BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Advances in Colloid and Interface Science 2014;209:163-71. [DOI: 10.1016/j.cis.2014.03.009] [Cited by in Crossref: 228] [Cited by in F6Publishing: 168] [Article Influence: 28.5] [Reference Citation Analysis]
Number Citing Articles
1 Baigorria E, Cano LA, Sanchez LM, Alvarez VA, Ollier RP. Bentonite-composite polyvinyl alcohol/alginate hydrogel beads: Preparation, characterization and their use as arsenic removal devices. Environmental Nanotechnology, Monitoring & Management 2020;14:100364. [DOI: 10.1016/j.enmm.2020.100364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
2 Subbenaik SC. Physical and Chemical Nature of Nanoparticles. In: Kole C, Kumar DS, Khodakovskaya MV, editors. Plant Nanotechnology. Cham: Springer International Publishing; 2016. pp. 15-27. [DOI: 10.1007/978-3-319-42154-4_2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
3 Sampaolesi S, Nicotra F, Russo L. Glycans in nanomedicine, impact and perspectives. Future Med Chem 2019;11:43-60. [PMID: 30526037 DOI: 10.4155/fmc-2018-0368] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
4 Nguyen HT, Munnier E, Souce M, Perse X, David S, Bonnier F, Vial F, Yvergnaux F, Perrier T, Cohen-Jonathan S, Chourpa I. Novel alginate-based nanocarriers as a strategy to include high concentrations of hydrophobic compounds in hydrogels for topical application. Nanotechnology 2015;26:255101. [PMID: 26033822 DOI: 10.1088/0957-4484/26/25/255101] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
5 Meligi NM, Dyab AKF, Paunov VN. Sustained In Vitro and In Vivo Delivery of Metformin from Plant Pollen-Derived Composite Microcapsules. Pharmaceutics 2021;13:1048. [PMID: 34371742 DOI: 10.3390/pharmaceutics13071048] [Reference Citation Analysis]
6 Miloudi L, Bonnier F, Bertrand D, Byrne HJ, Perse X, Chourpa I, Munnier E. Quantitative analysis of curcumin-loaded alginate nanocarriers in hydrogels using Raman and attenuated total reflection infrared spectroscopy. Anal Bioanal Chem 2017;409:4593-605. [PMID: 28540461 DOI: 10.1007/s00216-017-0402-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
7 Li J, He J, Huang Y. Role of alginate in antibacterial finishing of textiles. International Journal of Biological Macromolecules 2017;94:466-73. [DOI: 10.1016/j.ijbiomac.2016.10.054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 7.2] [Reference Citation Analysis]
8 Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Advanced Drug Delivery Reviews 2019;151-152:94-129. [DOI: 10.1016/j.addr.2019.09.002] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
9 Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: From Material Tactics to Biological Strategy. Adv Mater 2017;29. [PMID: 28229486 DOI: 10.1002/adma.201605903] [Cited by in Crossref: 95] [Cited by in F6Publishing: 76] [Article Influence: 19.0] [Reference Citation Analysis]
10 Huamani-palomino RG, Jacinto CR, Alarcón H, Mejía IM, López RC, Silva DDO, Cavalheiro ET, Venâncio T, Dávalos JZ, Valderrama A. Chemical modification of alginate with cysteine and its application for the removal of Pb(II) from aqueous solutions. International Journal of Biological Macromolecules 2019;129:1056-68. [DOI: 10.1016/j.ijbiomac.2018.09.096] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
11 Khanal BKS, Bhandari B, Prakash S, Bansal N. Effect of Sodium Alginate Addition on Physical Properties of Rennet Milk Gels. Food Biophysics 2017;12:141-50. [DOI: 10.1007/s11483-017-9470-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
12 Li D, Wei Z, Xue C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr Rev Food Sci Food Saf 2021;20:5345-69. [PMID: 34596328 DOI: 10.1111/1541-4337.12840] [Reference Citation Analysis]
13 Pistone S, Qoragllu D, Smistad G, Hiorth M. Multivariate analysis for the optimization of polysaccharide-based nanoparticles prepared by self-assembly. Colloids Surf B Biointerfaces 2016;146:136-43. [PMID: 27288663 DOI: 10.1016/j.colsurfb.2016.05.055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
14 Bogdanova LR, Rogov AM, Zueva OS, Zuev YF. Lipase enzymatic microreactor in polysaccharide hydrogel: structure and properties. Russ Chem Bull 2019;68:400-4. [DOI: 10.1007/s11172-019-2399-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
15 Rajeshkumar S, Bharath L. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions 2017;273:219-27. [DOI: 10.1016/j.cbi.2017.06.019] [Cited by in Crossref: 135] [Cited by in F6Publishing: 72] [Article Influence: 27.0] [Reference Citation Analysis]
16 Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020;13:E335. [PMID: 33114120 DOI: 10.3390/ph13110335] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Lauzon MA, Marcos B, Faucheux N. Characterization of alginate/chitosan-based nanoparticles and mathematical modeling of their SpBMP-9 release inducing neuronal differentiation of human SH-SY5Y cells. Carbohydr Polym 2018;181:801-11. [PMID: 29254039 DOI: 10.1016/j.carbpol.2017.11.075] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
18 Dima C, Pătraşcu L, Cantaragiu A, Alexe P, Dima Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry 2016;195:39-48. [DOI: 10.1016/j.foodchem.2015.05.044] [Cited by in Crossref: 110] [Cited by in F6Publishing: 83] [Article Influence: 18.3] [Reference Citation Analysis]
19 Fernando IPS, Lee W, Han EJ, Ahn G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. Chemical Engineering Journal 2020;391:123823. [DOI: 10.1016/j.cej.2019.123823] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 15.5] [Reference Citation Analysis]
20 Yang X, Wang B, Qiao C, Li Z, Li Y, Xu C, Li T. Molecular interactions in N-[(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride-sodium alginate polyelectrolyte complexes. Food Hydrocolloids 2020;100:105400. [DOI: 10.1016/j.foodhyd.2019.105400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
21 Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. Journal of Drug Delivery Science and Technology 2017;42:155-80. [DOI: 10.1016/j.jddst.2017.06.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
22 Luiz de Oliveira J, Ramos Campos EV, Fraceto LF. Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture. J Agric Food Chem 2018;66:8898-913. [DOI: 10.1021/acs.jafc.8b03183] [Cited by in Crossref: 37] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
23 van Leusden P, den Hartog G, Bast A, Postema M, van der Linden E, Sagis L. Permeation of probe molecules into alginate microbeads: Effect of salt and processing. Food Hydrocolloids 2017;73:255-61. [DOI: 10.1016/j.foodhyd.2017.06.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019;25:1290-311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Lee HK, Choi JW, Kim JH, Kim CR, Choi SJ. Simultaneous selective removal of cesium and cobalt from water using calcium alginate-zinc ferrocyanide-Cyanex 272 composite beads. Environ Sci Pollut Res Int 2021;28:42014-23. [PMID: 33797045 DOI: 10.1007/s11356-021-13342-6] [Reference Citation Analysis]
26 Kasunmala IGG, Bandara Navarathne S, Wickramasinghe I. Preparation of liquid-core hydrogel beads using antioxidant-rich Syzygium caryophyllatum fruit pulp as a healthy snack. J Texture Stud 2020;51:937-47. [PMID: 32743832 DOI: 10.1111/jtxs.12553] [Reference Citation Analysis]
27 Hasnain MS, Nayak AK, Kurakula M, Hoda MN. Alginate nanoparticles in drug delivery. Alginates in Drug Delivery. Elsevier; 2020. pp. 129-52. [DOI: 10.1016/b978-0-12-817640-5.00006-6] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
28 Bakayoko M, Kalakodio L, Kalagodio A, Abo BO, Muhoza JP, Ismaila EM. Synthesis and characterization of the removal of organic pollutants in effluents. Rev Environ Health 2018;33:135-46. [PMID: 29694331 DOI: 10.1515/reveh-2018-0004] [Reference Citation Analysis]
29 Abdul Rahman N. Applications of Polymeric Nanoparticles in Food Sector. In: Siddiquee S, Melvin GJH, Rahman MM, editors. Nanotechnology: Applications in Energy, Drug and Food. Cham: Springer International Publishing; 2019. pp. 345-59. [DOI: 10.1007/978-3-319-99602-8_17] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Agüero L, Zaldivar-silva D, Peña L, Dias ML. Alginate microparticles as oral colon drug delivery device: A review. Carbohydrate Polymers 2017;168:32-43. [DOI: 10.1016/j.carbpol.2017.03.033] [Cited by in Crossref: 163] [Cited by in F6Publishing: 117] [Article Influence: 32.6] [Reference Citation Analysis]
31 Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A. Nanoparticle Delivery Systems in the Treatment of Diabetes Complications. Molecules 2019;24:E4209. [PMID: 31756981 DOI: 10.3390/molecules24234209] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 12.7] [Reference Citation Analysis]
32 Gonçalves RF, Martins JT, Duarte CM, Vicente AA, Pinheiro AC. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 2018;78:270-91. [DOI: 10.1016/j.tifs.2018.06.011] [Cited by in Crossref: 65] [Cited by in F6Publishing: 35] [Article Influence: 16.3] [Reference Citation Analysis]
33 Milić J, Čalija B, Đorđević SM. Diversity and Functionality of Excipients for Micro/Nanosized Drug Carriers. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. Elsevier; 2017. pp. 95-132. [DOI: 10.1016/b978-0-12-804017-1.00004-2] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
34 Zia KM, Zia F, Zuber M, Rehman S, Ahmad MN. Alginate based polyurethanes: A review of recent advances and perspective. International Journal of Biological Macromolecules 2015;79:377-87. [DOI: 10.1016/j.ijbiomac.2015.04.076] [Cited by in Crossref: 69] [Cited by in F6Publishing: 52] [Article Influence: 9.9] [Reference Citation Analysis]
35 Dhanka M, Shetty C, Srivastava R. Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. International Journal of Biological Macromolecules 2018;110:294-307. [DOI: 10.1016/j.ijbiomac.2017.10.148] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kumar JN, Pang VYT, Aik SXL. Calcium triggered self-assembly of alginate-graft-POEGMA via RAFT for the encapsulation of lipophillic actives. J Mater Chem B 2017;5:8254-63. [DOI: 10.1039/c7tb01670k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Zhao K, Wang W, Teng A, Zhang K, Ma Y, Duan S, Li S, Guo Y. Using cellulose nanofibers to reinforce polysaccharide films: Blending vs layer-by-layer casting. Carbohydrate Polymers 2020;227:115264. [DOI: 10.1016/j.carbpol.2019.115264] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 10.5] [Reference Citation Analysis]
38 Bugnone CA, Ronchetti S, Manna L, Banchero M. An emulsification/internal setting technique for the preparation of coated and uncoated hybrid silica/alginate aerogel beads for controlled drug delivery. The Journal of Supercritical Fluids 2018;142:1-9. [DOI: 10.1016/j.supflu.2018.07.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
39 Román JV, Galán MA, del Valle EMM. Preparation and preliminary evaluation of alginate crosslinked microcapsules as potential drug delivery system (DDS) for human lung cancer therapy. Biomed Phys Eng Express 2016;2:035015. [DOI: 10.1088/2057-1976/2/3/035015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
40 Güncüm E, Işıklan N, Anlaş C, Ünal N, Bulut E, Bakırel T. Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin – an antimicrobial drug. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:964-73. [DOI: 10.1080/21691401.2018.1476371] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
41 Md Ramli SH, Wong TW, Naharudin I, Bose A. Coatless alginate pellets as sustained-release drug carrier for inflammatory bowel disease treatment. Carbohydr Polym 2016;152:370-81. [PMID: 27516284 DOI: 10.1016/j.carbpol.2016.07.021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
42 Tapia-hernández JA, Torres-chávez PI, Ramírez-wong B, Rascón-chu A, Plascencia-jatomea M, Barreras-urbina CG, Rangel-vázquez NA, Rodríguez-félix F. Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. J Agric Food Chem 2015;63:4699-707. [DOI: 10.1021/acs.jafc.5b01403] [Cited by in Crossref: 104] [Cited by in F6Publishing: 70] [Article Influence: 14.9] [Reference Citation Analysis]
43 Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. Adv Sci (Weinh) 2018;5:1700513. [PMID: 29721408 DOI: 10.1002/advs.201700513] [Cited by in Crossref: 96] [Cited by in F6Publishing: 82] [Article Influence: 24.0] [Reference Citation Analysis]
44 Istenič K, Balanč BD, Djordjević VB, Bele M, Nedović VA, Bugarski BM, Ulrih NP. Encapsulation of resveratrol into Ca-alginate submicron particles. Journal of Food Engineering 2015;167:196-203. [DOI: 10.1016/j.jfoodeng.2015.04.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
45 Gaafar MR, El-Mansoury ST, Eissa MM, Shalaby TI, Younis LK, Rashed HA. Effect of alginate nanoparticles on the immunogenicity of excretory-secretory antigens against acute toxoplasmosis in murine model. Acta Trop 2022;225:106215. [PMID: 34687647 DOI: 10.1016/j.actatropica.2021.106215] [Reference Citation Analysis]
46 Maier T, Kerbs A, Fruk L, Slater NKH. Iron delivery from liquid-core hydrogels within a therapeutic nipple shield. Eur J Pharm Sci 2019;131:119-26. [PMID: 30710620 DOI: 10.1016/j.ejps.2019.01.032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
47 Batista PSP, de Morais AMMB, Pintado MME, de Morais RMSC. Alginate: Pharmaceutical and Medical Applications. In: Cohen E, Merzendorfer H, editors. Extracellular Sugar-Based Biopolymers Matrices. Cham: Springer International Publishing; 2019. pp. 649-91. [DOI: 10.1007/978-3-030-12919-4_16] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
48 Sergeeva A, Vikulina AS, Volodkin D. Porous Alginate Scaffolds Assembled Using Vaterite CaCO3 Crystals. Micromachines (Basel) 2019;10:E357. [PMID: 31146472 DOI: 10.3390/mi10060357] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
49 Wawrzyńska E, Kubies D. Alginate Matrices for Protein Delivery – a Short Review. Physiol Res. [DOI: 10.33549/physiolres.933980] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
50 Thomas D, Latha M, Thomas KK. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. Journal of Drug Delivery Science and Technology 2018;46:392-9. [DOI: 10.1016/j.jddst.2018.06.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
51 Rostami N, Nikkhoo A, Khazaei-Poul Y, Farhadi S, Sadat Haeri M, Moghadaszadeh Ardebili S, Aghaei Vanda N, Atyabi F, Namdar A, Baghaei M, Haghnavaz N, Kazemi T, Yousefi M, Ghalamfarsa G, Sabz G, Jadidi-Niaragh F. Coinhibition of S1PR1 and GP130 by siRNA-loaded alginate-conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells. J Cell Physiol 2020;235:9702-17. [PMID: 32424937 DOI: 10.1002/jcp.29781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
52 Niaz T, Nasir H, Shabbir S, Rehman A, Imran M. Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. International Journal of Biological Macromolecules 2016;91:180-7. [DOI: 10.1016/j.ijbiomac.2016.05.055] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
53 Xiong W, Tang J, Zhu G, Han N, Schlangen E, Dong B, Wang X, Xing F. A novel capsule-based self-recovery system with a chloride ion trigger. Sci Rep 2015;5:10866. [PMID: 26051224 DOI: 10.1038/srep10866] [Cited by in Crossref: 37] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
54 Guo T, Zhang N, Huang J, Pei Y, Wang F, Tang K. A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull 2019;76:87-102. [DOI: 10.1007/s00289-018-2377-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
55 Jayapal JJ, Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: Formulation and in vitro evaluation. International Journal of Biological Macromolecules 2017;105:416-21. [DOI: 10.1016/j.ijbiomac.2017.07.064] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
56 Ahmadi M, Madrakian T, Ghavami S. Preparation and Characterization of Simvastatin Nanocapsules: Encapsulation of Hydrophobic Drugs in Calcium Alginate. Methods Mol Biol 2020;2125:47-56. [PMID: 30159829 DOI: 10.1007/7651_2018_191] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
57 Li TT, Huo J, Liu X, Wang H, Shiu BC, Lou CW, Lin JH. Characteristics, Compression, and Buffering Performance of Pomelo-Like Hierarchical Capsules Containing Shear Thickening Fluid. Polymers (Basel) 2019;11:E1138. [PMID: 31277277 DOI: 10.3390/polym11071138] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
58 Fernández-Serrano M, Routh AF, Ríos F, Caparrós-Salvador F, Alhaj Salih Ortega M. Calcium Alginate as a Novel Sealing Agent for Colloidosomes. Langmuir 2020;36:8398-406. [PMID: 32633974 DOI: 10.1021/acs.langmuir.0c00724] [Reference Citation Analysis]
59 Niaz T, Shabbir S, Noor T, Abbasi R, Raza ZA, Imran M. Polyelectrolyte Multicomponent Colloidosomes Loaded with Nisin Z for Enhanced Antimicrobial Activity against Foodborne Resistant Pathogens. Front Microbiol 2017;8:2700. [PMID: 29379490 DOI: 10.3389/fmicb.2017.02700] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
60 Tong Z, Chen Y, Liu Y, Tong L, Chu J, Xiao K, Zhou Z, Dong W, Chu X. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Mar Drugs 2017;15:E91. [PMID: 28398222 DOI: 10.3390/md15040091] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
61 Jafari SM, Fathi M, Mandala I. Emerging product formation. Food Waste Recovery. Elsevier; 2015. pp. 293-317. [DOI: 10.1016/b978-0-12-800351-0.00013-4] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
62 Huang A, He Y, Zhou Y, Zhou Y, Yang Y, Zhang J, Luo L, Mao Q, Hou D, Yang J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci 2019;54:949-73. [DOI: 10.1007/s10853-018-2961-5] [Cited by in Crossref: 65] [Cited by in F6Publishing: 15] [Article Influence: 16.3] [Reference Citation Analysis]
63 Zakharova L, Pashirova T, Kashapov R, Gabdrakhmanov D, Sinyashin O. Drug delivery mediated by confined nanosystems: structure-activity relations and factors responsible for the efficacy of formulations. Nanostructures for Drug Delivery. Elsevier; 2017. pp. 749-806. [DOI: 10.1016/b978-0-323-46143-6.00024-5] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
64 Rodriguez S, Tuli R, Wheeler A, Nguyen A, Luong J, Mohammadi R, Alexander M, R.t. Lakey J. Current Perspective and Advancements of Alginate-Based Transplantation Technologies. In: Pereira L, editor. Alginates - Recent Uses of This Natural Polymer. IntechOpen; 2020. [DOI: 10.5772/intechopen.87120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Bilal M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease. Mar Drugs 2021;19:196. [PMID: 33808253 DOI: 10.3390/md19040196] [Reference Citation Analysis]
66 Đorđević V, Paraskevopoulou A, Mantzouridou F, Lalou S, Pantić M, Bugarski B, Nedović V. Encapsulation Technologies for Food Industry. In: Nedović V, Raspor P, Lević J, Tumbas Šaponjac V, Barbosa-cánovas GV, editors. Emerging and Traditional Technologies for Safe, Healthy and Quality Food. Cham: Springer International Publishing; 2016. pp. 329-82. [DOI: 10.1007/978-3-319-24040-4_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
67 Liu C, Shi Z, Sun H, Mujuni CJ, Zhao L, Wang X, Huang F. Preparation and characterization of tissue-factor-loaded alginate: Toward a bioactive hemostatic material. Carbohydrate Polymers 2020;249:116860. [DOI: 10.1016/j.carbpol.2020.116860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Bonilla P, Arias EM, Solans C, García-celma MJ. Influence of crosslinked alginate on drug release from highly concentrated emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018;536:148-55. [DOI: 10.1016/j.colsurfa.2017.07.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
69 Lai W, Wong E, Wong W. Multilayered composite-coated ionically crosslinked food-grade hydrogel beads generated from algal alginate for controlled and sustained release of bioactive compounds. RSC Adv 2020;10:44522-32. [DOI: 10.1039/d0ra07827a] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Ji M, Sun X, Guo X, Zhu W, Wu J, Chen L, Wang J, Chen M, Cheng C, Zhang Q. Green synthesis, characterization and in vitro release of cinnamaldehyde/sodium alginate/chitosan nanoparticles. Food Hydrocolloids 2019;90:515-22. [DOI: 10.1016/j.foodhyd.2018.12.027] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
71 Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel) 2021;13:2729. [PMID: 34451268 DOI: 10.3390/polym13162729] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Quiñones JP, Peniche H, Peniche C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel) 2018;10:E235. [PMID: 30966270 DOI: 10.3390/polym10030235] [Cited by in Crossref: 99] [Cited by in F6Publishing: 72] [Article Influence: 24.8] [Reference Citation Analysis]
73 Corstens MN, Berton-carabin CC, de Vries R, Troost FJ, Masclee AAM, Schroën K. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review. Critical Reviews in Food Science and Nutrition 2015;57:2218-44. [DOI: 10.1080/10408398.2015.1057634] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
74 Xu M, Qin M, Cheng Y, Niu X, Kong J, Zhang X, Huang D, Wang H. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydr Polym 2021;266:118128. [PMID: 34044944 DOI: 10.1016/j.carbpol.2021.118128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
75 Saxena A, Bhattacharya A, Kumar S, Epstein IR, Sahney R. Biopolymer matrix for nano-encapsulation of urease – A model protein and its application in urea detection. Journal of Colloid and Interface Science 2017;490:452-61. [DOI: 10.1016/j.jcis.2016.11.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
76 Brassesco ME, Fuciños P, Pastrana L, Picó G. Development of alginate microparticles as efficient adsorption matrix for protein recovery. Process Biochemistry 2019;80:157-63. [DOI: 10.1016/j.procbio.2019.02.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
77 Rosch JG, Brown AL, DuRoss AN, DuRoss EL, Sahay G, Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Res Lett 2018;13:350. [PMID: 30392055 DOI: 10.1186/s11671-018-2748-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
78 Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B. Alginate-based composites for environmental applications: A critical review. Crit Rev Environ Sci Technol 2018;49:318-56. [PMID: 34121831 DOI: 10.1080/10643389.2018.1547621] [Cited by in Crossref: 75] [Cited by in F6Publishing: 41] [Article Influence: 18.8] [Reference Citation Analysis]
79 Zhan T, Lu S, Liu X, Teng H, Hou W. Alginate derived Co3O4/Co nanoparticles decorated in N-doped porous carbon as an efficient bifunctional catalyst for oxygen evolution and reduction reactions. Electrochimica Acta 2018;265:681-9. [DOI: 10.1016/j.electacta.2018.02.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
80 Paques JP. Alginate Nanospheres Prepared by Internal or External Gelation with Nanoparticles. Microencapsulation and Microspheres for Food Applications. Elsevier; 2015. pp. 39-55. [DOI: 10.1016/b978-0-12-800350-3.00004-2] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
81 Grøndahl L, Lawrie G, Anitha A, Shejwalkar A. Applications of alginate biopolymer in drug delivery. Biointegration of Medical Implant Materials. Elsevier; 2020. pp. 375-403. [DOI: 10.1016/b978-0-08-102680-9.00014-7] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
82 Mohammadi P, Heravi M, Daraie M. Ag nanoparticles immobilized on new magnetic alginate halloysite as a recoverable catalyst for reduction of nitroaromatics in aqueous media. Sci Rep 2021;11:17124. [PMID: 34429444 DOI: 10.1038/s41598-021-96421-5] [Reference Citation Analysis]
83 Taghipour-sabzevar V, Sharifi T, Moghaddam MM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery 2019;10:527-50. [DOI: 10.4155/tde-2019-0044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
84 Gericke M, Schulze P, Heinze T. Nanoparticles Based on Hydrophobic Polysaccharide Derivatives-Formation Principles, Characterization Techniques, and Biomedical Applications. Macromol Biosci 2020;20:e1900415. [PMID: 32090505 DOI: 10.1002/mabi.201900415] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
85 Vurro M, Miguel-rojas C, Pérez-de-luque A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals: Nanotechnologies for natural agrochemicals. Pest Manag Sci 2019;75:2403-12. [DOI: 10.1002/ps.5348] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
86 Faidi A, Lassoued MA, Becheikh MEH, Touati M, Stumbé J, Farhat F. Application of sodium alginate extracted from a Tunisian brown algae Padina pavonica for essential oil encapsulation: Microspheres preparation, characterization and in vitro release study. International Journal of Biological Macromolecules 2019;136:386-94. [DOI: 10.1016/j.ijbiomac.2019.06.023] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
87 Vaghasiya K, Eram A, Sharma A, Ray E, Adlakha S, Verma RK. Alginate Microspheres Elicit Innate M1-Inflammatory Response in Macrophages Leading to Bacillary Killing. AAPS PharmSciTech 2019;20. [DOI: 10.1208/s12249-019-1458-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
88 Deng Y, Shavandi A, Okoro OV, Nie L. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym 2021;270:118360. [PMID: 34364605 DOI: 10.1016/j.carbpol.2021.118360] [Reference Citation Analysis]
89 Koyani R, Pérez-robles J, Cadena-nava RD, Vazquez-duhalt R. Biomaterial-based nanoreactors, an alternative for enzyme delivery. Nanotechnology Reviews 2017;6:405-19. [DOI: 10.1515/ntrev-2016-0071] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
90 Bagal-kestwal DR, Kestwal RM, Chiang BH. Bio-based Nanomaterials and Their Bionanocomposites. In: P.m. V, Morlanes MJM, editors. Nanomaterials and Nanocomposites. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 255-330. [DOI: 10.1002/9783527683772.ch8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
91 Koga AY, Felix JC, Silvestre RGM, Lipinski LC, Carletto B, Kawahara FA, Pereira AV. Evaluation of wound healing effect of alginate film containing Aloe vera gel and cross-linked with zinc chloride. Acta Cir Bras 2020;35:e202000507. [PMID: 32638846 DOI: 10.1590/s0102-865020200050000007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
92 Camara MC, Vandenberghe LP, Sextos GC, Tanobe VO, Magalhães Junior AI, Soccol CR. Alternative methods for gibberellic acid production, recovery and formulation: A case study for product cost reduction. Bioresource Technology 2020;309:123295. [DOI: 10.1016/j.biortech.2020.123295] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Basu H, Saha S, Kailasa SK, Singhal RK. Present status of hybrid materials for potable water decontamination: a review. Environ Sci : Water Res Technol 2020;6:3214-48. [DOI: 10.1039/d0ew00619j] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
94 Spadari CC, de Bastiani FWMDS, Lopes LB, Ishida K. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomedicine 2019;14:5187-99. [PMID: 31371955 DOI: 10.2147/IJN.S205350] [Cited by in Crossref: 35] [Cited by in F6Publishing: 15] [Article Influence: 11.7] [Reference Citation Analysis]
95 Mair LO, Chowdhury S, Paredes-Juarez GA, Guix M, Bi C, Johnson B, English BW, Jafari S, Baker-McKee J, Watson-Daniels J, Hale O, Stepanov P, Sun D, Baker Z, Ropp C, Raval SB, Arifin DR, Bulte JWM, Weinberg IN, Evans BA, Cappelleri DJ. Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery. Micromachines (Basel) 2019;10:E230. [PMID: 30935105 DOI: 10.3390/mi10040230] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
96 Lu Y, Fong E. Biomass-mediated synthesis of carbon-supported nanostructured metal sulfides for ultra-high performance lithium-ion batteries. J Mater Chem A 2016;4:2738-45. [DOI: 10.1039/c5ta09917j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 2.8] [Reference Citation Analysis]
97 Elbayomi SM, Wang H, Tamer TM, You Y. Enhancement of Antioxidant and Hydrophobic Properties of Alginate via Aromatic Derivatization: Preparation, Characterization, and Evaluation. Polymers (Basel) 2021;13:2575. [PMID: 34372178 DOI: 10.3390/polym13152575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019;25:1312-34. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 25.0] [Reference Citation Analysis]
99 Prosapio V, Reverchon E, De Marco I. Polymers' ultrafine particles for drug delivery systems precipitated by supercritical carbon dioxide + organic solvent mixtures. Powder Technology 2016;292:140-8. [DOI: 10.1016/j.powtec.2016.01.033] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
100 Mehregan Nikoo A, Kadkhodaee R, Ghorani B, Razzaq H, Tucker N. Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels. Journal of Microencapsulation 2016;33:605-12. [DOI: 10.1080/02652048.2016.1228707] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
101 Saavedra Isusi G, Karbstein H, van der Schaaf U. Microgel particle formation: Influence of mechanical properties of pectin-based gels on microgel particle size distribution. Food Hydrocolloids 2019;94:105-13. [DOI: 10.1016/j.foodhyd.2019.02.053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
102 Tang Y, Liu C, Zhu H, Xie X, Gao J, Deng C, Han M, Liang S, Zhou J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Materials 2020;27:109-16. [DOI: 10.1016/j.ensm.2020.01.023] [Cited by in Crossref: 90] [Cited by in F6Publishing: 44] [Article Influence: 45.0] [Reference Citation Analysis]
103 Román JV, Rodríguez-rodríguez JA, del Valle EMM, Galán MA. Synthesis of a new nanoparticle system based on electrostatic alginate-piperazine interactions: An Alginate-Piperazine Nanoparticle System. Polym Adv Technol 2016;27:623-9. [DOI: 10.1002/pat.3731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
104 Huang Z, Chen X, Fu H, Wen X, Ma C, Zhang J, Wu C, Huang Y, Pan X, Wu C. Formation Mechanism and In Vitro Evaluation of Risperidone-Containing PLGA Microspheres Fabricated by Ultrafine Particle Processing System. J Pharm Sci 2017;106:3363-71. [PMID: 28736289 DOI: 10.1016/j.xphs.2017.07.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
105 Tsai F, Chiang P, Kitamura Y, Kokawa M, Islam M. Producing liquid-core hydrogel beads by reverse spherification: Effect of secondary gelation on physical properties and release characteristics. Food Hydrocolloids 2017;62:140-8. [DOI: 10.1016/j.foodhyd.2016.07.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
106 Hudita A, Galateanu B, Costache M, Negrei C, Ion RM, Iancu L, Ginghina O. In Vitro Cytotoxic Protective Effect of Alginate-Encapsulated Capsaicin Might Improve Skin Side Effects Associated with the Topical Application of Capsaicin. Molecules 2021;26:1455. [PMID: 33800110 DOI: 10.3390/molecules26051455] [Reference Citation Analysis]
107 Tsirigotis-maniecka M, Gancarz R, Wilk KA. Preparation and characterization of sodium alginate/chitosan microparticles containing esculin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016;510:22-32. [DOI: 10.1016/j.colsurfa.2016.08.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
108 Wen R, Tu B, Guo X, Hao X, Wu X, Tao H. An ion release controlled Cr(VI) treatment agent: Nano zero-valent iron/carbon/alginate composite gel. International Journal of Biological Macromolecules 2020;146:692-704. [DOI: 10.1016/j.ijbiomac.2019.12.168] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
109 Huang CH, Chuang TJ, Ke CJ, Yao CH. Doxorubicin-Gelatin/Fe3O4-Alginate Dual-Layer Magnetic Nanoparticles as Targeted Anticancer Drug Delivery Vehicles. Polymers (Basel) 2020;12:E1747. [PMID: 32764339 DOI: 10.3390/polym12081747] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
110 Nguyen S, Escudero C, Sediqi N, Smistad G, Hiorth M. Fluoride loaded polymeric nanoparticles for dental delivery. Eur J Pharm Sci 2017;104:326-34. [PMID: 28392494 DOI: 10.1016/j.ejps.2017.04.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 4.6] [Reference Citation Analysis]
111 Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018;120:775-82. [PMID: 30170057 DOI: 10.1016/j.ijbiomac.2018.08.152] [Cited by in Crossref: 48] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
112 Aisida SO, Akpa PA, Ahmad I, Zhao T, Maaza M, Ezema FI. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. European Polymer Journal 2020;122:109371. [DOI: 10.1016/j.eurpolymj.2019.109371] [Cited by in Crossref: 41] [Cited by in F6Publishing: 8] [Article Influence: 20.5] [Reference Citation Analysis]
113 Shi Y, Xiong Z, Lu X, Yan X, Cai X, Xue W. Novel carboxymethyl chitosan-graphene oxide hybrid particles for drug delivery. J Mater Sci: Mater Med 2016;27. [DOI: 10.1007/s10856-016-5774-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
114 Kim K, Kang D, Kim M, Kim K, Park K, Hong S, Chang P, Jung H. Generation of alginate nanoparticles through microfluidics-aided polyelectrolyte complexation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015;471:86-92. [DOI: 10.1016/j.colsurfa.2015.02.029] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
115 Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021;9:7030-62. [DOI: 10.1039/d1tb00628b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. Artif Cells Nanomed Biotechnol 2019;47:353-69. [PMID: 30691309 DOI: 10.1080/21691401.2018.1557672] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
117 Đorđević V, Balanč B, Belščak-cvitanović A, Lević S, Trifković K, Kalušević A, Kostić I, Komes D, Bugarski B, Nedović V. Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev 2015;7:452-90. [DOI: 10.1007/s12393-014-9106-7] [Cited by in Crossref: 194] [Cited by in F6Publishing: 100] [Article Influence: 24.3] [Reference Citation Analysis]
118 Li M, Tshabalala MA, Buschle-diller G. Formulation and characterization of polysaccharide beads for controlled release of plant growth regulators. J Mater Sci 2016;51:4609-17. [DOI: 10.1007/s10853-016-9775-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
119 Pistone S, Qoragllu D, Smistad G, Hiorth M. Formulation and preparation of stable cross-linked alginate–zinc nanoparticles in the presence of a monovalent salt. Soft Matter 2015;11:5765-74. [DOI: 10.1039/c5sm00700c] [Cited by in Crossref: 32] [Cited by in F6Publishing: 3] [Article Influence: 4.6] [Reference Citation Analysis]
120 Mekhail M, Benameur L, Tabrizian M. Self-Assembled Nanostructures (SANs). Biology and Engineering of Stem Cell Niches. Elsevier; 2017. pp. 391-409. [DOI: 10.1016/b978-0-12-802734-9.00025-1] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
121 Helfricht N, Doblhofer E, Bieber V, Lommes P, Sieber V, Scheibel T, Papastavrou G. Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurements. Soft Matter 2017;13:578-89. [DOI: 10.1039/c6sm02326f] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
122 Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK. Recent progress in sodium alginate based sustainable hydrogels for environmental applications. Journal of Cleaner Production 2018;198:143-59. [DOI: 10.1016/j.jclepro.2018.06.259] [Cited by in Crossref: 119] [Cited by in F6Publishing: 63] [Article Influence: 29.8] [Reference Citation Analysis]
123 Sagar SS, Naraian R. Biosynthesis of Nanoparticles by Penicillium and Their Medical Applications. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier; 2018. pp. 235-46. [DOI: 10.1016/b978-0-444-63501-3.00013-2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
124 Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021;380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Reference Citation Analysis]
125 Nita LE, Ghilan A, Rusu AG, Neamtu I, Chiriac AP. New Trends in Bio-Based Aerogels. Pharmaceutics 2020;12:E449. [PMID: 32414217 DOI: 10.3390/pharmaceutics12050449] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
126 Vicini S, Castellano M, Mauri M, Marsano E. Gelling process for sodium alginate: New technical approach by using calcium rich micro-spheres. Carbohydrate Polymers 2015;134:767-74. [DOI: 10.1016/j.carbpol.2015.08.064] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
127 Ran R, Sun Q, Baby T, Wibowo D, Middelberg AP, Zhao C. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chemical Engineering Science 2017;169:78-96. [DOI: 10.1016/j.ces.2017.01.008] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
128 Nait Mohamed FA, Laraba-djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016;34:2692-9. [DOI: 10.1016/j.vaccine.2016.04.035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
129 Mou CL, Deng QZ, Hu JX, Wang LY, Deng HB, Xiao G, Zhan Y. Controllable preparation of monodisperse alginate microcapsules with oil cores. J Colloid Interface Sci 2020;569:307-19. [PMID: 32126344 DOI: 10.1016/j.jcis.2020.02.095] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
130 Pravinata L, Akhtar M, Bentley PJ, Mahatnirunkul T, Murray BS. Preparation of alginate microgels in a simple one step process via the Leeds Jet Homogenizer. Food Hydrocolloids 2016;61:77-84. [DOI: 10.1016/j.foodhyd.2016.04.025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
131 Jin Z, Gao S, Cui X, Sun D, Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 2019;572:118731. [PMID: 31669213 DOI: 10.1016/j.ijpharm.2019.118731] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
132 Wu T, Li Y, Shen N, Yuan C, Hu Y. Preparation and characterization of calcium alginate-chitosan complexes loaded with lysozyme. Journal of Food Engineering 2018;233:109-16. [DOI: 10.1016/j.jfoodeng.2018.03.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
133 Hasan I, Shekhar C, Alharbi W, Abu Khanjer M, Khan RA, Alsalme A. A Highly Efficient Ag Nanoparticle-Immobilized Alginate-g-Polyacrylonitrile Hybrid Photocatalyst for the Degradation of Nitrophenols. Polymers (Basel) 2020;12:E3049. [PMID: 33352658 DOI: 10.3390/polym12123049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, Miragoli M, Caffarra Malvezzi C. Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Front Bioeng Biotechnol 2020;8:414. [PMID: 32457887 DOI: 10.3389/fbioe.2020.00414] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
135 Nguyen HTP, Munnier E, Perse X, Vial F, Yvergnaux F, Perrier T, Soucé M, Chourpa I. Qualitative and Quantitative Study of the Potential of Lipid Nanocapsules of One Hundred Twenty Nanometers for the Topical Administration of Hydrophobic Molecules. Journal of Pharmaceutical Sciences 2016;105:3191-8. [DOI: 10.1016/j.xphs.2016.06.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
136 Rodriguez S, Lau H, Corrales N, Heng J, Lee S, Stiner R, Alexander M, Lakey JRT. Characterization of chelator-mediated recovery of pancreatic islets from barium-stabilized alginate microcapsules. Xenotransplantation 2020;27:e12554. [PMID: 31495985 DOI: 10.1111/xen.12554] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
137 Potiwiput S, Tan H, Yuan G, Li S, Zhou T, Li J, Jia Y, Xiong D, Hu X, Ling Z, Chen Y. Dual-crosslinked alginate/carboxymethyl chitosan hydrogel containing in situ synthesized calcium phosphate particles for drug delivery application. Materials Chemistry and Physics 2020;241:122354. [DOI: 10.1016/j.matchemphys.2019.122354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
138 Xue Y, Xia X, Yu B, Luo X, Cai N, Long S, Yu F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC Adv 2015;5:73416-23. [DOI: 10.1039/c5ra13313k] [Cited by in Crossref: 29] [Article Influence: 4.1] [Reference Citation Analysis]
139 Nguyen HTP, Allard-Vannier E, Gaillard C, Eddaoudi I, Miloudi L, Soucé M, Chourpa I, Munnier E. On the interaction of alginate-based core-shell nanocarriers with keratinocytes in vitro. Colloids Surf B Biointerfaces 2016;142:272-80. [PMID: 26962764 DOI: 10.1016/j.colsurfb.2016.02.055] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
140 Günter EA, Popeyko OV, Belozerov VS, Martinson EA, Litvinets SG. Physicochemical and swelling properties of composite gel microparticles based on alginate and callus cultures pectins with low and high degrees of methylesterification. Int J Biol Macromol 2020;164:863-70. [PMID: 32707284 DOI: 10.1016/j.ijbiomac.2020.07.189] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
141 Lopes M, Shrestha N, Correia A, Shahbazi MA, Sarmento B, Hirvonen J, Veiga F, Seiça R, Ribeiro A, Santos HA. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 2016;232:29-41. [PMID: 27074369 DOI: 10.1016/j.jconrel.2016.04.012] [Cited by in Crossref: 115] [Cited by in F6Publishing: 97] [Article Influence: 19.2] [Reference Citation Analysis]
142 Hossain ME, Ritt CL, Almeelbi TB, Bezbaruah AN. Biopolymer Beads for Aqueous Phosphate Removal: Possible Applications in Eutrophic Lakes. J Environ Eng 2018;144:04018030. [DOI: 10.1061/(asce)ee.1943-7870.0001347] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
143 de Bastiani FWMDS, Spadari CC, de Matos JKR, Salata GC, Lopes LB, Ishida K. Nanocarriers Provide Sustained Antifungal Activity for Amphotericin B and Miltefosine in the Topical Treatment of Murine Vaginal Candidiasis. Front Microbiol 2019;10:2976. [PMID: 31998264 DOI: 10.3389/fmicb.2019.02976] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
144 van Leusden P, den Hartog G, Bast A, Postema M, van der Linden E, Sagis L. Strength of microbeads for the encapsulation of heat sensitive, hydrophobic components. Food Hydrocolloids 2016;56:318-24. [DOI: 10.1016/j.foodhyd.2015.12.017] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
145 Zhou N, Ma X, Bernaerts KV, Ren P, Hu W, Zhang T. Expansion of Ovarian Cancer Stem-like Cells in Poly(ethylene glycol)-Cross-Linked Poly(methyl vinyl ether- alt -maleic acid) and Alginate Double-Network Hydrogels. ACS Biomater Sci Eng 2020;6:3310-26. [DOI: 10.1021/acsbiomaterials.9b01967] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
146 He L, Shang Z, Liu H, Yuan ZX. Alginate-Based Platforms for Cancer-Targeted Drug Delivery. Biomed Res Int 2020;2020:1487259. [PMID: 33083451 DOI: 10.1155/2020/1487259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
147 Nair PR. Delivering Combination Chemotherapies and Targeting Oncogenic Pathways via Polymeric Drug Delivery Systems. Polymers (Basel) 2019;11:E630. [PMID: 30959799 DOI: 10.3390/polym11040630] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
148 Chaturvedi K, Ganguly K, More UA, Reddy KR, Dugge T, Naik B, Aminabhavi TM, Noolvi MN. Sodium alginate in drug delivery and biomedical areas. Natural Polysaccharides in Drug Delivery and Biomedical Applications. Elsevier; 2019. pp. 59-100. [DOI: 10.1016/b978-0-12-817055-7.00003-0] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
149 Darini A, Eslaminejad T, Nematollahi Mahani SN, Ansari M. Magnetogel Nanospheres Composed of Cisplatin-Loaded Alginate/B-Cyclodextrin as Controlled Release Drug Delivery. Adv Pharm Bull 2019;9:571-7. [PMID: 31857960 DOI: 10.15171/apb.2019.065] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
150 AbdelAllah NH, Gaber Y, Rashed ME, Azmy AF, Abou-Taleb HA, AbdelGhani S. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol 2020;152:904-12. [PMID: 32114177 DOI: 10.1016/j.ijbiomac.2020.02.287] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
151 Lopez-sanchez P, Fredriksson N, Larsson A, Altskär A, Ström A. High sugar content impacts microstructure, mechanics and release of calcium-alginate gels. Food Hydrocolloids 2018;84:26-33. [DOI: 10.1016/j.foodhyd.2018.05.029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
152 Lin Q, Ji N, Li M, Dai L, Xu X, Xiong L, Sun Q. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocolloids 2020;104:105760. [DOI: 10.1016/j.foodhyd.2020.105760] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
153 Maver T, Mohan T, Gradišnik L, Finšgar M, Stana Kleinschek K, Maver U. Polysaccharide Thin Solid Films for Analgesic Drug Delivery and Growth of Human Skin Cells. Front Chem 2019;7:217. [PMID: 31024901 DOI: 10.3389/fchem.2019.00217] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
154 Grillo R, Rosa AH, Fraceto LF. Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere 2015;119:608-19. [DOI: 10.1016/j.chemosphere.2014.07.049] [Cited by in Crossref: 205] [Cited by in F6Publishing: 164] [Article Influence: 29.3] [Reference Citation Analysis]
155 Mallardi A, Angarano V, Magliulo M, Torsi L, Palazzo G. General Approach to the Immobilization of Glycoenzyme Chains Inside Calcium Alginate Beads for Bioassay. Anal Chem 2015;87:11337-44. [DOI: 10.1021/acs.analchem.5b02636] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
156 Assadpour E, Jafari SM. An overview of biopolymer nanostructures for encapsulation of food ingredients. Biopolymer Nanostructures for Food Encapsulation Purposes. Elsevier; 2019. pp. 1-35. [DOI: 10.1016/b978-0-12-815663-6.00001-x] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
157 Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv Sci (Weinh) 2021;8:2003937. [PMID: 34026447 DOI: 10.1002/advs.202003937] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
158 Wanawananon K, Moulton SE, Wallace GG, Liawruangrath S. Fabrication of novel core-shell PLGA and alginate fiber for dual-drug delivery system: Novel Core-Shell Fiber. Polym Adv Technol 2016;27:1014-9. [DOI: 10.1002/pat.3763] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
159 Valladares GA, González Audino P, Strumia MC. Preparation and evaluation of alginate/chitosan microspheres containing pheromones for pest control of Megaplatypus mutatus Chapuis (Platypodinae: Platypodidae): Alginate/chitosan microspheres containing pheromones for pest control. Polym Int 2016;65:216-23. [DOI: 10.1002/pi.5049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
160 Thomas D, Mathew N, Nath MS. Starch modified alginate nanoparticles for drug delivery application. Int J Biol Macromol 2021;173:277-84. [PMID: 33453259 DOI: 10.1016/j.ijbiomac.2020.12.227] [Reference Citation Analysis]
161 Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis. AAPS PharmSciTech 2019;20:67. [PMID: 30627867 DOI: 10.1208/s12249-018-1278-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
162 Zeeb B, Saberi AH, Weiss J, Mcclements DJ. Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release. Food Hydrocolloids 2015;50:27-36. [DOI: 10.1016/j.foodhyd.2015.02.041] [Cited by in Crossref: 59] [Cited by in F6Publishing: 34] [Article Influence: 8.4] [Reference Citation Analysis]
163 Dmour I, Taha MO. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Delivery. Elsevier; 2018. pp. 35-100. [DOI: 10.1016/b978-0-12-813663-8.00002-6] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
164 Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016;8:E30. [PMID: 30979124 DOI: 10.3390/polym8020030] [Cited by in Crossref: 76] [Cited by in F6Publishing: 49] [Article Influence: 12.7] [Reference Citation Analysis]
165 Abedini F, Ebrahimi M, Roozbehani AH, Domb AJ, Hosseinkhani H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym Adv Technol 2018;29:2564-73. [DOI: 10.1002/pat.4375] [Cited by in Crossref: 54] [Cited by in F6Publishing: 21] [Article Influence: 13.5] [Reference Citation Analysis]
166 Tanna B, Mishra A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Comprehensive Reviews in Food Science and Food Safety 2019;18:817-31. [DOI: 10.1111/1541-4337.12441] [Cited by in Crossref: 65] [Cited by in F6Publishing: 35] [Article Influence: 21.7] [Reference Citation Analysis]
167 Borro BC, Bohr A, Bucciarelli S, Boetker JP, Foged C, Rantanen J, Malmsten M. Microfluidics-based self-assembly of peptide-loaded microgels: Effect of three dimensional (3D) printed micromixer design. Journal of Colloid and Interface Science 2019;538:559-68. [DOI: 10.1016/j.jcis.2018.12.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
168 Ćujić N, Trifković K, Bugarski B, Ibrić S, Pljevljakušić D, Šavikin K. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Industrial Crops and Products 2016;86:120-31. [DOI: 10.1016/j.indcrop.2016.03.045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
169 Setti C, Suarato G, Perotto G, Athanassiou A, Bayer IS. Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. Eur J Pharm Biopharm 2018;130:71-82. [PMID: 29928979 DOI: 10.1016/j.ejpb.2018.06.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
170 Shukla R, Handa M, Lokesh SB, Ruwali M, Kohli K, Kesharwani P. Conclusion and Future Prospective of Polymeric Nanoparticles for Cancer Therapy. Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Elsevier; 2019. pp. 389-408. [DOI: 10.1016/b978-0-12-816963-6.00018-2] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
171 Sadeghi D, Solouk A, Samadikuchaksaraei A, Seifalian AM. Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr Polym 2021;255:117336. [PMID: 33436179 DOI: 10.1016/j.carbpol.2020.117336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
172 Spadari CC, Lopes LB, Ishida K. Potential Use of Alginate-Based Carriers As Antifungal Delivery System. Front Microbiol 2017;8:97. [PMID: 28194145 DOI: 10.3389/fmicb.2017.00097] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
173 Daradmare S, Choi KH, Kim J, Park BJ. Preparation of eco-friendly alginate-based Pickering stabilizers using a dual ultrasonic nebulizer spray method. Journal of Industrial and Engineering Chemistry 2020;84:96-105. [DOI: 10.1016/j.jiec.2019.12.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]