BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Szczepanski CR, Guittard F, Darmanin T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv Colloid Interface Sci 2017;241:37-61. [PMID: 28132673 DOI: 10.1016/j.cis.2017.01.002] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 12.4] [Reference Citation Analysis]
Number Citing Articles
1 Gaxiola-López JC, Lara-Ceniceros TE, Silva-Vidaurri LG, Advincula RC, Bonilla-Cruz J. 3D Printed Parahydrophobic Surfaces as Multireaction Platforms. Langmuir 2022;38:7740-9. [PMID: 35687828 DOI: 10.1021/acs.langmuir.2c00788] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xu X, Cheng L, Zhao X, Wang J, Chen X. Micro/Nano Periodic Surface Structures and Performance of Stainless Steel Machined Using Femtosecond Lasers. Micromachines (Basel) 2022;13:976. [PMID: 35744590 DOI: 10.3390/mi13060976] [Reference Citation Analysis]
3 Rezaei M, Hashemifard SA, Abbasi M. On performance of polycarbonate/silica aerogel nanoparticle mixed matrix hollow fiber membrane coated with polydimethylsiloxane for membrane distillation. J of Applied Polymer Sci. [DOI: 10.1002/app.52719] [Reference Citation Analysis]
4 Sow S, Dihissou S, Dramé A, Sene A, Orange F, Dieng SY, Guittard F, Darmanin T. Tunable Nanoporous Structures with Rose Petal Effect by Soft‐Template Electropolymerization of Benzotrithiophene Monomers. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200354] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Haghanifar S, Galante AJ, Zarei M, Chen J, Tan S, Leu PW. Mechanically durable, super-repellent 3D printed microcell/nanoparticle surfaces. Nano Res . [DOI: 10.1007/s12274-022-4139-3] [Reference Citation Analysis]
6 Xiang F, Zong Y, Chen M, Li Z. Preparation of super-hydrophobic cotton fabrics with the controllable roughening fiber surface by carbene polymerization grafting. Progress in Organic Coatings 2022;163:106635. [DOI: 10.1016/j.porgcoat.2021.106635] [Reference Citation Analysis]
7 Nam K, Abdulhafez M, Najaf Tomaraei G, Bedewy M. Laser-Induced fluorinated graphene for superhydrophobic surfaces with anisotropic wetting and switchable adhesion. Applied Surface Science 2022;574:151339. [DOI: 10.1016/j.apsusc.2021.151339] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Afonso E, Martínez-gómez A, Huerta A, Tiemblo P, García N. Facile Preparation of Hydrophobic PET Surfaces by Solvent Induced Crystallization. Coatings 2022;12:137. [DOI: 10.3390/coatings12020137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhu H, Cai S, Liao G, Gao ZF, Min X, Huang Y, Jin S, Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal 2021;11:14751-71. [DOI: 10.1021/acscatal.1c04049] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
10 Sathanikan A, Ceccone G, Bañuls-Ciscar J, Pan M, Kamal F, Bsaibess T, Gaucher A, Prim D, Méallet-Renault R, Colpo P, Amigoni S, Guittard F, Darmanin T. A bioinspired approach to fabricate fluorescent nanotubes with strong water adhesion by soft template electropolymerization and post-grafting. J Colloid Interface Sci 2021;606:236-47. [PMID: 34390991 DOI: 10.1016/j.jcis.2021.08.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Allred TP, Weibel JA, Garimella SV. The Role of Dynamic Wetting Behavior during Bubble Growth and Departure from a Solid Surface. International Journal of Heat and Mass Transfer 2021;172:121167. [DOI: 10.1016/j.ijheatmasstransfer.2021.121167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Mirchandani G, Samanta S, Raghavendra VB, Chaudhary S, Baustkar S, Shyamroy S, Singha NK. Self-stratifying amphiphobic coating based on functional polyacrylates. Progress in Organic Coatings 2021;152:106106. [DOI: 10.1016/j.porgcoat.2020.106106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Levieux-souid Y, Sathanikan A, Orange F, Guittard F, Darmanin T. Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochimica Acta 2021;369:137677. [DOI: 10.1016/j.electacta.2020.137677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Fu Y, Soldera M, Wang W, Milles S, Deng K, Voisiat B, Nielsch K, Lasagni AF. Wettability control of polymeric microstructures replicated from laser-patterned stamps. Sci Rep 2020;10:22428. [PMID: 33380738 DOI: 10.1038/s41598-020-79936-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gayani B, Senarathna D, Weerasekera MM, Kottegoda N, Ratnaweera DR. Improving superhydrophobicity of polydimethylsiloxanes using embedding fluorinated polyhedral oligomeric silsesquioxanes cages. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-03721-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Thiam O, Diouf A, Orange F, Dieng SY, Guittard F, Darmanin T. Bioinspired surfaces with strong water adhesion from electrodeposited poly(thieno[3,4-b]thiophene) with various branched alkyl chains. J Polym Res 2020;27. [DOI: 10.1007/s10965-020-02326-8] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Duan Z, Qu L, Hu Z, Liu D, Liu R, Zhang Y, Zheng X, Zhang J, Wang X, Zhao G. Fabrication of micro-patterned ZrO2/TiO2 composite surfaces with tunable super-wettability via a photosensitive sol-gel technique. Applied Surface Science 2020;529:147136. [DOI: 10.1016/j.apsusc.2020.147136] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Jiang R, Hao L, Song L, Tian L, Fan Y, Zhao J, Liu C, Ming W, Ren L. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chemical Engineering Journal 2020;398:125609. [DOI: 10.1016/j.cej.2020.125609] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 10.5] [Reference Citation Analysis]
19 Teoh GH, Chin JY, Ooi BS, Jawad ZA, Leow HTL, Low SC. Superhydrophobic membrane with hierarchically 3D-microtexture to treat saline water by deploying membrane distillation. Journal of Water Process Engineering 2020;37:101528. [DOI: 10.1016/j.jwpe.2020.101528] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
20 Schoolaert E, Cossu L, Becelaere J, Van Guyse JF, Tigrine A, Vergaelen M, Hoogenboom R, De Clerck K. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Materials & Design 2020;192:108747. [DOI: 10.1016/j.matdes.2020.108747] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 6.5] [Reference Citation Analysis]
21 Nasser J, Lin J, Zhang L, Sodano HA. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon 2020;162:570-8. [DOI: 10.1016/j.carbon.2020.03.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 6.5] [Reference Citation Analysis]
22 Sathanikan A, Guittard F, Darmanin T. A bioinspired strategy for poly(3,4-ethylenedioxypyrrole) films with strong water adhesion. Pure and Applied Chemistry 2020;92:315-22. [DOI: 10.1515/pac-2019-0102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Nahavandi M, Monirvaghefi SM. The effect of electroless bath pH on the surface properties of one-dimensional Ni–P nanomaterials. Ceramics International 2020;46:1916-23. [DOI: 10.1016/j.ceramint.2019.09.169] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
24 Yan C, Jiang P, Jia X, Wang X. 3D printing of bioinspired textured surfaces with superamphiphobicity. Nanoscale 2020;12:2924-38. [DOI: 10.1039/c9nr09620e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 8.5] [Reference Citation Analysis]
25 Jiang P, Ji Z, Wang X, Zhou F. Surface functionalization – a new functional dimension added to 3D printing. J Mater Chem C 2020;8:12380-411. [DOI: 10.1039/d0tc02850a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
26 Zhou Z, Gao T, Mccarthy S, Kozbial A, Tan S, Pekker D, Li L, Leu PW. Parahydrophobicity and stick-slip wetting dynamics of vertically aligned carbon nanotube forests. Carbon 2019;152:474-81. [DOI: 10.1016/j.carbon.2019.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Ma C, Kang M, Wang X, Li N, Hong W, Li C, Yang A. Fabrication of Regular Hierarchical Structures with Superhydrophobic and High Adhesion Performances on a 304 Stainless Steel Surface via Picosecond Laser. J Bionic Eng 2019;16:806-13. [DOI: 10.1007/s42235-019-0098-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Szczepanski CR, Torkelson JM. Engineering Surface Hydrophilicity via Polymer Chain-End Segregation in Coatings Formed by Photopolymerization. ACS Appl Polym Mater 2019;1:3095-102. [DOI: 10.1021/acsapm.9b00753] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
29 Chen X, Song L, Jiang X, Zhang X. Bioinspired superhydrophobic–superhydrophilic convertible film based on anisotropic red blood cell-like particles with protuberances. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;579:123674. [DOI: 10.1016/j.colsurfa.2019.123674] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
30 Ramos Chagas G, Fradin C, Celestini F, Guittard F, Darmanin T. Dynamic Wetting Properties of Mesh Substrates with Tunable Water Adhesion. Chemphyschem 2019;20:1918-21. [PMID: 31187927 DOI: 10.1002/cphc.201900443] [Reference Citation Analysis]
31 Kung CH, Sow PK, Zahiri B, Mérida W. Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. Adv Mater Interfaces 2019;6:1900839. [DOI: 10.1002/admi.201900839] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 12.3] [Reference Citation Analysis]
32 Golvano-escobal I, de Paz-castany R, Alcantara CC, Pané S, García-lecina E, Sort J, Pellicer E. Functional macroporous iron-phosphorous films by electrodeposition on colloidal crystal templates. Electrochimica Acta 2019;313:211-22. [DOI: 10.1016/j.electacta.2019.05.009] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
33 Akbari R, Godeau G, Mohammadizadeh M, Guittard F, Darmanin T. Wetting Transition from Hydrophilic to Superhydrophobic over Dendrite Copper Leaves Grown on Steel Meshes. J Bionic Eng 2019;16:719-29. [DOI: 10.1007/s42235-019-0058-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
34 Chakraborty M, Weibel JA, Schaber JA, Garimella SV. The Wetting State of Water on a Rose Petal. Adv Mater Interfaces 2019;6:1900652. [DOI: 10.1002/admi.201900652] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
35 Allred TP, Weibel JA, Garimella SV. The petal effect of parahydrophobic surfaces offers low receding contact angles that promote effective boiling. International Journal of Heat and Mass Transfer 2019;135:403-12. [DOI: 10.1016/j.ijheatmasstransfer.2019.02.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
36 Ramos Chagas G, Morán Cruz G, Méallet-renault R, Gaucher A, Prim D, Weibel DE, Amigoni S, Guittard F, Darmanin T. Superhydrophobic and fluorescent properties of fluorinated polypyrene surfaces using various polar linkers prepared via electropolymerization. Reactive and Functional Polymers 2019;135:65-76. [DOI: 10.1016/j.reactfunctpolym.2018.12.001] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
37 Ghasemlou M, Daver F, Ivanova EP, Adhikari B. Bio-inspired sustainable and durable superhydrophobic materials: from nature to market. J Mater Chem A 2019;7:16643-70. [DOI: 10.1039/c9ta05185f] [Cited by in Crossref: 82] [Cited by in F6Publishing: 2] [Article Influence: 27.3] [Reference Citation Analysis]
38 Thiam O, Diouf A, Dieng SY, Guittard F, Darmanin T. Parahydrophobic and Nanostructured Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Films with Hyperbranched Alkyl Chains. ACS Omega 2018;3:12428-36. [PMID: 31457974 DOI: 10.1021/acsomega.8b02026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
39 Ramos Chagas G, Celestini F, Raufaste C, Gaucher A, Prim D, Amigoni S, Guittard F, Darmanin T. Experimental Characterization of Droplet Adhesion: The Ejection Test Method (ETM) Applied to Surfaces with Various Hydrophobicity. J Phys Chem A 2018;122:8693-700. [DOI: 10.1021/acs.jpca.8b08037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
40 Zhao F, Ma Z, Xiao K, Xiang C, Wang H, Huang X, Liang S. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance. Desalination 2018;443:228-36. [DOI: 10.1016/j.desal.2018.06.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
41 Dislaki E, Pokki J, Pané S, Sort J, Pellicer E. Fabrication of sustainable hydrophobic and oleophilic pseudo-ordered macroporous Fe–Cu films with tunable composition and pore size via electrodeposition through colloidal templates. Applied Materials Today 2018;12:1-8. [DOI: 10.1016/j.apmt.2018.03.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
42 Diouf D, Darmanin T, Diouf A, Dieng SY, Guittard F. Surface Nanostructuration and Wettability of Electrodeposited Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Films Substituted by Aromatic Groups. ACS Omega 2018;3:8393-400. [PMID: 31458969 DOI: 10.1021/acsomega.8b00871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Sane O, Diouf A, Dieng SY, Guittard F, Darmanin T. Formation of Nanofibers with High Water Adhesion by Electrodeposition of Films of Poly(3,4-ethylenedioxypyrrole) and Poly(3,4-propylenedioxypyrrole) Substituted by Alkyl Chains. ChemPlusChem 2018;83:968-75. [DOI: 10.1002/cplu.201800279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
44 Suvindran N, Li F, Pan Y, Zhao X. Characterization and Bioreplication of Tradescantia pallida Inspired Biomimetic Superwettability for Dual Way Patterned Water Harvesting. Adv Mater Interfaces 2018;5:1800723. [DOI: 10.1002/admi.201800723] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
45 Wang X, Li C, Hong W, Ma C, Xing Y, Feng J. Fabrication of ordered hierarchical structures on stainless steel by picosecond laser for modified wettability applications. Opt Express 2018;26:18998. [DOI: 10.1364/oe.26.018998] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
46 Darmanin T, Godeau G, Guittard F, Klimareva EL, Schewtschenko I, Perepichka IF. A Templateless Electropolymerization Approach to Porous Hydrophobic Nanostructures Using 3,4-Phenylenedioxythiophene Monomers with Electron-Withdrawing Groups. ChemNanoMat 2018;4:656-62. [DOI: 10.1002/cnma.201800068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
47 Zhang H, Li B, Sun D, Miao X, Gu Y. SiO2-PDMS-PVDF hollow fiber membrane with high flux for vacuum membrane distillation. Desalination 2018;429:33-43. [DOI: 10.1016/j.desal.2017.12.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
48 Rosu C, Lin H, Jiang L, Breedveld V, Hess DW. Sustainable and long-time 'rejuvenation' of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion. J Colloid Interface Sci 2018;516:202-14. [PMID: 29408106 DOI: 10.1016/j.jcis.2018.01.055] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
49 Szczepanski CR, Darmanin T, Godeau G, Guittard F. Nanofold-decorated surfaces from the electrodeposition of di-alkyl-cyclopentadithiophenes. Polym Adv Technol 2018;29:1170-81. [DOI: 10.1002/pat.4228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
50 Mortier C, Bourd R, Godeau G, Guittard F, Darmanin T. Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction. Pure and Applied Chemistry 2017;89:1751-60. [DOI: 10.1515/pac-2017-0206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
51 Frysali MA, Anastasiadis SH. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity. Langmuir 2017;33:9106-14. [DOI: 10.1021/acs.langmuir.7b02098] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]