Mukerabigwi JF, Ge Z. Hypoxia-responsive block copolymer radiosensitizers as anticancer drug nanocarriers for enhanced chemoradiotherapy of bulky solid tumors. Biomaterials 2018;181:360-71. [PMID: 30098571 DOI: 10.1016/j.biomaterials.2018.08.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
129 Toprani SM, Das B. Role of base excision repair genes and proteins in gamma-irradiated resting human peripheral blood mononuclear cells. Mutagenesis 2015;30:247-61. [DOI: 10.1093/mutage/geu065] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
130 Tsai JY, Chen FH, Hsieh TY, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J Radiat Res 2015;56:691-9. [PMID: 25902742 DOI: 10.1093/jrr/rrv025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
131 Gattuso H, Durand E, Bignon E, Morell C, Georgakilas AG, Dumont E, Chipot C, Dehez F, Monari A. Repair Rate of Clustered Abasic DNA Lesions by Human Endonuclease: Molecular Bases of Sequence Specificity. J Phys Chem Lett 2016;7:3760-5. [PMID: 27612215 DOI: 10.1021/acs.jpclett.6b01692] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
132 Fong CW. Platinum based radiochemotherapies: Free radical mechanisms and radiotherapy sensitizers. Free Radic Biol Med 2016;99:99-109. [PMID: 27417937 DOI: 10.1016/j.freeradbiomed.2016.07.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
133 Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020;77:213-29. [PMID: 31414165 DOI: 10.1007/s00018-019-03261-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
134 Xu M, Liu S, Zheng B, Wu J, Wu M, Zhang Y, Gong F, Tao M, Zhang J, Li W. The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair. Pancreatology 2018;18:822-32. [DOI: 10.1016/j.pan.2018.08.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
135 Tiwari P, Mishra KP. Flavonoids sensitize tumor cells to radiation: molecular mechanisms and relevance to cancer radiotherapy. Int J Radiat Biol 2020;96:360-9. [PMID: 31738629 DOI: 10.1080/09553002.2020.1694193] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
136 Onodera Y, Nam JM, Horikawa M, Shirato H, Sabe H. Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe. Nat Commun 2018;9:2682. [PMID: 29992963 DOI: 10.1038/s41467-018-05087-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
137 Mahdavi SR, Janati Esfahani A, Shiran MB, Khoei S, Estiri N. Enhanced DNA Damages of Human Prostate Cancer Cells Induced by Radiofrequency Capacitive Hyperthermia Pre- and Post X-rays: 6 MV versus 15 MV. Cell J 2017;19:79-85. [PMID: 28580311 DOI: 10.22074/cellj.2017.4749] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
138 Wu L, Hu Z, Huang Y, Yu Y, Liang W, Zheng Q, Huang X, Huang Y, Lu X, Zhao Y. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16. PLoS One 2016;11:e0162917. [PMID: 27631970 DOI: 10.1371/journal.pone.0162917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
139 Goldsweig AM, Kennedy KF, Abbott JD, Jones WS, Velagapudi P, Rutar FJ, Curtis JC, Tsai TT, Aronow HD. Patient Radiation Dosage During Lower Extremity Endovascular Intervention. JACC: Cardiovascular Interventions 2019;12:473-80. [DOI: 10.1016/j.jcin.2018.11.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
140 Liu Y, Kobayashi A, Maeda T, Fu Q, Oikawa M, Yang G, Konishi T, Uchihori Y, Hei TK, Wang Y. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells. Mutat Res 2015;773:43-7. [PMID: 25769186 DOI: 10.1016/j.mrfmmm.2015.01.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
141 Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol 2016;6:233. [PMID: 27847783 DOI: 10.3389/fonc.2016.00233] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 14.3] [Reference Citation Analysis]
142 Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020;13:6859-71. [PMID: 32764978 DOI: 10.2147/OTT.S253772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
143 Kuwahara Y, Tomita K, Urushihara Y, Sato T, Kurimasa A, Fukumoto M. Association between radiation-induced cell death and clinically relevant radioresistance. Histochem Cell Biol 2018;150:649-59. [DOI: 10.1007/s00418-018-1728-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
144 Patwardhan RS, Sharma D, Checker R, Thoh M, Sandur SK. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance. Free Radic Res 2015;49:1218-32. [PMID: 26021764 DOI: 10.3109/10715762.2015.1056180] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
145 Musa AE, Shabeeb D. Radiation-Induced Heart Diseases: Protective Effects of Natural Products. Medicina (Kaunas) 2019;55:E126. [PMID: 31075882 DOI: 10.3390/medicina55050126] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
146 Petrinec B, Šoštarić M, Babić D. The role of physics in radioecology and radiotoxicology. Arh Hig Rada Toksikol 2019;70:3-13. [PMID: 30956222 DOI: 10.2478/aiht-2019-70-3225] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Holm M, Joenväärä S, Saraswat M, Tohmola T, Ristimäki A, Renkonen R, Haglund C. Preoperative Radiotherapy Leads to Significant Differences in the Plasma Protein Profile of Rectal Cancer Patients. Oncology 2020;98:493-500. [PMID: 32294655 DOI: 10.1159/000505697] [Reference Citation Analysis]
148 Maremonti E, Eide DM, Oughton DH, Salbu B, Grammes F, Kassaye YA, Guédon R, Lecomte-pradines C, Brede DA. Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis. Science of The Total Environment 2019;695:133835. [DOI: 10.1016/j.scitotenv.2019.133835] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
149 Philippou Y, Sjoberg H, Lamb AD, Camilleri P, Bryant RJ. Harnessing the potential of multimodal radiotherapy in prostate cancer. Nat Rev Urol 2020;17:321-38. [DOI: 10.1038/s41585-020-0310-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
150 Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. International Journal of Radiation Biology 2016;92:707-15. [DOI: 10.3109/09553002.2016.1157278] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
151 Cui W, Li X, Hull L, Xiao M. Measuring radiation-induced DNA damage in Cryptococcus neoformans and Saccharomyces cerevisiae using long range quantitative PCR. PLoS One 2018;13:e0207071. [PMID: 30408089 DOI: 10.1371/journal.pone.0207071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
152 Wu ZJ, Tang FR, Ma ZW, Peng XC, Xiang Y, Zhang Y, Kang J, Ji J, Liu XQ, Wang XW, Xin HW, Ren BX. Oncolytic Viruses for Tumor Precision Imaging and Radiotherapy. Hum Gene Ther 2018;29:204-22. [PMID: 29179583 DOI: 10.1089/hum.2017.189] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
153 Singleton EV, David SC, Davies JB, Hirst TR, Paton JC, Beard MR, Hemmatzadeh F, Alsharifi M. Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. J Radiat Res 2020;61:886-94. [PMID: 32930781 DOI: 10.1093/jrr/rraa076] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
154 Keszenman DJ, Kolodiuk L, Baulch JE. DNA damage in cells exhibiting radiation-induced genomic instability. Mutagenesis 2015;30:451-8. [PMID: 25711497 DOI: 10.1093/mutage/gev006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
155 De la Vieja A, Riesco-Eizaguirre G. Radio-Iodide Treatment: From Molecular Aspects to the Clinical View. Cancers (Basel) 2021;13:995. [PMID: 33673669 DOI: 10.3390/cancers13050995] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
156 Katagi H, Louis N, Unruh D, Sasaki T, He X, Zhang A, Ma Q, Piunti A, Shimazu Y, Lamano JB, Carcaboso AM, Tian X, Seluanov A, Gorbunova V, Laurie KL, Kondo A, Wadhwani NR, Lulla R, Goldman S, Venneti S, Becher OJ, Zou L, Shilatifard A, Hashizume R. Radiosensitization by Histone H3 Demethylase Inhibition in Diffuse Intrinsic Pontine Glioma. Clin Cancer Res 2019;25:5572-83. [PMID: 31227500 DOI: 10.1158/1078-0432.CCR-18-3890] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
157 Ramachandran J, Santo L, Siu KT, Panaroni C, Raje N. Pim2 is important for regulating DNA damage response in multiple myeloma cells. Blood Cancer J 2016;6:e462. [PMID: 27564460 DOI: 10.1038/bcj.2016.73] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
158 Höfig I, Ingawale Y, Atkinson MJ, Hertlein H, Nelson PJ, Rosemann M. p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation. Stem Cells Int 2016;2016:6429853. [PMID: 26788069 DOI: 10.1155/2016/6429853] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
159 Fromm M, Boulanouar O. Low energy electrons and ultra-soft X-rays irradiation of plasmid DNA. Technical innovations. Radiation Physics and Chemistry 2016;128:44-53. [DOI: 10.1016/j.radphyschem.2016.05.025] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
160 Li WB, Belchior A, Beuve M, Chen YZ, Di Maria S, Friedland W, Gervais B, Heide B, Hocine N, Ipatov A, Klapproth AP, Li CY, Li JL, Multhoff G, Poignant F, Qiu R, Rabus H, Rudek B, Schuemann J, Stangl S, Testa E, Villagrasa C, Xie WZ, Zhang YB. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Phys Med 2020;69:147-63. [PMID: 31918367 DOI: 10.1016/j.ejmp.2019.12.011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
161 Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle 2017;16:1266-70. [PMID: 28656797 DOI: 10.1080/15384101.2017.1320003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
162 Nickoloff JA, Sharma N, Taylor L. Clustered DNA Double-Strand Breaks: Biological Effects and Relevance to Cancer Radiotherapy. Genes (Basel) 2020;11:E99. [PMID: 31952359 DOI: 10.3390/genes11010099] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 20.0] [Reference Citation Analysis]
163 Ren J, Li L, Yu B, Xu E, Sun N, Li X, Xing Z, Han X, Cui Y, Wang X, Zhang X, Wang G. Extracellular vesicles mediated proinflammatory macrophage phenotype induced by radiotherapy in cervical cancer. BMC Cancer 2022;22. [DOI: 10.1186/s12885-022-09194-z] [Reference Citation Analysis]
164 Middelkamp S, van Tol HTA, Spierings DCJ, Boymans S, Guryev V, Roelen BAJ, Lansdorp PM, Cuppen E, Kuijk EW. Sperm DNA damage causes genomic instability in early embryonic development. Sci Adv 2020;6:eaaz7602. [PMID: 32494621 DOI: 10.1126/sciadv.aaz7602] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
165 Alsahafi EN, Thavaraj S, Sarvestani N, Novoplansky O, Elkabets M, Ayaz B, Tavassoli M, Legends MF. EGFR overexpression increases radiotherapy response in HPV-positive head and neck cancer through inhibition of DNA damage repair and HPV E6 downregulation. Cancer Lett 2021;498:80-97. [PMID: 33137407 DOI: 10.1016/j.canlet.2020.10.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
166 Wang Q, Xie C, Xi S, Qian F, Peng X, Huang J, Tang F. Radioprotective Effect of Flavonoids on Ionizing Radiation-Induced Brain Damage. Molecules 2020;25:E5719. [PMID: 33287417 DOI: 10.3390/molecules25235719] [Reference Citation Analysis]
167 Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. How (5'S) and (5'R) 5',8-Cyclo-2'-Deoxypurines Affect Base Excision Repair of Clustered DNA Damage in Nuclear Extracts of xrs5 Cells? A Biochemical Study. Cells 2021;10:725. [PMID: 33805115 DOI: 10.3390/cells10040725] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
168 Mathis T, Jardel P, Loria O, Delaunay B, Nguyen AM, Lanza F, Mosci C, Caujolle JP, Kodjikian L, Thariat J. New concepts in the diagnosis and management of choroidal metastases. Prog Retin Eye Res 2019;68:144-76. [PMID: 30240895 DOI: 10.1016/j.preteyeres.2018.09.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 8.8] [Reference Citation Analysis]
169 Singh P, Mohammad KS, Pelus LM. CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation. Stem Cells 2020;38:849-59. [PMID: 32159901 DOI: 10.1002/stem.3174] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
170 Olcina MM, Giaccia AJ. Reducing radiation-induced gastrointestinal toxicity - the role of the PHD/HIF axis. J Clin Invest 2016;126:3708-15. [PMID: 27548524 DOI: 10.1172/JCI84432] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
171 Luo WR, Chen FH, Huang RJ, Chen YP, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB inductions and conversions induced by therapeutic proton beams. Int J Radiat Biol 2020;96:187-96. [PMID: 31682784 DOI: 10.1080/09553002.2020.1688883] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
172 Dillon MT, Good JS, Harrington KJ. Selective targeting of the G2/M cell cycle checkpoint to improve the therapeutic index of radiotherapy. Clin Oncol (R Coll Radiol). 2014;26:257-265. [PMID: 24581946 DOI: 10.1016/j.clon.2014.01.009] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
173 Obata H, Tsuji AB, Sudo H, Sugyo A, Minegishi K, Nagatsu K, Ogawa M, Zhang MR. In Vitro Evaluation of No-Carrier-Added Radiolabeled Cisplatin ([189, 191Pt]cisplatin) Emitting Auger Electrons. Int J Mol Sci 2021;22:4622. [PMID: 33924843 DOI: 10.3390/ijms22094622] [Reference Citation Analysis]
174 Macedo-Silva C, Miranda-Gonçalves V, Henrique R, Jerónimo C, Bravo I. The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) 2019;10:E927. [PMID: 31739546 DOI: 10.3390/genes10110927] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
175 Laverty DJ, Greenberg MM. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions. Biochemistry 2018;57:6119-27. [PMID: 30299084 DOI: 10.1021/acs.biochem.8b00911] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
176 Zhang Y, Huang F, Ren C, Liu J, Yang L, Chen S, Chang J, Yang C, Wang W, Zhang C, Liu Q, Liang XJ, Liu J. Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy. Adv Sci (Weinh) 2019;6:1801806. [PMID: 31016110 DOI: 10.1002/advs.201801806] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
177 McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise KM. A general mechanistic model enables predictions of the biological effectiveness of different qualities of radiation. Sci Rep 2017;7:10790. [PMID: 28883414 DOI: 10.1038/s41598-017-10820-1] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
178 Yuan C, Wang D, Zhang N, Wang Z, Yang F, He J, Sun R, Yang X, Hu J, Wu M. DNA damage/cGAS-triggered up-regulation of MALAT1 promotes undesirable inflammatory responses in radiotherapy of cancer. Biochem Biophys Res Commun 2020;528:746-52. [PMID: 32532422 DOI: 10.1016/j.bbrc.2020.05.064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
179 Wei Z, Yao M, Ning S, Wu Y, Zhou X, Zhong C, Yan K, Xie Y. The Association of Single-Nucleotide Polymorphism rs13181 in ERCC2 with Risk and Prognosis of Nasopharyngeal Carcinoma in an Endemic Chinese Population. Pharmgenomics Pers Med 2021;14:359-67. [PMID: 33762840 DOI: 10.2147/PGPM.S296215] [Reference Citation Analysis]
180 Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021;26:4969. [PMID: 34443561 DOI: 10.3390/molecules26164969] [Reference Citation Analysis]
181 Syed A, Tainer JA. The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annu Rev Biochem 2018;87:263-94. [PMID: 29709199 DOI: 10.1146/annurev-biochem-062917-012415] [Cited by in Crossref: 141] [Cited by in F6Publishing: 134] [Article Influence: 35.3] [Reference Citation Analysis]
182 Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol 2021;97:68-84. [PMID: 31846388 DOI: 10.1080/09553002.2019.1704913] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
183 Fang X, Wang Y, Ma X, Li Y, Zhang Z, Xiao Z, Liu L, Gao X, Liu J. Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. J Mater Chem B 2017;5:4190-7. [PMID: 32264149 DOI: 10.1039/c7tb00422b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
184 Narasimhamurthy RK, Mumbrekar KD, Satish Rao BS. Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective. Toxicology 2021;465:153030. [PMID: 34774978 DOI: 10.1016/j.tox.2021.153030] [Reference Citation Analysis]
185 Jain V, Saini D, Kumar PRV, Jaikrishan G, Das B. Efficient repair of DNA double strand breaks in individuals from high level natural radiation areas of Kerala coast, south-west India. Mutat Res 2017;806:39-50. [PMID: 28963924 DOI: 10.1016/j.mrfmmm.2017.09.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
186 Park SY, Lee SJ, Cho HJ, Kim JT, Yoon HR, Lee KH, Kim BY, Lee Y, Lee HG. Epsilon-Globin HBE1 Enhances Radiotherapy Resistance by Down-Regulating BCL11A in Colorectal Cancer Cells. Cancers (Basel) 2019;11:E498. [PMID: 30965648 DOI: 10.3390/cancers11040498] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
187 Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 2017;58:235-63. [PMID: 28485537 DOI: 10.1002/em.22087] [Cited by in Crossref: 369] [Cited by in F6Publishing: 339] [Article Influence: 73.8] [Reference Citation Analysis]
188 Li Y, Jeon J, Park JH. Hypoxia-responsive nanoparticles for tumor-targeted drug delivery. Cancer Letters 2020;490:31-43. [DOI: 10.1016/j.canlet.2020.05.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
189 Owiti NA, Nagel ZD, Engelward BP. Fluorescence Sheds Light on DNA Damage, DNA Repair, and Mutations. Trends Cancer 2021;7:240-8. [PMID: 33203608 DOI: 10.1016/j.trecan.2020.10.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
190 Schlosser S, Rabinovitch R, Shatz Z, Galper S, Shahadi-Dromi I, Finkel S, Jacobson G, Rasco A, Friedman E, Laitman Y, Evron E, Bernstein R, Weiss I, Sklair-Levy M, Ben-David MA. Radiation-Associated Secondary Malignancies in BRCA Mutation Carriers Treated for Breast Cancer. Int J Radiat Oncol Biol Phys 2020;107:353-9. [PMID: 32084523 DOI: 10.1016/j.ijrobp.2020.02.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
191 Dong Y, Chen Y, Zhou L, Shao Y, Fu X, Zheng Y. Molecular efficacy of radio- and chemotherapy sequences from direct DNA damage measurements. Int J Radiat Biol 2017;93:1274-82. [PMID: 28799445 DOI: 10.1080/09553002.2017.1366673] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
192 Gibson TM, Robison LL. Impact of Cancer Therapy-Related Exposures on Late Mortality in Childhood Cancer Survivors. Chem Res Toxicol 2015;28:31-7. [PMID: 25474125 DOI: 10.1021/tx500374k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
193 Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2017;280:220-30. [PMID: 29027232 DOI: 10.1111/imr.12568] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
194 Lopes-Aguiar L, Costa EF, Nogueira GA, Lima TR, Visacri MB, Pincinato EC, Calonga L, Mariano FV, de Almeida Milani Altemani AM, Altemani JM, Coutinho-Camillo CM, Ribeiro Alves MA, Moriel P, Ramos CD, Chone CT, Lima CS. XPD c.934G>A polymorphism of nucleotide excision repair pathway in outcome of head and neck squamous cell carcinoma patients treated with cisplatin chemoradiation. Oncotarget 2017;8:16190-201. [PMID: 26918827 DOI: 10.18632/oncotarget.7668] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
195 Jain V, Kumar PV, Koya P, Jaikrishan G, Das B. Lack of increased DNA double-strand breaks in peripheral blood mononuclear cells of individuals from high level natural radiation areas of Kerala coast in India. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 2016;788:50-7. [DOI: 10.1016/j.mrfmmm.2016.03.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
196 Schaue D, Mcbride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol 2015;12:527-40. [DOI: 10.1038/nrclinonc.2015.120] [Cited by in Crossref: 174] [Cited by in F6Publishing: 174] [Article Influence: 24.9] [Reference Citation Analysis]
197 Gravells P, Neale J, Grant E, Nathubhai A, Smith KM, James DI, Bryant HE. Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib. DNA Repair (Amst) 2018;61:25-36. [PMID: 29179156 DOI: 10.1016/j.dnarep.2017.11.004] [Cited by in F6Publishing: 24] [Reference Citation Analysis]
198 Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 Expression Drives PI3K/AKT/MTOR Signaling Promotes Radiation-Resistant and Dedifferentiated Phenotype of Hepatocellular Carcinoma. Cells 2020;9:E746. [PMID: 32197467 DOI: 10.3390/cells9030746] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
199 Vukmirovic D, Seymour C, Mothersill C. Reprint of: Deciphering and simulating models of radiation genotoxicity with CRISPR/Cas9 systems. Mutat Res Rev Mutat Res 2020;785:108318. [PMID: 32800271 DOI: 10.1016/j.mrrev.2020.108318] [Reference Citation Analysis]
200 Spiegelberg L, Houben R, Niemans R, de Ruysscher D, Yaromina A, Theys J, Guise CP, Smaill JB, Patterson AV, Lambin P, Dubois LJ. Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin Transl Radiat Oncol 2019;15:62-9. [PMID: 30734002 DOI: 10.1016/j.ctro.2019.01.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 11.7] [Reference Citation Analysis]
201 Walker VE, Degner A, Carter EW, Nicklas JA, Walker DM, Tretyakova N, Albertini RJ. 1,3-Butadiene metabolite 1,2,3,4 diepoxybutane induces DNA adducts and micronuclei but not t(9;22) translocations in human cells. Chem Biol Interact 2019;312:108797. [PMID: 31422076 DOI: 10.1016/j.cbi.2019.108797] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
202 O'Sullivan MJ, Mitchel JA, Das A, Koehler S, Levine H, Bi D, Nagel ZD, Park JA. Irradiation Induces Epithelial Cell Unjamming. Front Cell Dev Biol 2020;8:21. [PMID: 32117962 DOI: 10.3389/fcell.2020.00021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
203 Kim W, Lee S, Seo D, Kim D, Kim K, Kim E, Kang J, Seong KM, Youn H, Youn B. Cellular Stress Responses in Radiotherapy. Cells 2019;8:E1105. [PMID: 31540530 DOI: 10.3390/cells8091105] [Cited by in Crossref: 63] [Cited by in F6Publishing: 59] [Article Influence: 21.0] [Reference Citation Analysis]
204 Ravanat JL, Breton J, Douki T, Gasparutto D, Grand A, Rachidi W, Sauvaigo S. Radiation-mediated formation of complex damage to DNA: a chemical aspect overview. Br J Radiol 2014;87:20130715. [PMID: 24472775 DOI: 10.1259/bjr.20130715] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
205 Maremonti E, Brede DA, Olsen A, Eide DM, Berg ES. Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: droplet digital PCR analysis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2020;858-860:503277. [DOI: 10.1016/j.mrgentox.2020.503277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
206 Temelie M, Stroe D, Petcu I, Mustaciosu C, Moisoi N, Savu D. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells. Radiat Environ Biophys 2016;55:371-9. [PMID: 27025606 DOI: 10.1007/s00411-016-0649-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
207 Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016;58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
208 Kolbanovskiy M, Aharonoff A, Sales AH, Geacintov NE, Shafirovich V. Remarkable Enhancement of Nucleotide Excision Repair of a Bulky Guanine Lesion in a Covalently Closed Circular DNA Plasmid Relative to the Same Linearized Plasmid. Biochemistry 2020;59:2842-8. [PMID: 32786887 DOI: 10.1021/acs.biochem.0c00441] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
209 Hu Q, Zhou Y, Wu S, Wu W, Deng Y, Shao A. Molecular hydrogen: A potential radioprotective agent. Biomed Pharmacother 2020;130:110589. [PMID: 32763820 DOI: 10.1016/j.biopha.2020.110589] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
210 Suárez Fernández JP. The downfall of the linear non-threshold model. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020;39:303-15. [PMID: 32693978 DOI: 10.1016/j.remn.2020.05.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
211 Bhattacharya S, Asaithamby A. Repurposing DNA repair factors to eradicate tumor cells upon radiotherapy. Transl Cancer Res 2017;6:S822-39. [PMID: 30613483 DOI: 10.21037/tcr.2017.05.22] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
212 Janopaul-Naylor JR, Shen Y, Qian DC, Buchwald ZS. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int J Mol Sci 2021;22:11061. [PMID: 34681719 DOI: 10.3390/ijms222011061] [Reference Citation Analysis]
213 Zhang C, Yan L, Gu Z, Zhao Y. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem Sci 2019;10:6932-43. [PMID: 31588260 DOI: 10.1039/c9sc02107h] [Cited by in Crossref: 32] [Cited by in F6Publishing: 13] [Article Influence: 10.7] [Reference Citation Analysis]
214 Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? Astrobiology 2022. [PMID: 34981957 DOI: 10.1089/ast.2021.0009] [Reference Citation Analysis]
215 Chilimoniuk J, Gosiewska A, Słowik J, Weiss R, Deckert PM, Rödiger S, Burdukiewicz M. countfitteR: efficient selection of count distributions to assess DNA damage. Ann Transl Med 2021;9:528. [PMID: 33987226 DOI: 10.21037/atm-20-6363] [Reference Citation Analysis]
216 Wang Z, Li G, Gao Y, Yu Y, Yang P, Li B, Wang X, Liu J, Chen K, Liu J, Wang W. Trienzyme-like iron phosphates-based (FePOs) nanozyme for enhanced anti-tumor efficiency with minimal side effects. Chemical Engineering Journal 2021;404:125574. [DOI: 10.1016/j.cej.2020.125574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
217 Sharda A, Rashid M, Shah SG, Sharma AK, Singh SR, Gera P, Chilkapati MK, Gupta S. Elevated HDAC activity and altered histone phospho-acetylation confer acquired radio-resistant phenotype to breast cancer cells. Clin Epigenetics 2020;12:4. [PMID: 31900196 DOI: 10.1186/s13148-019-0800-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
218 Hagan CT 4th, Mi Y, Knape NM, Wang AZ. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjug Chem 2020;31:2668-78. [PMID: 33251789 DOI: 10.1021/acs.bioconjchem.0c00520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
219 Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins DM, Tan H, Zhang Y, Buonanno M, Wang TJC, Hei TK, Bruce JN, Canoll PD, Cheng SK, Stockwell BR. Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers. ACS Chem Biol 2020;15:469-84. [PMID: 31899616 DOI: 10.1021/acschembio.9b00939] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 26.0] [Reference Citation Analysis]
220 Kumar G, Dutta P, Parihar VK, Chamallamudi MR, Kumar N. Radiotherapy and Its Impact on the Nervous System of Cancer Survivors. CNS Neurol Disord Drug Targets 2020;19:374-85. [PMID: 32640964 DOI: 10.2174/1871527319666200708125741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
221 Ho SY, Wu WS, Lin LC, Wu YH, Chiu HW, Yeh YL, Huang BM, Wang YJ. Cordycepin Enhances Radiosensitivity in Oral Squamous Carcinoma Cells by Inducing Autophagy and Apoptosis Through Cell Cycle Arrest. Int J Mol Sci 2019;20:E5366. [PMID: 31661901 DOI: 10.3390/ijms20215366] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
222 Hill MA, O'Neill P, McKenna WG. Comments on potential health effects of MRI-induced DNA lesions: quality is more important to consider than quantity. Eur Heart J Cardiovasc Imaging 2016;17:1230-8. [PMID: 27550664 DOI: 10.1093/ehjci/jew163] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
223 Li Q, Li J, Song S, Chen W, Shen X, Li S, Xing D. Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens in vivo or ex vivo? J Mater Chem B 2021;9:2352-66. [PMID: 33659970 DOI: 10.1039/d0tb02915g] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers (Basel) 2020;12:E2098. [PMID: 32731592 DOI: 10.3390/cancers12082098] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
225 Leung A, Tran K, Audet J, Lavineway S, Bastien N, Krishnan J. In Vitro Inactivation of SARS-CoV-2 Using Gamma Radiation. Applied Biosafety 2020;25:157-60. [DOI: 10.1177/1535676020934242] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
226 Nogueira GAS, Costa EFD, Lopes-Aguiar L, Lima TRP, Visacri MB, Pincinato EC, Lourenço GJ, Calonga L, Mariano FV, Altemani AMAM, Altemani JMC, Moriel P, Chone CT, Ramos CD, Lima CSP. Polymorphisms in DNA mismatch repair pathway genes predict toxicity and response to cisplatin chemoradiation in head and neck squamous cell carcinoma patients. Oncotarget 2018;9:29538-47. [PMID: 30038702 DOI: 10.18632/oncotarget.25268] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
227 Muschter D, Geyer F, Bauer R, Ettl T, Schreml S, Haubner F. A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines. Clin Oral Investig 2018;22:2251-62. [PMID: 29307045 DOI: 10.1007/s00784-017-2323-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
228 Shelke S, Das B. Radio-adaptive response and correlation of non-homologous end joining repair gene polymorphisms [XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T)] in human peripheral blood mononuclear cells exposed to gamma radiation. Genes Environ 2021;43:9. [PMID: 33685509 DOI: 10.1186/s41021-021-00176-4] [Reference Citation Analysis]
229 Zhao K, Ke W, Yin W, Li J, Qiang M, Ge Z. Facile Preparation and Radiotherapy Application of an Amphiphilic Block Copolymer Radiosensitizer. ACS Macro Lett 2017;6:556-60. [DOI: 10.1021/acsmacrolett.7b00196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
230 Zhao F, Ming J, Zhou Y, Fan L. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation. Cancer Chemother Pharmacol 2016;77:963-72. [PMID: 27011212 DOI: 10.1007/s00280-016-3007-9] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 7.8] [Reference Citation Analysis]
231 Wu T, Gao J, Liu W, Cui J, Yang M, Guo W, Wang FY. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling. Toxicol Appl Pharmacol 2021;418:115495. [PMID: 33741346 DOI: 10.1016/j.taap.2021.115495] [Reference Citation Analysis]
232 Reyes J, Chen JY, Stewart-Ornstein J, Karhohs KW, Mock CS, Lahav G. Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest. Mol Cell 2018;71:581-591.e5. [PMID: 30057196 DOI: 10.1016/j.molcel.2018.06.031] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 14.5] [Reference Citation Analysis]
233 Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, Lee TH, Chang KT, Hong Y. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy. Int J Mol Sci 2015;16:26880-913. [PMID: 26569225 DOI: 10.3390/ijms161125991] [Cited by in Crossref: 86] [Cited by in F6Publishing: 90] [Article Influence: 12.3] [Reference Citation Analysis]
234 Abolaban FA, Djouider FM. Gamma irradiation-mediated inactivation of enveloped viruses with conservation of genome integrity: Potential application for SARS-CoV-2 inactivated vaccine development. Open Life Sci 2021;16:558-70. [PMID: 34131589 DOI: 10.1515/biol-2021-0051] [Reference Citation Analysis]
235 Bekeschus S, Seebauer C, Wende K, Schmidt A. Physical plasma and leukocytes - immune or reactive? Biol Chem 2018;400:63-75. [PMID: 30030959 DOI: 10.1515/hsz-2018-0224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
236 Gill MR, Vallis KA. Transition metal compounds as cancer radiosensitizers. Chem Soc Rev 2019;48:540-57. [DOI: 10.1039/c8cs00641e] [Cited by in Crossref: 37] [Cited by in F6Publishing: 8] [Article Influence: 12.3] [Reference Citation Analysis]
237 Sheu MJ, Chou CL, Yang CC, Lee SW, Tian YF, Lin CY, Hsiao SY, Chen SH, Huang WT. Low BRCA2 expression predicts poor prognoses in patients with rectal cancer receiving chemoradiotherapy. Pathol Res Pract 2020;216:152922. [PMID: 32249003 DOI: 10.1016/j.prp.2020.152922] [Reference Citation Analysis]
238 Song Y, Asselman J, De Schamphelaere KAC, Salbu B, Tollefsen KE. Deciphering the Combined Effects of Environmental Stressors on Gene Transcription: A Conceptual Approach. Environ Sci Technol 2018;52:5479-89. [DOI: 10.1021/acs.est.8b00749] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
239 Vukmirovic D, Seymour C, Mothersill C. Deciphering and simulating models of radiation genotoxicity with CRISPR/Cas9 systems. Mutat Res Rev Mutat Res 2020;783:108298. [PMID: 32386748 DOI: 10.1016/j.mrrev.2020.108298] [Reference Citation Analysis]
240 Liu J, Bi K, Yang R, Li H, Nikitaki Z, Chang L. Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future. Int J Radiat Biol 2020;96:1329-38. [PMID: 32776818 DOI: 10.1080/09553002.2020.1807641] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
241 Sonis ST. A hypothesis for the pathogenesis of radiation-induced oral mucositis: when biological challenges exceed physiologic protective mechanisms. Implications for pharmacological prevention and treatment. Support Care Cancer 2021;29:4939-47. [PMID: 33712912 DOI: 10.1007/s00520-021-06108-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
242 Pu C, Tao S, Xu J, Huang M. Harnessing Genomic Stress for Antitumor Immunity. Antioxidants & Redox Signaling 2021;34:1128-50. [DOI: 10.1089/ars.2020.8221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
243 Enciso JM, Gutzkow KB, Brunborg G, Olsen A, López de Cerain A, Azqueta A. Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis 2018;33:25-30. [DOI: 10.1093/mutage/gex039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
244 Bavoux M, Kamio Y, Vigneux-foley E, Lafontaine J, Najyb O, Refet-mollof E, Carrier J, Gervais T, Wong P. X-ray on chip: Quantifying therapeutic synergies between radiotherapy and anticancer drugs using soft tissue sarcoma tumor spheroids. Radiotherapy and Oncology 2021;157:175-81. [DOI: 10.1016/j.radonc.2021.01.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
245 Shao Y, Dong Y, Hunting D, Zheng Y, Sanche L. Unified Mechanism for the Generation of Isolated and Clustered DNA Damages by a Single Low Energy (5–10 eV) Electron. J Phys Chem C 2017;121:2466-72. [DOI: 10.1021/acs.jpcc.6b12110] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
246 Simms JA, Pearson DD, Cholowsky NL, Irvine JL, Nielsen ME, Jacques WR, Taron JM, Peters CE, Carlson LE, Goodarzi AA. Younger North Americans are exposed to more radon gas due to occupancy biases within the residential built environment. Sci Rep 2021;11:6724. [PMID: 33762674 DOI: 10.1038/s41598-021-86096-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
247 Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10:2109-2127. [PMID: 31205572 DOI: 10.7150/jca.30410] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 14.7] [Reference Citation Analysis]
248 Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Hung MH, Kuo CW, Shih CT, Chao TI, Chen KF. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 2018;102:10-22. [PMID: 30103095 DOI: 10.1016/j.ejca.2018.07.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
249 Wu M, Shi J, He S, Wang D, Zhang N, Wang Z, Yang F, He J, Hu D, Yang X, Yuan C. cGAS promotes sepsis in radiotherapy of cancer by up-regulating caspase-11 signaling. Biochem Biophys Res Commun 2021;551:86-92. [PMID: 33721834 DOI: 10.1016/j.bbrc.2021.03.003] [Reference Citation Analysis]
250 Hodgkinson N, Kruger CA, Mokwena M, Abrahamse H. Cervical cancer cells (HeLa) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J Photochem Photobiol B 2017;177:32-8. [PMID: 29045918 DOI: 10.1016/j.jphotobiol.2017.10.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
251 Borghini A, Vecoli C, Labate L, Panetta D, Andreassi MG, Gizzi LA. FLASH ultra-high dose rates in radiotherapy: preclinical and radiobiological evidence. Int J Radiat Biol 2021;:1-9. [PMID: 34913413 DOI: 10.1080/09553002.2022.2009143] [Reference Citation Analysis]
252 Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021;197:730-43. [PMID: 33885910 DOI: 10.1007/s00066-021-01774-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
253 Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2017;1864:1099-120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
254 Graupner A, Eide DM, Instanes C, Andersen JM, Brede DA, Dertinger SD, Lind OC, Brandt-Kjelsen A, Bjerke H, Salbu B, Oughton D, Brunborg G, Olsen AK. Gamma radiation at a human relevant low dose rate is genotoxic in mice. Sci Rep 2016;6:32977. [PMID: 27596356 DOI: 10.1038/srep32977] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
255 Chatzipapas KP, Papadimitroulas P, Obeidat M, McConnell KA, Kirby N, Loudos G, Papanikolaou N, Kagadis GC. Quantification of DNA double-strand breaks using Geant4-DNA. Med Phys 2019;46:405-13. [PMID: 30418675 DOI: 10.1002/mp.13290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
256 Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017;6:S875-91. [PMID: 30574452 DOI: 10.21037/tcr.2017.06.02] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
257 Piotrowski I, Kulcenty K, Suchorska WM, Skrobała A, Skórska M, Kruszyna-Mochalska M, Kowalik A, Jackowiak W, Malicki J. Carcinogenesis Induced by Low-dose Radiation. Radiol Oncol 2017;51:369-77. [PMID: 29333114 DOI: 10.1515/raon-2017-0044] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
258 Feijtel D, Doeswijk GN, Verkaik NS, Haeck JC, Chicco D, Angotti C, Konijnenberg MW, de Jong M, Nonnekens J. Inter and intra-tumor somatostatin receptor 2 heterogeneity influences peptide receptor radionuclide therapy response. Theranostics 2021;11:491-505. [PMID: 33391488 DOI: 10.7150/thno.51215] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
259 Hardie ME, Murray V. The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay. Int J Radiat Biol 2019;95:1613-26. [PMID: 31498026 DOI: 10.1080/09553002.2019.1665216] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
260 Petković VD, Keta OD, Vidosavljević MZ, Incerti S, Ristić Fira AM, Petrović IM. Biological outcomes of γ-radiation induced DNA damages in breast and lung cancer cells pretreated with free radical scavengers. Int J Radiat Biol 2019;95:274-85. [PMID: 30451568 DOI: 10.1080/09553002.2019.1549753] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
261 Yoshikawa Y, Yamasaki A, Takatori K, Suzuki M, Kobayashi J, Takao M, Zhang-akiyama Q. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation. Free Radical Research 2015;49:1239-48. [DOI: 10.3109/10715762.2015.1061186] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
262 Salvetti A, Gambino G, Rossi L, De Pasquale D, Pucci C, Linsalata S, Degl'innocenti A, Nitti S, Prato M, Ippolito C, Ciofani G. Stem cell and tissue regeneration analysis in low-dose irradiated planarians treated with cerium oxide nanoparticles. Materials Science and Engineering: C 2020;115:111113. [DOI: 10.1016/j.msec.2020.111113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
263 Lavelle C, Foray N. Chromatin structure and radiation-induced DNA damage: from structural biology to radiobiology. Int J Biochem Cell Biol 2014;49:84-97. [PMID: 24486235 DOI: 10.1016/j.biocel.2014.01.012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.9] [Reference Citation Analysis]
264 Gabbasov R, Polikarpov M, Safronov V, Sozontov E, Yurenya A, Panchenko V. Monte Carlo simulation of dose distribution in water around 57Fe3O4 magnetite nanoparticle in the nuclear gamma resonance condition. Hyperfine Interact 2016;237. [DOI: 10.1007/s10751-016-1267-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
265 Martelli S, Chow JCL. Dose Enhancement for the Flattening-Filter-Free and Flattening-Filter Photon Beams in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Study. Nanomaterials (Basel) 2020;10:E637. [PMID: 32235369 DOI: 10.3390/nano10040637] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
266 Li M, Zhao Q, Yi X, Zhong X, Song G, Chai Z, Liu Z, Yang K. Au@MnS@ZnS Core/Shell/Shell Nanoparticles for Magnetic Resonance Imaging and Enhanced Cancer Radiation Therapy. ACS Appl Mater Interfaces 2016;8:9557-64. [PMID: 27039932 DOI: 10.1021/acsami.5b11588] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
267 Kumari N, Raghavan SC. G-quadruplex DNA structures and their relevance in radioprotection. Biochim Biophys Acta Gen Subj 2021;1865:129857. [PMID: 33508382 DOI: 10.1016/j.bbagen.2021.129857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
268 Orth M, Metzger P, Gerum S, Mayerle J, Schneider G, Belka C, Schnurr M, Lauber K. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 2019;14:141. [PMID: 31395068 DOI: 10.1186/s13014-019-1345-6] [Cited by in Crossref: 74] [Cited by in F6Publishing: 68] [Article Influence: 24.7] [Reference Citation Analysis]
269 Taleei R, Girard PM, Nikjoo H. DSB repair model for mammalian cells in early S and G1 phases of the cell cycle: application to damage induced by ionizing radiation of different quality. Mutat Res Genet Toxicol Environ Mutagen 2015;779:5-14. [PMID: 25813721 DOI: 10.1016/j.mrgentox.2015.01.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
270 Vento V, Soler R, Fabre D, Gavit L, Majus E, Brenot P, Gargiulo M, Haulon S. Optimizing imaging and reducing radiation exposure during complex aortic endovascular procedures. J Cardiovasc Surg (Torino) 2019;60:41-53. [PMID: 30160093 DOI: 10.23736/S0021-9509.18.10673-2] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
271 Shen X, Gates KS. Enzyme-Activated Generation of Reactive Oxygen Species from Heterocyclic N-Oxides under Aerobic and Anaerobic Conditions and Its Relevance to Hypoxia-Selective Prodrugs. Chem Res Toxicol 2019;32:348-61. [PMID: 30817135 DOI: 10.1021/acs.chemrestox.9b00036] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
272 Cardilin T, Almquist J, Jirstrand M, Zimmermann A, El Bawab S, Gabrielsson J. Model-Based Evaluation of Radiation and Radiosensitizing Agents in Oncology. CPT Pharmacometrics Syst Pharmacol 2018;7:51-8. [PMID: 29218836 DOI: 10.1002/psp4.12268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
273 Alhmoud JF, Woolley JF, Al Moustafa AE, Malki MI. DNA Damage/Repair Management in Cancers. Cancers (Basel). 2020;12:1050. [PMID: 32340362 DOI: 10.3390/cancers12041050] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]