BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zafar MA, Wang Y, Hamaguchi S, Weiser JN. Host-to-Host Transmission of Streptococcus pneumoniae Is Driven by Its Inflammatory Toxin, Pneumolysin. Cell Host Microbe 2017;21:73-83. [PMID: 28081446 DOI: 10.1016/j.chom.2016.12.005] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 14.2] [Reference Citation Analysis]
Number Citing Articles
1 Di Guardo G. Commentary: Zika Virus in the Americas-Yet Another Arbovirus Threat. Front Microbiol 2018;9:435. [PMID: 29593683 DOI: 10.3389/fmicb.2018.00435] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
2 Brooks LRK, Mias GI. Streptococcus pneumoniae's Virulence and Host Immunity: Aging, Diagnostics, and Prevention. Front Immunol 2018;9:1366. [PMID: 29988379 DOI: 10.3389/fimmu.2018.01366] [Cited by in Crossref: 65] [Cited by in F6Publishing: 52] [Article Influence: 16.3] [Reference Citation Analysis]
3 Anderson R, Feldman C. Pneumolysin as a potential therapeutic target in severe pneumococcal disease. J Infect 2017;74:527-44. [PMID: 28322888 DOI: 10.1016/j.jinf.2017.03.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
4 Iovino F, Nannapaneni P, Henriques-Normark B, Normark S. The impact of the ancillary pilus-1 protein RrgA of Streptococcus pneumoniae on colonization and disease. Mol Microbiol 2020;113:650-8. [PMID: 32185835 DOI: 10.1111/mmi.14451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Qi Z, Guo Y, Zhang H, Yu Q, Zhang P. Betulin attenuates pneumolysin-induced cell injury and DNA damage. J Appl Microbiol 2021;130:843-51. [PMID: 32621771 DOI: 10.1111/jam.14769] [Reference Citation Analysis]
6 Kaneko F, Kono M, Sunose H, Hotomi M. Neutrophil infiltration in co-housed littermates plays a key role in nasal transmission of Streptococcus pneumoniae in an infant mouse model. Folia Microbiol (Praha) 2021. [PMID: 34480257 DOI: 10.1007/s12223-021-00901-0] [Reference Citation Analysis]
7 Rowe HM, Meliopoulos VA, Iverson A, Bomme P, Schultz-Cherry S, Rosch JW. Direct interactions with influenza promote bacterial adherence during respiratory infections. Nat Microbiol 2019;4:1328-36. [PMID: 31110359 DOI: 10.1038/s41564-019-0447-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 14.7] [Reference Citation Analysis]
8 Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018;16:355-67. [PMID: 29599457 DOI: 10.1038/s41579-018-0001-8] [Cited by in Crossref: 228] [Cited by in F6Publishing: 184] [Article Influence: 76.0] [Reference Citation Analysis]
9 Vega LA, Sanson MA, Shah BJ, Flores AR. Strain-Dependent Effect of Capsule on Transmission and Persistence in an Infant Mouse Model of Group A Streptococcus Infection. Infect Immun 2020;88:e00709-19. [PMID: 32014891 DOI: 10.1128/IAI.00709-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Matthews AJ, Rowe HM, Rosch JW, Camilli A. A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission. Infect Immun 2021;89:e0071320. [PMID: 34031124 DOI: 10.1128/IAI.00713-20] [Reference Citation Analysis]
11 Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019;21:e13077. [PMID: 31251447 DOI: 10.1111/cmi.13077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
12 Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol 2021;11:639450. [PMID: 33996623 DOI: 10.3389/fcimb.2021.639450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Maatsola S, Kurkinen S, Engström MT, Nyholm TKM, Pentikäinen O, Salminen JP, Haataja S. Inhibition of Pneumolysin Cytotoxicity by Hydrolysable Tannins. Antibiotics (Basel) 2020;9:E930. [PMID: 33371182 DOI: 10.3390/antibiotics9120930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018;19:E1147. [PMID: 29641429 DOI: 10.3390/ijms19041147] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
15 Rowe HM, Rosch JW. Polymicrobial Interactions Operative during Pathogen Transmission. mBio 2021;12:e01027-21. [PMID: 34006664 DOI: 10.1128/mBio.01027-21] [Reference Citation Analysis]
16 Gonzalez-Juarbe N, Riegler AN, Jureka AS, Gilley RP, Brand JD, Trombley JE, Scott NR, Platt MP, Dube PH, Petit CM, Harrod KS, Orihuela CJ. Influenza-Induced Oxidative Stress Sensitizes Lung Cells to Bacterial-Toxin-Mediated Necroptosis. Cell Rep 2020;32:108062. [PMID: 32846120 DOI: 10.1016/j.celrep.2020.108062] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
17 Hoang VT, Sow D, Belhouchat K, Dao TL, Ly TDA, Fenollar F, Yezli S, Alotaibi B, Raoult D, Parola P, Pommier de Santi V, Gautret P. Environmental investigation of respiratory pathogens during the Hajj 2016 and 2018. Travel Med Infect Dis 2020;33:101500. [PMID: 31600567 DOI: 10.1016/j.tmaid.2019.101500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
18 van de Garde MDB, van Westen E, Poelen MCM, Rots NY, van Els CACM. Prediction and Validation of Immunogenic Domains of Pneumococcal Proteins Recognized by Human CD4+ T Cells. Infect Immun 2019;87:e00098-19. [PMID: 30910792 DOI: 10.1128/IAI.00098-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Hare KM, Leach AJ, Smith-vaughan HC, Chang AB, Grimwood K. Streptococcus pneumoniae and chronic endobronchial infections in childhood. Pediatr Pulmonol 2017;52:1532-45. [DOI: 10.1002/ppul.23828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
20 Cole J, Angyal A, Emes RD, Mitchell TJ, Dickman MJ, Dockrell DH. Pneumolysin Is Responsible for Differential Gene Expression and Modifications in the Epigenetic Landscape of Primary Monocyte Derived Macrophages. Front Immunol 2021;12:573266. [PMID: 34046027 DOI: 10.3389/fimmu.2021.573266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Riegler AN, Mann B, Orihuela CJ, Tuomanen E. Opening the OPK Assay Gatekeeper: Harnessing Multi-Modal Protection by Pneumococcal Vaccines. Pathogens 2019;8:E203. [PMID: 31652741 DOI: 10.3390/pathogens8040203] [Reference Citation Analysis]
22 Weight CM, Venturini C, Pojar S, Jochems SP, Reiné J, Nikolaou E, Solórzano C, Noursadeghi M, Brown JS, Ferreira DM, Heyderman RS. Microinvasion by Streptococcus pneumoniae induces epithelial innate immunity during colonisation at the human mucosal surface. Nat Commun 2019;10:3060. [PMID: 31311921 DOI: 10.1038/s41467-019-11005-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 7.3] [Reference Citation Analysis]
23 Nerlich A, Mieth M, Letsiou E, Fatykhova D, Zscheppang K, Imai-Matsushima A, Meyer TF, Paasch L, Mitchell TJ, Tönnies M, Bauer TT, Schneider P, Neudecker J, Rückert JC, Eggeling S, Schimek M, Witzenrath M, Suttorp N, Hippenstiel S, Hocke AC. Pneumolysin induced mitochondrial dysfunction leads to release of mitochondrial DNA. Sci Rep 2018;8:182. [PMID: 29317705 DOI: 10.1038/s41598-017-18468-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
24 Panagiotou S, Chaguza C, Yahya R, Audshasai T, Baltazar M, Ressel L, Khandaker S, Alsahag M, Mitchell TJ, Prudhomme M, Kadioglu A, Yang M. Hypervirulent pneumococcal serotype 1 harbours two pneumolysin variants with differential haemolytic activity. Sci Rep 2020;10:17313. [PMID: 33057054 DOI: 10.1038/s41598-020-73454-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Binsker U, Lees JA, Hammond AJ, Weiser JN. Immune exclusion by naturally acquired secretory IgA against pneumococcal pilus-1. J Clin Invest 2020;130:927-41. [PMID: 31687974 DOI: 10.1172/JCI132005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Green AE, Howarth D, Chaguza C, Echlin H, Langendonk RF, Munro C, Barton TE, Hinton JCD, Bentley SD, Rosch JW, Neill DR. Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Mol Biol Evol 2021;38:2209-26. [PMID: 33502519 DOI: 10.1093/molbev/msab018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Guo T, Guo Y, Liu Q, Xu Y, Wei L, Wang Z, Chen S, Wang C, Tian Y, Cui J, Wang Y, Wang Y, Sun L. The TCM prescription Ma-xing-shi-gan-tang inhibits Streptococcus pneumoniae pathogenesis by targeting pneumolysin. J Ethnopharmacol 2021;275:114133. [PMID: 33892068 DOI: 10.1016/j.jep.2021.114133] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Thanawastien A, Joyce KE, Cartee RT, Haines LA, Pelton SI, Tweten RK, Killeen KP. Preclinical in vitro and in vivo profile of a highly-attenuated, broadly efficacious pneumolysin genetic toxoid. Vaccine 2021;39:1652-60. [PMID: 32532546 DOI: 10.1016/j.vaccine.2020.04.064] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Badgujar DC, Anil A, Green AE, Surve MV, Madhavan S, Beckett A, Prior IA, Godsora BK, Patil SB, More PK, Sarkar SG, Mitchell A, Banerjee R, Phale PS, Mitchell TJ, Neill DR, Bhaumik P, Banerjee A. Structural insights into loss of function of a pore forming toxin and its role in pneumococcal adaptation to an intracellular lifestyle. PLoS Pathog 2020;16:e1009016. [PMID: 33216805 DOI: 10.1371/journal.ppat.1009016] [Reference Citation Analysis]
30 Zafar MA, Hamaguchi S, Zangari T, Cammer M, Weiser JN. Capsule Type and Amount Affect Shedding and Transmission of Streptococcus pneumoniae. mBio 2017;8:e00989-17. [PMID: 28830943 DOI: 10.1128/mBio.00989-17] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 7.4] [Reference Citation Analysis]
31 Trappetti C, Paton JC. Host-to-Host Transmission of the Pneumococcus-New Victims of a Toxic Relationship. Cell Host Microbe 2017;21:5-6. [PMID: 28081444 DOI: 10.1016/j.chom.2016.12.011] [Reference Citation Analysis]
32 Surve MV, Banerjee A. Cell-to-cell phenotypic heterogeneity in pneumococcal pathogenesis. Future Microbiol 2019;14:647-51. [PMID: 31148481 DOI: 10.2217/fmb-2019-0096] [Reference Citation Analysis]
33 Nishimoto AT, Rosch JW, Tuomanen EI. Pneumolysin: Pathogenesis and Therapeutic Target. Front Microbiol 2020;11:1543. [PMID: 32714314 DOI: 10.3389/fmicb.2020.01543] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
34 Han C, Zhang M. Genetic diversity and antigenicity analysis of Streptococcus pneumoniae pneumolysin isolated from children with pneumococcal infection. International Journal of Infectious Diseases 2019;86:57-64. [DOI: 10.1016/j.ijid.2019.06.025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
35 Rowe HM, Karlsson E, Echlin H, Chang TC, Wang L, van Opijnen T, Pounds SB, Schultz-Cherry S, Rosch JW. Bacterial Factors Required for Transmission of Streptococcus pneumoniae in Mammalian Hosts. Cell Host Microbe 2019;25:884-891.e6. [PMID: 31126758 DOI: 10.1016/j.chom.2019.04.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 7.7] [Reference Citation Analysis]
36 Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019;13:4. [PMID: 30820243 DOI: 10.1186/s13036-018-0138-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
37 Cooper VS, Honsa E, Rowe H, Deitrick C, Iverson AR, Whittall JJ, Neville SL, McDevitt CA, Kietzman C, Rosch JW. Experimental Evolution In Vivo To Identify Selective Pressures during Pneumococcal Colonization. mSystems 2020;5:e00352-20. [PMID: 32398278 DOI: 10.1128/mSystems.00352-20] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
38 Hamaguchi S, Zafar MA, Cammer M, Weiser JN. Capsule Prolongs Survival of Streptococcus pneumoniae during Starvation. Infect Immun 2018;86:e00802-17. [PMID: 29311231 DOI: 10.1128/IAI.00802-17] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
39 Ahmad Z, Harvey RM, Paton JC, Standish AJ, Morona R. Role of Streptococcus pneumoniae OM001 operon in capsular polysaccharide production, virulence and survival in human saliva. PLoS One 2018;13:e0190402. [PMID: 29293606 DOI: 10.1371/journal.pone.0190402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
40 Shen P, Lees JA, Bee GCW, Brown SP, Weiser JN. Pneumococcal quorum sensing drives an asymmetric owner-intruder competitive strategy during carriage via the competence regulon. Nat Microbiol 2019;4:198-208. [PMID: 30546100 DOI: 10.1038/s41564-018-0314-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
41 Kuipers K, Lokken KL, Zangari T, Boyer MA, Shin S, Weiser JN. Age-related differences in IL-1 signaling and capsule serotype affect persistence of Streptococcus pneumoniae colonization. PLoS Pathog 2018;14:e1007396. [PMID: 30379943 DOI: 10.1371/journal.ppat.1007396] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
42 Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. Journal of Biomolecular Structure and Dynamics 2021;39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
43 Zafar MA, Hammond AJ, Hamaguchi S, Wu W, Kono M, Zhao L, Weiser JN. Identification of Pneumococcal Factors Affecting Pneumococcal Shedding Shows that the dlt Locus Promotes Inflammation and Transmission. mBio 2019;10:e01032-19. [PMID: 31213554 DOI: 10.1128/mBio.01032-19] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
44 LaRock DL, Russell R, Johnson AF, Wilde S, LaRock CN. Group A Streptococcus Infection of the Nasopharynx Requires Proinflammatory Signaling through the Interleukin-1 Receptor. Infect Immun 2020;88:e00356-20. [PMID: 32719155 DOI: 10.1128/IAI.00356-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
45 Chaguza C, Yang M, Jacques LC, Bentley SD, Kadioglu A. Serotype 1 pneumococcus: epidemiology, genomics, and disease mechanisms. Trends in Microbiology 2021. [DOI: 10.1016/j.tim.2021.11.007] [Reference Citation Analysis]
46 Paton JC, Trappetti C. Stand by to repel boarders. Nat Microbiol 2019;4:8-9. [PMID: 30546097 DOI: 10.1038/s41564-018-0324-2] [Reference Citation Analysis]
47 Zangari T, Ortigoza MB, Lokken-Toyli KL, Weiser JN. Type I Interferon Signaling Is a Common Factor Driving Streptococcus pneumoniae and Influenza A Virus Shedding and Transmission. mBio 2021;12:e03589-20. [PMID: 33593970 DOI: 10.1128/mBio.03589-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
48 Fuji N, Pichichero ME, Kaur R. Comparison of specific in-vitro virulence gene expression and innate host response in locally invasive vs colonizer strains of Streptococcus pneumoniae. Med Microbiol Immunol 2021;210:111-20. [PMID: 33751214 DOI: 10.1007/s00430-021-00701-w] [Reference Citation Analysis]
49 van Westen E, Poelen MCM, van den Dobbelsteen GPJM, Oloo EO, Ochs MM, Rots NY, van Els CACM. Immunodominance in T cell responses elicited against different domains of detoxified pneumolysin PlyD1. PLoS One 2018;13:e0193650. [PMID: 29509778 DOI: 10.1371/journal.pone.0193650] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
50 Hu Q, Tong H, Wang J, Ge P, Zhu L, Liu C, Zhang JR, Dong X. A Novel Aquaporin Subfamily Imports Oxygen and Contributes to Pneumococcal Virulence by Controlling the Production and Release of Virulence Factors. mBio 2021;12:e0130921. [PMID: 34399618 DOI: 10.1128/mBio.01309-21] [Reference Citation Analysis]
51 Rui D, Yan Z, Xiangzhu X, Yunfeng H, Jing N, Xuming D, Qiu J, Lv Q. Inhibitory effect of hederagenin on Streptococcus pneumoniae pneumolysin in vitro. Microbes Infect 2021;:104888. [PMID: 34547436 DOI: 10.1016/j.micinf.2021.104888] [Reference Citation Analysis]
52 Connor MG, Camarasa TMN, Patey E, Rasid O, Barrio L, Weight CM, Miller DP, Heyderman RS, Lamont RJ, Enninga J, Hamon MA. The histone demethylase KDM6B fine-tunes the host response to Streptococcus pneumoniae. Nat Microbiol 2021;6:257-69. [PMID: 33349663 DOI: 10.1038/s41564-020-00805-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
53 Subramanian K, Neill DR, Malak HA, Spelmink L, Khandaker S, Dalla Libera Marchiori G, Dearing E, Kirby A, Yang M, Achour A, Nilvebrant J, Nygren PÅ, Plant L, Kadioglu A, Henriques-Normark B. Pneumolysin binds to the mannose receptor C type 1 (MRC-1) leading to anti-inflammatory responses and enhanced pneumococcal survival. Nat Microbiol 2019;4:62-70. [PMID: 30420782 DOI: 10.1038/s41564-018-0280-x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
54 Liu X, Kimmey JM, Matarazzo L, de Bakker V, Van Maele L, Sirard JC, Nizet V, Veening JW. Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq. Cell Host Microbe 2021;29:107-120.e6. [PMID: 33120116 DOI: 10.1016/j.chom.2020.10.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
55 Nguyen BN, Peterson BN, Portnoy DA. Listeriolysin O: A phagosome-specific cytolysin revisited. Cell Microbiol. 2019;21:e12988. [PMID: 30511471 DOI: 10.1111/cmi.12988] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
56 Murakami D, Kono M, Nanushaj D, Kaneko F, Zangari T, Muragaki Y, Weiser JN, Hotomi M. Exposure to Cigarette Smoke Enhances Pneumococcal Transmission Among Littermates in an Infant Mouse Model. Front Cell Infect Microbiol 2021;11:651495. [PMID: 33869082 DOI: 10.3389/fcimb.2021.651495] [Reference Citation Analysis]
57 Riegler AN, Brissac T, Gonzalez-Juarbe N, Orihuela CJ. Necroptotic Cell Death Promotes Adaptive Immunity Against Colonizing Pneumococci. Front Immunol 2019;10:615. [PMID: 31019504 DOI: 10.3389/fimmu.2019.00615] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
58 Nasher F, Kwun MJ, Croucher NJ, Heller M, Hathaway LJ. Peptide Occurring in Enterobacteriaceae Triggers Streptococcus pneumoniae Cell Death. Front Cell Infect Microbiol 2019;9:320. [PMID: 31552200 DOI: 10.3389/fcimb.2019.00320] [Reference Citation Analysis]
59 Li S, Lv Q, Sun X, Tang T, Deng X, Yin Y, Li L. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. J Pharm Pharmacol 2020;72:1092-100. [PMID: 32390150 DOI: 10.1111/jphp.13279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]