BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, Leslie C, Lieberman PM. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233-245. [PMID: 22901543 DOI: 10.1016/j.chom.2012.06.008] [Cited by in Crossref: 152] [Cited by in F6Publishing: 142] [Article Influence: 16.9] [Reference Citation Analysis]
Number Citing Articles
1 Li R, Liao G, Nirujogi RS, Pinto SM, Shaw PG, Huang TC, Wan J, Qian J, Gowda H, Wu X, Lv DW, Zhang K, Manda SS, Pandey A, Hayward SD. Phosphoproteomic Profiling Reveals Epstein-Barr Virus Protein Kinase Integration of DNA Damage Response and Mitotic Signaling. PLoS Pathog 2015;11:e1005346. [PMID: 26714015 DOI: 10.1371/journal.ppat.1005346] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 5.4] [Reference Citation Analysis]
2 Birdwell CE, Queen KJ, Kilgore PC, Rollyson P, Trutschl M, Cvek U, Scott RS. Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 2014;88:11442-58. [PMID: 25056883 DOI: 10.1128/JVI.00972-14] [Cited by in Crossref: 68] [Cited by in F6Publishing: 46] [Article Influence: 8.5] [Reference Citation Analysis]
3 Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, Wang Z, Smith NA, Ma Y, Reinstadler B, Nomburg J, Sommermann T, Cahir-McFarland E, Gygi SP, Mootha VK, Weekes MP, Gewurz BE. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab 2019;30:539-555.e11. [PMID: 31257153 DOI: 10.1016/j.cmet.2019.06.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 11.7] [Reference Citation Analysis]
4 Sato Y, Watanabe T, Suzuki C, Abe Y, Masud HMAA, Inagaki T, Yoshida M, Suzuki T, Goshima F, Adachi J, Tomonaga T, Murata T, Kimura H. S-Like-Phase Cyclin-Dependent Kinases Stabilize the Epstein-Barr Virus BDLF4 Protein To Temporally Control Late Gene Transcription. J Virol 2019;93:e01707-18. [PMID: 30700607 DOI: 10.1128/JVI.01707-18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
5 Theusch E, Chen YI, Rotter JI, Krauss RM, Medina MW. Genetic variants modulate gene expression statin response in human lymphoblastoid cell lines. BMC Genomics 2020;21:555. [PMID: 32787775 DOI: 10.1186/s12864-020-06966-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. Adv Exp Med Biol 2017;1018:57-74. [PMID: 29052132 DOI: 10.1007/978-981-10-5765-6_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
7 Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014;88:1703-13. [PMID: 24257606 DOI: 10.1128/JVI.02209-13] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 4.3] [Reference Citation Analysis]
8 Arvey A, Tempera I, Lieberman PM. Interpreting the Epstein-Barr Virus (EBV) epigenome using high-throughput data. Viruses 2013;5:1042-54. [PMID: 23549386 DOI: 10.3390/v5041042] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
9 Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019;9:127. [PMID: 30931253 DOI: 10.3389/fonc.2019.00127] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
10 Santpere G, Darre F, Blanco S, Alcami A, Villoslada P, Mar Albà M, Navarro A. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project. Genome Biol Evol 2014;6:846-60. [PMID: 24682154 DOI: 10.1093/gbe/evu054] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
11 Ok CY, Papathomas TG, Medeiros LJ, Young KH. EBV-positive diffuse large B-cell lymphoma of the elderly. Blood 2013;122:328-40. [PMID: 23649469 DOI: 10.1182/blood-2013-03-489708] [Cited by in Crossref: 138] [Cited by in F6Publishing: 115] [Article Influence: 15.3] [Reference Citation Analysis]
12 Pentland I, Parish JL. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses. Viruses 2015;7:3574-85. [PMID: 26154016 DOI: 10.3390/v7072791] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
13 Xia TL, Li X, Wang X, Zhu YJ, Zhang H, Cheng W, Chen ML, Ye Y, Li Y, Zhang A, Dai DL, Zhu QY, Yuan L, Zheng J, Huang H, Chen SQ, Xiao ZW, Wang HB, Roy G, Zhong Q, Lin D, Zeng YX, Wang J, Zhao B, Gewurz BE, Chen J, Zuo Z, Zeng MS. N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay. EMBO Rep 2021;22:e50128. [PMID: 33605073 DOI: 10.15252/embr.202050128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Niller HH, Tarnai Z, Decsi G, Zsedényi A, Bánáti F, Minarovits J. Role of epigenetics in EBV regulation and pathogenesis. Future Microbiol. 2014;9:747-756. [PMID: 25046522 DOI: 10.2217/fmb.14.41] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
15 Yahia ZA, Adam AA, Elgizouli M, Hussein A, Masri MA, Kamal M, Mohamed HS, Alzaki K, Elhassan AM, Hamad K, Ibrahim ME. Epstein Barr virus: a prime candidate of breast cancer aetiology in Sudanese patients. Infect Agent Cancer 2014;9:9. [PMID: 24607238 DOI: 10.1186/1750-9378-9-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 4.1] [Reference Citation Analysis]
16 Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS 2021;25:358-71. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Barzon L, Lavezzo E, Costanzi G, Franchin E, Toppo S, Palù G. Next-generation sequencing technologies in diagnostic virology. J Clin Virol 2013;58:346-50. [PMID: 23523339 DOI: 10.1016/j.jcv.2013.03.003] [Cited by in Crossref: 76] [Cited by in F6Publishing: 62] [Article Influence: 8.4] [Reference Citation Analysis]
18 Saha A, Robertson ES. Mechanisms of B-Cell Oncogenesis Induced by Epstein-Barr Virus. J Virol 2019;93:e00238-19. [PMID: 30971472 DOI: 10.1128/JVI.00238-19] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
19 Arvey A, Ojesina AI, Pedamallu CS, Ballon G, Jung J, Duke F, Leoncini L, De Falco G, Bressman E, Tam W. The tumor virus landscape of AIDS-related lymphomas. Blood. 2015;125:e14-e22. [PMID: 25827832 DOI: 10.1182/blood-2014-11-599951] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
20 Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018;14:e1006868. [PMID: 29357389 DOI: 10.1371/journal.ppat.1006868] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
21 Yang WS, Campbell M, Chang PC. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication. PLoS Pathog 2017;13:e1006216. [PMID: 28212444 DOI: 10.1371/journal.ppat.1006216] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
22 Ke L, Zhou H, Wang C, Xiong G, Xiang Y, Ling Y, Khabir A, Tsao GS, Zeng Y, Zeng M, Busson P, Kieff E, Guo X, Zhao B. Nasopharyngeal carcinoma super-enhancer-driven ETV6 correlates with prognosis. Proc Natl Acad Sci U S A 2017;114:9683-8. [PMID: 28831010 DOI: 10.1073/pnas.1705236114] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
23 Aneja KK, Yuan Y. Reactivation and Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus: An Update. Front Microbiol 2017;8:613. [PMID: 28473805 DOI: 10.3389/fmicb.2017.00613] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 14.2] [Reference Citation Analysis]
24 Niller HH, Banati F, Salamon D, Minarovits J. Epigenetic Alterations in Epstein-Barr Virus-Associated Diseases. In: Minarovits J, Niller HH, editors. Patho-Epigenetics of Infectious Disease. Cham: Springer International Publishing; 2016. pp. 39-69. [DOI: 10.1007/978-3-319-24738-0_3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
25 Jolly LA, Sun Y, Carroll R, Homan CC, Gecz J. Robust imaging and gene delivery to study human lymphoblastoid cell lines. J Hum Genet 2018;63:945-55. [DOI: 10.1038/s10038-018-0483-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Chen YJ, Chen YL, Chang Y, Wu CC, Ko YC, Tsao SW, Chen JY, Lin SF. Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017;91:e00736-17. [PMID: 28490592 DOI: 10.1128/JVI.00736-17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
27 Buschle A, Hammerschmidt W. Epigenetic lifestyle of Epstein-Barr virus. Semin Immunopathol 2020;42:131-42. [PMID: 32232535 DOI: 10.1007/s00281-020-00792-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
28 Eckhardt M, Hultquist JF, Kaake RM, Hüttenhain R, Krogan NJ. A systems approach to infectious disease. Nat Rev Genet 2020;21:339-54. [PMID: 32060427 DOI: 10.1038/s41576-020-0212-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
29 Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020;11:566320. [PMID: 33101388 DOI: 10.3389/fgene.2020.566320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
30 Fernandes Q, Gupta I, Vranic S, Al Moustafa AE. Human Papillomaviruses and Epstein-Barr Virus Interactions in Colorectal Cancer: A Brief Review. Pathogens 2020;9:E300. [PMID: 32325943 DOI: 10.3390/pathogens9040300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018;13:e0202537. [PMID: 30133498 DOI: 10.1371/journal.pone.0202537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
32 Gui S, Rice AP, Chen R, Wu L, Liu J, Miao H. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data. BMC Bioinformatics 2017;18:74. [PMID: 28143596 DOI: 10.1186/s12859-017-1489-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
33 Tatfi M, Perthame E, Hillion KH, Dillies MA, Menager H, Hermine O, Suarez F. Gene expression analysis in EBV-infected ataxia-telangiectasia cell lines by RNA-sequencing reveals protein synthesis defect and immune abnormalities. Orphanet J Rare Dis 2021;16:288. [PMID: 34183044 DOI: 10.1186/s13023-021-01904-3] [Reference Citation Analysis]
34 Wang LW, Wang Z, Ersing I, Nobre L, Guo R, Jiang S, Trudeau S, Zhao B, Weekes MP, Gewurz BE. Epstein-Barr virus subverts mevalonate and fatty acid pathways to promote infected B-cell proliferation and survival. PLoS Pathog 2019;15:e1008030. [PMID: 31518366 DOI: 10.1371/journal.ppat.1008030] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 6.7] [Reference Citation Analysis]
35 Murata T, Sato Y, Kimura H. Modes of infection and oncogenesis by the Epstein-Barr virus. Rev Med Virol 2014;24:242-53. [PMID: 24578255 DOI: 10.1002/rmv.1786] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 6.0] [Reference Citation Analysis]
36 Nawandar DM, Ohashi M, Djavadian R, Barlow E, Makielski K, Ali A, Lee D, Lambert PF, Johannsen E, Kenney SC. Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. J Virol 2017;91:e02438-16. [PMID: 28179525 DOI: 10.1128/JVI.02438-16] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
37 Li SB, Liu YY, Yuan L, Ji MF, Zhang A, Li HY, Tang LQ, Fang SG, Zhang H, Xing S, Li MZ, Zhong Q, Lin SJ, Liu WL, Huang P, Zeng YX, Zheng YM, Ling ZQ, Sui JH, Zeng MS. Autocrine INSL5 promotes tumor progression and glycolysis via activation of STAT5 signaling. EMBO Mol Med 2020;12:e12050. [PMID: 32657028 DOI: 10.15252/emmm.202012050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Liu Z, Filip I, Gomez K, Engelbrecht D, Meer S, Lalloo PN, Patel P, Perner Y, Zhao J, Wang J, Pasqualucci L, Rabadan R, Willem P. Genomic characterization of HIV-associated plasmablastic lymphoma identifies pervasive mutations in the JAK-STAT pathway. Blood Cancer Discov 2020;1:112-25. [PMID: 33225311 DOI: 10.1158/2643-3249.bcd-20-0051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Phan AT, Fernandez SG, Somberg JJ, Keck KM, Miranda JL. Epstein-Barr virus latency type and spontaneous reactivation predict lytic induction levels. Biochem Biophys Res Commun 2016;474:71-5. [PMID: 27091426 DOI: 10.1016/j.bbrc.2016.04.070] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
40 Lung ML, Cheung AK, Ko JM, Lung HL, Cheng Y, Dai W. The interplay of host genetic factors and Epstein-Barr virus in the development of nasopharyngeal carcinoma. Chin J Cancer 2014;33:556-68. [PMID: 25367335 DOI: 10.5732/cjc.014.10170] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
41 Dworzański J, Strycharz-Dudziak M, Kliszczewska E, Kiełczykowska M, Dworzańska A, Drop B, Polz-Dacewicz M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS One 2020;15:e0230374. [PMID: 32210468 DOI: 10.1371/journal.pone.0230374] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
42 Chong RH, Khakpoor A, Tan TM, Lim SG, Lee GH. Liver-Derived Cell Transfection Model Efficacy for HBV Genotype B Replication/Transcription Is Determined by Complex Host Transcription Factor Network. Viruses 2021;13:524. [PMID: 33810128 DOI: 10.3390/v13030524] [Reference Citation Analysis]
43 Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1’s Love–Hate Relationship with the Kissing Virus. IJMS 2022;23:3079. [DOI: 10.3390/ijms23063079] [Reference Citation Analysis]
44 Majumder K, Morales AJ. Utilization of Host Cell Chromosome Conformation by Viral Pathogens: Knowing When to Hold and When to Fold. Front Immunol 2021;12:633762. [PMID: 33841414 DOI: 10.3389/fimmu.2021.633762] [Reference Citation Analysis]
45 An H, Cai Z, Yang Y, Wang Z, Liu DX, Fang S. Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus. Virology 2019;528:176-80. [PMID: 30616206 DOI: 10.1016/j.virol.2018.12.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Martínez FP, Cruz R, Lu F, Plasschaert R, Deng Z, Rivera-Molina YA, Bartolomei MS, Lieberman PM, Tang Q. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalovirus (HCMV) negatively regulates MIE gene expression and HCMV replication. J Virol 2014;88:7389-401. [PMID: 24741094 DOI: 10.1128/JVI.00845-14] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
47 Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M, Steitz JA. Viral noncoding RNAs: more surprises. Genes Dev 2015;29:567-84. [PMID: 25792595 DOI: 10.1101/gad.259077.115] [Cited by in Crossref: 110] [Cited by in F6Publishing: 104] [Article Influence: 15.7] [Reference Citation Analysis]
48 Jiang S, Zhou H, Liang J, Gerdt C, Wang C, Ke L, Schmidt SCS, Narita Y, Ma Y, Wang S, Colson T, Gewurz B, Li G, Kieff E, Zhao B. The Epstein-Barr Virus Regulome in Lymphoblastoid Cells. Cell Host Microbe 2017;22:561-573.e4. [PMID: 29024646 DOI: 10.1016/j.chom.2017.09.001] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 12.5] [Reference Citation Analysis]
49 Huang T, Ji Y, Hu D, Chen B, Zhang H, Li C, Chen G, Luo X, Zheng XW, Lin X. SNHG8 is identified as a key regulator of epstein-barr virus(EBV)-associated gastric cancer by an integrative analysis of lncRNA and mRNA expression. Oncotarget. 2016;7:80990-81002. [PMID: 27835598 DOI: 10.18632/oncotarget.13167] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
50 Yetming KD, Lupey-Green LN, Biryukov S, Hughes DJ, Marendy EM, Miranda JL, Sample JT. The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020;94:e01215-20. [PMID: 32581094 DOI: 10.1128/JVI.01215-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
51 Gru AA, Haverkos BH, Freud AG, Hastings J, Nowacki NB, Barrionuevo C, Vigil CE, Rochford R, Natkunam Y, Baiocchi RA, Porcu P. The Epstein-Barr Virus (EBV) in T Cell and NK Cell Lymphomas: Time for a Reassessment. Curr Hematol Malig Rep 2015;10:456-67. [PMID: 26449716 DOI: 10.1007/s11899-015-0292-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 6.5] [Reference Citation Analysis]
52 Lee N, Steitz JA. Noncoding RNA-guided recruitment of transcription factors: A prevalent but undocumented mechanism? Bioessays 2015;37:936-41. [PMID: 26200477 DOI: 10.1002/bies.201500060] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
53 Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY, Jiang S, Jiang C, Zhao B, Root DE, Doench JG, Gewurz BE. CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host Microbe 2017;21:580-591.e7. [PMID: 28494239 DOI: 10.1016/j.chom.2017.04.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
54 Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015;160:607-18. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 13.9] [Reference Citation Analysis]
55 McKenzie J, El-Guindy A. Epstein-Barr Virus Lytic Cycle Reactivation. Curr Top Microbiol Immunol 2015;391:237-61. [PMID: 26428377 DOI: 10.1007/978-3-319-22834-1_8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 3.0] [Reference Citation Analysis]
56 Lane AK, Niederhuth CE, Ji L, Schmitz RJ. pENCODE: a plant encyclopedia of DNA elements. Annu Rev Genet 2014;48:49-70. [PMID: 25149370 DOI: 10.1146/annurev-genet-120213-092443] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 3.1] [Reference Citation Analysis]
57 Hancock MH, Skalsky RL. Roles of Non-coding RNAs During Herpesvirus Infection. Curr Top Microbiol Immunol 2018;419:243-80. [PMID: 28674945 DOI: 10.1007/82_2017_31] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
58 Chavez-Calvillo G, Martin S, Hamm C, Sztuba-Solinska J. The Structure-To-Function Relationships of Gammaherpesvirus-Encoded Long Non-Coding RNAs and Their Contributions to Viral Pathogenesis. Noncoding RNA 2018;4:E24. [PMID: 30261651 DOI: 10.3390/ncrna4040024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
59 Murata T, Noda C, Narita Y, Watanabe T, Yoshida M, Ashio K, Sato Y, Goshima F, Kanda T, Yoshiyama H, Tsurumi T, Kimura H. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor. J Virol 2016;90:3873-89. [PMID: 26819314 DOI: 10.1128/JVI.03227-15] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
60 Ali AS, Al-Shraim M, Al-Hakami AM, Jones IM. Epstein- Barr Virus: Clinical and Epidemiological Revisits and Genetic Basis of Oncogenesis. Open Virol J 2015;9:7-28. [PMID: 26862355 DOI: 10.2174/1874357901509010007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
61 Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014;26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 8.1] [Reference Citation Analysis]
62 Hammerschmidt W. The Epigenetic Life Cycle of Epstein-Barr Virus. Curr Top Microbiol Immunol 2015;390:103-17. [PMID: 26424645 DOI: 10.1007/978-3-319-22822-8_6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
63 Valenzuela-Miranda D, Cabrejos ME, Yañez JM, Gallardo-Escárate C. From the viral perspective: infectious salmon anemia virus (ISAV) transcriptome during the infective process in Atlantic salmon (Salmo salar). Mar Genomics 2015;20:39-43. [PMID: 25561340 DOI: 10.1016/j.margen.2014.12.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
64 Johnston AD, Simões-Pires CA, Thompson TV, Suzuki M, Greally JM. Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat Commun 2019;10:3472. [PMID: 31375681 DOI: 10.1038/s41467-019-11412-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
65 Guo R, Zhang Y, Teng M, Jiang C, Schineller M, Zhao B, Doench JG, O'Reilly RJ, Cesarman E, Giulino-Roth L, Gewurz BE. DNA methylation enzymes and PRC1 restrict B-cell Epstein-Barr virus oncoprotein expression. Nat Microbiol 2020;5:1051-63. [PMID: 32424339 DOI: 10.1038/s41564-020-0724-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
66 Deng Z, Wang Z, Lieberman PM. Telomeres and viruses: common themes of genome maintenance. Front Oncol 2012;2:201. [PMID: 23293769 DOI: 10.3389/fonc.2012.00201] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
67 Houldcroft CJ, Petrova V, Liu JZ, Frampton D, Anderson CA, Gall A, Kellam P. Host genetic variants and gene expression patterns associated with Epstein-Barr virus copy number in lymphoblastoid cell lines. PLoS One 2014;9:e108384. [PMID: 25290448 DOI: 10.1371/journal.pone.0108384] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
68 Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol 2015;390:71-102. [PMID: 26424644 DOI: 10.1007/978-3-319-22822-8_5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
69 Shi Y, Peng SL, Yang LF, Chen X, Tao YG, Cao Y. Co-infection of Epstein-Barr virus and human papillomavirus in human tumorigenesis. Chin J Cancer 2016;35:16. [PMID: 26801987 DOI: 10.1186/s40880-016-0079-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
70 Schwartz M, Stern-Ginossar N. The Transcriptome of Latent Human Cytomegalovirus. J Virol 2019;93:e00047-19. [PMID: 30867313 DOI: 10.1128/JVI.00047-19] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
71 Godfrey A, Ramasubramanyan S, Sinclair AJ. The Use of Chromatin Precipitation Coupled to DNA Sequencing (ChIP-Seq) for the Analysis of Zta Binding to the Human and EBV Genome. Methods Mol Biol 2017;1532:191-206. [PMID: 27873277 DOI: 10.1007/978-1-4939-6655-4_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
72 Tsai K, Cullen BR. Epigenetic and epitranscriptomic regulation of viral replication. Nat Rev Microbiol 2020;18:559-70. [PMID: 32533130 DOI: 10.1038/s41579-020-0382-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
73 Hu J, Li H, Luo X, Li Y, Bode A, Cao Y. The role of oxidative stress in EBV lytic reactivation, radioresistance and the potential preventive and therapeutic implications: REDOX control of EBV lytic reactivation and therapeutic opportunities. Int J Cancer 2017;141:1722-9. [DOI: 10.1002/ijc.30816] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
74 Li X, Burton EM, Koganti S, Zhi J, Doyle F, Tenenbaum SA, Horn B, Bhaduri-McIntosh S. KRAB-ZFP Repressors Enforce Quiescence of Oncogenic Human Herpesviruses. J Virol 2018;92:e00298-18. [PMID: 29695433 DOI: 10.1128/JVI.00298-18] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
75 Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ. Snapshots: chromatin control of viral infection. Virology. 2013;435:141-156. [PMID: 23217624 DOI: 10.1016/j.virol.2012.09.023] [Cited by in Crossref: 113] [Cited by in F6Publishing: 105] [Article Influence: 12.6] [Reference Citation Analysis]
76 Zhang K, Lv DW, Li R. Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression. Virology 2020;540:75-87. [PMID: 31743858 DOI: 10.1016/j.virol.2019.11.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2020;28:150-62. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
78 Krug LT. Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 2013;3:276-84. [PMID: 23684513 DOI: 10.1016/j.coviro.2013.04.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
79 Avanzi S, Alvisi G, Ripalti A. How virus persistence can initiate the tumorigenesis process. World J Virol 2013; 2(2): 102-109 [PMID: 24175234 DOI: 10.5501/wjv.v2.i2.102] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
80 Ziegler P, Tian Y, Bai Y, Abrahamsson S, Bäckerholm A, Reznik AS, Green A, Moore JA, Lee SE, Myerburg MM, Park HJ, Tang KW, Shair KHY. A primary nasopharyngeal three-dimensional air-liquid interface cell culture model of the pseudostratified epithelium reveals differential donor- and cell type-specific susceptibility to Epstein-Barr virus infection. PLoS Pathog 2021;17:e1009041. [PMID: 33914843 DOI: 10.1371/journal.ppat.1009041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Murata T, Sugimoto A, Inagaki T, Yanagi Y, Watanabe T, Sato Y, Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021;13:2344. [PMID: 34960613 DOI: 10.3390/v13122344] [Reference Citation Analysis]
82 Pompon J, Garcia-Blanco MA. RNA: jack of all trades and master of all. Cell 2015;160:579-80. [PMID: 25679756 DOI: 10.1016/j.cell.2015.01.047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
83 Lieberman PM. Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 2013;11:863-75. [PMID: 24192651 DOI: 10.1038/nrmicro3135] [Cited by in Crossref: 91] [Cited by in F6Publishing: 80] [Article Influence: 10.1] [Reference Citation Analysis]
84 Murata T, Tsurumi T. Epigenetic modification of the Epstein-Barr virus BZLF1 promoter regulates viral reactivation from latency. Front Genet 2013;4:53. [PMID: 23577022 DOI: 10.3389/fgene.2013.00053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.7] [Reference Citation Analysis]
85 Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016;5:E18. [PMID: 26861404 DOI: 10.3390/pathogens5010018] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 9.8] [Reference Citation Analysis]
86 Liu X, Hong T, Parameswaran S, Ernst K, Marazzi I, Weirauch MT, Fuxman Bass JI. Human Virus Transcriptional Regulators. Cell 2020;182:24-37. [PMID: 32649876 DOI: 10.1016/j.cell.2020.06.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
87 Chen Y, Chen X, Pan L, Huang Y, Cai Y, Li J, Li Y, Wang S. RNA helicase DHX15 decreases cell apoptosis by NF-κB signaling pathway in Burkitt lymphoma. Cancer Cell Int 2022;22:92. [PMID: 35193582 DOI: 10.1186/s12935-021-02426-5] [Reference Citation Analysis]
88 Kristie TM. The rise of epigenetic targets for the development of novel antivirals. Expert Rev Anti Infect Ther 2012;10:1359-61. [PMID: 23253311 DOI: 10.1586/eri.12.143] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
89 Afrasiabi A, Keane JT, Ong LTC, Alinejad-Rokny H, Fewings NL, Booth DR, Parnell GP, Swaminathan S. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus. J Autoimmun 2021;127:102781. [PMID: 34952359 DOI: 10.1016/j.jaut.2021.102781] [Reference Citation Analysis]
90 Xu M, Zhang WL, Zhu Q, Zhang S, Yao YY, Xiang T, Feng QS, Zhang Z, Peng RJ, Jia WH, He GP, Feng L, Zeng ZL, Luo B, Xu RH, Zeng MS, Zhao WL, Chen SJ, Zeng YX, Jiao Y. Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Theranostics 2019;9:1115-24. [PMID: 30867819 DOI: 10.7150/thno.29622] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
91 Szeto CY, Lin CH, Choi SC, Yip TT, Ngan RK, Tsao GS, Li Lung M. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems. FEBS Open Bio 2014;4:128-40. [PMID: 24490137 DOI: 10.1016/j.fob.2014.01.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
92 Perez S, Gevor M, Davidovich A, Kaspi A, Yamin K, Domovich T, Meirson T, Matityahu A, Brody Y, Stemmer SM, El-Osta A, Haviv I, Onn I, Gal-Tanamy M. Dysregulation of the cohesin subunit RAD21 by Hepatitis C virus mediates host-virus interactions. Nucleic Acids Res 2019;47:2455-71. [PMID: 30698808 DOI: 10.1093/nar/gkz052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
93 Zhou H, Schmidt SC, Jiang S, Willox B, Bernhardt K, Liang J, Johannsen EC, Kharchenko P, Gewurz BE, Kieff E, Zhao B. Epstein-Barr virus oncoprotein super-enhancers control B cell growth. Cell Host Microbe 2015;17:205-16. [PMID: 25639793 DOI: 10.1016/j.chom.2014.12.013] [Cited by in Crossref: 102] [Cited by in F6Publishing: 86] [Article Influence: 14.6] [Reference Citation Analysis]
94 Liang J, Cui Z, Wu C, Yu Y, Tian R, Xie H, Jin Z, Fan W, Xie W, Huang Z, Xu W, Zhu J, You Z, Guo X, Qiu X, Ye J, Lang B, Li M, Tan S, Hu Z. DeepEBV: A deep learning model to predict Epstein-Barr virus (EBV) integration sites. Bioinformatics 2021:btab388. [PMID: 34009299 DOI: 10.1093/bioinformatics/btab388] [Reference Citation Analysis]
95 Wang L, Laing J, Yan B, Zhou H, Ke L, Wang C, Narita Y, Zhang Z, Olson MR, Afzali B, Zhao B, Kazemian M. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. J Virol 2020;94:e01390-20. [PMID: 32999023 DOI: 10.1128/JVI.01390-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Dunmire SK, Odumade OA, Porter JL, Reyes-Genere J, Schmeling DO, Bilgic H, Fan D, Baechler EC, Balfour HH Jr, Hogquist KA. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes. PLoS One 2014;9:e85422. [PMID: 24465555 DOI: 10.1371/journal.pone.0085422] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
97 Keane JT, Afrasiabi A, Schibeci SD, Fewings N, Parnell GP, Swaminathan S, Booth DR. Gender and the Sex Hormone Estradiol Affect Multiple Sclerosis Risk Gene Expression in Epstein-Barr Virus-Infected B Cells. Front Immunol 2021;12:732694. [PMID: 34566997 DOI: 10.3389/fimmu.2021.732694] [Reference Citation Analysis]
98 Guo R, Gewurz BE. Epigenetic control of the Epstein-Barr lifecycle. Curr Opin Virol 2021;52:78-88. [PMID: 34891084 DOI: 10.1016/j.coviro.2021.11.013] [Reference Citation Analysis]
99 Price AM, Luftig MA. Dynamic Epstein-Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014;88:279-313. [PMID: 24373315 DOI: 10.1016/B978-0-12-800098-4.00006-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
100 Lee N, Yario TA, Gao JS, Steitz JA. EBV noncoding RNA EBER2 interacts with host RNA-binding proteins to regulate viral gene expression. Proc Natl Acad Sci U S A 2016;113:3221-6. [PMID: 26951683 DOI: 10.1073/pnas.1601773113] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
101 Allday MJ, Bazot Q, White RE. The EBNA3 Family: Two Oncoproteins and a Tumour Suppressor that Are Central to the Biology of EBV in B Cells. Curr Top Microbiol Immunol 2015;391:61-117. [PMID: 26428372 DOI: 10.1007/978-3-319-22834-1_3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
102 Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, Virzì A, Bandiera S, Jamey C, Meszaros G, Brumaru D, Mukherji A, Durand SC, Heydmann L, Verrier ER, El Saghire H, Hamdane N, Bartenschlager R, Fereshetian S, Ramberger E, Sinha R, Nabian M, Everaert C, Jovanovic M, Mertins P, Carr SA, Chayama K, Dali-Youcef N, Ricci R, Bardeesy NM, Fujiwara N, Gevaert O, Zeisel MB, Hoshida Y, Pochet N, Baumert TF. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology 2019;157:537-551.e9. [PMID: 30978357 DOI: 10.1053/j.gastro.2019.04.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
103 Li X, Yu Y, Lang F, Chen G, Wang E, Li L, Li Z, Yang L, Cao X, Fraser NW, Zhou J. Cohesin promotes HSV-1 lytic transcription by facilitating the binding of RNA Pol II on viral genes. Virol J 2021;18:26. [PMID: 33485391 DOI: 10.1186/s12985-021-01495-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Chakravorty S, Yan B, Wang C, Wang L, Quaid JT, Lin CF, Briggs SD, Majumder J, Canaria DA, Chauss D, Chopra G, Olson MR, Zhao B, Afzali B, Kazemian M. Integrated Pan-Cancer Map of EBV-Associated Neoplasms Reveals Functional Host-Virus Interactions. Cancer Res 2019;79:6010-23. [PMID: 31481499 DOI: 10.1158/0008-5472.CAN-19-0615] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
105 Murata T, Narita Y, Sugimoto A, Kawashima D, Kanda T, Tsurumi T. Contribution of myocyte enhancer factor 2 family transcription factors to BZLF1 expression in Epstein-Barr virus reactivation from latency. J Virol 2013;87:10148-62. [PMID: 23843637 DOI: 10.1128/JVI.01002-13] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
106 Shumilov A, Tsai MH, Schlosser YT, Kratz AS, Bernhardt K, Fink S, Mizani T, Lin X, Jauch A, Mautner J, Kopp-Schneider A, Feederle R, Hoffmann I, Delecluse HJ. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability. Nat Commun 2017;8:14257. [PMID: 28186092 DOI: 10.1038/ncomms14257] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
107 Raver RM, Panfil AR, Hagemeier SR, Kenney SC. The B-cell-specific transcription factor and master regulator Pax5 promotes Epstein-Barr virus latency by negatively regulating the viral immediate early protein BZLF1. J Virol 2013;87:8053-63. [PMID: 23678172 DOI: 10.1128/JVI.00546-13] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
108 Mesri EA, Feitelson MA, Munger K. Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 2014;15:266-82. [PMID: 24629334 DOI: 10.1016/j.chom.2014.02.011] [Cited by in Crossref: 310] [Cited by in F6Publishing: 292] [Article Influence: 38.8] [Reference Citation Analysis]
109 Afrasiabi A, Parnell GP, Fewings N, Schibeci SD, Basuki MA, Chandramohan R, Zhou Y, Taylor B, Brown DA, Swaminathan S, McKay FC, Stewart GJ, Booth DR. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med 2019;11:26. [PMID: 31039804 DOI: 10.1186/s13073-019-0640-z] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
110 Poling BC, Price AM, Luftig MA, Cullen BR. The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 2017;512:113-23. [PMID: 28950226 DOI: 10.1016/j.virol.2017.09.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
111 Atyeo N, Rodriguez MD, Papp B, Toth Z. Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses 2021;13:681. [PMID: 33920978 DOI: 10.3390/v13040681] [Reference Citation Analysis]
112 Al Hamad M, Matalka I, Al Zoubi MS, Armogida I, Khasawneh R, Al-Husaini M, Sughayer M, Jaradat S, Al-Nasser AD, Mazzanti CM. Human Mammary Tumor Virus, Human Papilloma Virus, and Epstein-Barr Virus Infection Are Associated With Sporadic Breast Cancer Metastasis. Breast Cancer (Auckl) 2020;14:1178223420976388. [PMID: 33281452 DOI: 10.1177/1178223420976388] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
113 Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol. 2015;14:138-144. [PMID: 26453799 DOI: 10.1016/j.coviro.2015.09.007] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
114 Oh J, Sanders IF, Chen EZ, Li H, Tobias JW, Isett RB, Penubarthi S, Sun H, Baldwin DA, Fraser NW. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection. PLoS One 2015;10:e0117471. [PMID: 25710170 DOI: 10.1371/journal.pone.0117471] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
115 van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV Vaccines. Front Oncol 2019;9:104. [PMID: 30859093 DOI: 10.3389/fonc.2019.00104] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
116 Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, Tempera I. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol 2018;92:e00755-18. [PMID: 29976663 DOI: 10.1128/JVI.00755-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
117 Matthey-Doret C, Baudry L, Breuer A, Montagne R, Guiglielmoni N, Scolari V, Jean E, Campeas A, Chanut PH, Oriol E, Méot A, Politis L, Vigouroux A, Moreau P, Koszul R, Cournac A. Computer vision for pattern detection in chromosome contact maps. Nat Commun 2020;11:5795. [PMID: 33199682 DOI: 10.1038/s41467-020-19562-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
118 Zhang K, Lv DW, Li R. B Cell Receptor Activation and Chemical Induction Trigger Caspase-Mediated Cleavage of PIAS1 to Facilitate Epstein-Barr Virus Reactivation. Cell Rep 2017;21:3445-57. [PMID: 29262325 DOI: 10.1016/j.celrep.2017.11.071] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
119 Grywalska E, Rolinski J. Epstein-Barr Virus–Associated Lymphomas. Seminars in Oncology 2015;42:291-303. [DOI: 10.1053/j.seminoncol.2014.12.030] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 11.1] [Reference Citation Analysis]
120 Strycharz-Dudziak M, Kiełczykowska M, Drop B, Świątek Ł, Kliszczewska E, Musik I, Polz-Dacewicz M. Total Antioxidant Status (TAS), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) in Oropharyngeal Cancer Associated with EBV Infection. Oxid Med Cell Longev 2019;2019:5832410. [PMID: 31360295 DOI: 10.1155/2019/5832410] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
121 Ricigliano VA, Handel AE, Sandve GK, Annibali V, Ristori G, Mechelli R, Cader MZ, Salvetti M. EBNA2 binds to genomic intervals associated with multiple sclerosis and overlaps with vitamin D receptor occupancy. PLoS One 2015;10:e0119605. [PMID: 25853421 DOI: 10.1371/journal.pone.0119605] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
122 Lee N. The many ways Epstein-Barr virus takes advantage of the RNA tool kit. RNA Biol 2021;18:759-66. [PMID: 33517840 DOI: 10.1080/15476286.2021.1875184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Raimondo G, Pollicino T. Occult HBV Infection. In: Liaw Y, Zoulim F, editors. Hepatitis B Virus in Human Diseases. Cham: Springer International Publishing; 2016. pp. 277-301. [DOI: 10.1007/978-3-319-22330-8_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
124 Westhoff Smith D, Chakravorty A, Hayes M, Hammerschmidt W, Sugden B. The Epstein-Barr Virus Oncogene EBNA1 Suppresses Natural Killer Cell Responses and Apoptosis Early after Infection of Peripheral B Cells. mBio 2021;:e0224321. [PMID: 34781735 DOI: 10.1128/mBio.02243-21] [Reference Citation Analysis]
125 Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018;99:805-17. [PMID: 29580369 DOI: 10.1099/jgv.0.001056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Liu CD, Lee HL, Peng CW. B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol 2020;94:e02028-19. [PMID: 31941781 DOI: 10.1128/JVI.02028-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
127 Ajiro M, Zheng ZM. Oncogenes and RNA splicing of human tumor viruses. Emerg Microbes Infect 2014;3:e63. [PMID: 26038756 DOI: 10.1038/emi.2014.62] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
128 Moquin SA, Thomas S, Whalen S, Warburton A, Fernandez SG, McBride AA, Pollard KS, Miranda JL. The Epstein-Barr Virus Episome Maneuvers between Nuclear Chromatin Compartments during Reactivation. J Virol 2018;92:e01413-17. [PMID: 29142137 DOI: 10.1128/JVI.01413-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
129 Nayyar N, Kaur I, Malhotra P, Bhatnagar RK. Quantitative proteomics of Sf21 cells during Baculovirus infection reveals progressive host proteome changes and its regulation by viral miRNA. Sci Rep 2017;7:10902. [PMID: 28883418 DOI: 10.1038/s41598-017-10787-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
130 Ding W, Wang R, Liang Z, Zhang R, Qian P, Zhang W. Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. Mar Life Sci Technol 2021;3:395-404. [DOI: 10.1007/s42995-020-00078-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Chen HS, Lu F, Lieberman PM. Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013;3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
132 Majerciak V, Yang W, Zheng J, Zhu J, Zheng ZM. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. J Virol 2019;93:e01593-18. [PMID: 30355690 DOI: 10.1128/JVI.01593-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
133 Haas OA. Primary Immunodeficiency and Cancer Predisposition Revisited: Embedding Two Closely Related Concepts Into an Integrative Conceptual Framework. Front Immunol 2018;9:3136. [PMID: 30809233 DOI: 10.3389/fimmu.2018.03136] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
134 El-Missiry MA, El-Missiry ZMA, Othman AI. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur J Pharmacol 2020;882:173329. [PMID: 32615182 DOI: 10.1016/j.ejphar.2020.173329] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
135 Yang Z, Cao S, Martens CA, Porcella SF, Xie Z, Ma M, Shen B, Moss B. Deciphering poxvirus gene expression by RNA sequencing and ribosome profiling. J Virol 2015;89:6874-86. [PMID: 25903347 DOI: 10.1128/JVI.00528-15] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
136 Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013;14:543. [PMID: 23937650 DOI: 10.1186/1471-2164-14-543] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 6.1] [Reference Citation Analysis]
137 Wilson JB, Manet E, Gruffat H, Busson P, Blondel M, Fahraeus R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018;10:E109. [PMID: 29642420 DOI: 10.3390/cancers10040109] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
138 Jin S, Li R, Chen MY, Yu C, Tang LQ, Liu YM, Li JP, Liu YN, Luo YL, Zhao Y, Zhang Y, Xia TL, Liu SX, Liu Q, Wang GN, You R, Peng JY, Li J, Han F, Wang J, Chen QY, Zhang L, Mai HQ, Gewurz BE, Zhao B, Young LS, Zhong Q, Bai F, Zeng MS. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res 2020;30:950-65. [PMID: 32901110 DOI: 10.1038/s41422-020-00402-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
139 He YQ, Liao XY, Xue WQ, Xu YF, Xu FH, Li FF, Li XZ, Zhang JB, Wang TM, Wang F, Yu HL, Feng QS, Chen LZ, Cao SM, Liu Q, Mu J, Jia WH. Association Between Environmental Factors and Oral Epstein-Barr Virus DNA Loads: A Multicenter Cross-sectional Study in China. J Infect Dis 2019;219:400-9. [PMID: 30307559 DOI: 10.1093/infdis/jiy542] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
140 Fernandez SG, Miranda JJ. Bendamustine reactivates latent Epstein-Barr virus. Leuk Lymphoma 2016;57:1208-10. [PMID: 26371746 DOI: 10.3109/10428194.2015.1079317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
141 Ersing I, Nobre L, Wang LW, Soday L, Ma Y, Paulo JA, Narita Y, Ashbaugh CW, Jiang C, Grayson NE, Kieff E, Gygi SP, Weekes MP, Gewurz BE. A Temporal Proteomic Map of Epstein-Barr Virus Lytic Replication in B Cells. Cell Rep 2017;19:1479-93. [PMID: 28514666 DOI: 10.1016/j.celrep.2017.04.062] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 11.3] [Reference Citation Analysis]
142 Al Hamad M, Matalka I, Al Zoubi MS, Armogida I, Khasawneh R, Al-Husaini M, Sughayer M, Jaradat S, Al-Nasser AD, Mazzanti CM. Human Mammary Tumor Virus, Human Papilloma Virus, and Epstein-Barr Virus Infection Are Associated With Sporadic Breast Cancer Metastasis. Breast Cancer (Auckl) 2020;14:1178223420976388. [PMID: 33281452 DOI: 10.1177/1178223420976388] [Reference Citation Analysis]
143 Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017;9:E309. [PMID: 29065472 DOI: 10.3390/v9100309] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
144 Fülöp Á, Torma G, Moldován N, Szenthe K, Bánáti F, Almsarrhad IAA, Csabai Z, Tombácz D, Minárovits J, Boldogkői Z. Integrative profiling of Epstein-Barr virus transcriptome using a multiplatform approach. Virol J 2022;19:7. [PMID: 34991630 DOI: 10.1186/s12985-021-01734-6] [Reference Citation Analysis]
145 Funata S, Matsusaka K, Yamanaka R, Yamamoto S, Okabe A, Fukuyo M, Aburatani H, Fukayama M, Kaneda A. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget 2017;8:55265-79. [PMID: 28903418 DOI: 10.18632/oncotarget.19423] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
146 Staheli JP, Dyen MR, Deutsch GH, Basom RS, Fitzgibbon MP, Lewis P, Barcy S. Complete Unique Genome Sequence, Expression Profile, and Salivary Gland Tissue Tropism of the Herpesvirus 7 Homolog in Pigtailed Macaques. J Virol 2016;90:6657-74. [PMID: 27170755 DOI: 10.1128/JVI.00651-16] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
147 Dheekollu J, Wiedmer A, Sentana-Lledo D, Cassel J, Messick T, Lieberman PM. HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol 2016;90:5353-67. [PMID: 27009953 DOI: 10.1128/JVI.00239-16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
148 Moss WN, Lee N, Pimienta G, Steitz JA. RNA families in Epstein-Barr virus. RNA Biol 2014;11:10-7. [PMID: 24441309 DOI: 10.4161/rna.27488] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
149 Bordi I, Ricigliano VA, Umeton R, Ristori G, Grassi F, Crisanti A, Sutera A, Salvetti M. Noise in multiple sclerosis: unwanted and necessary. Ann Clin Transl Neurol 2014;1:502-11. [PMID: 25356421 DOI: 10.1002/acn3.72] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
150 Wang H, Huang B, Wang J. Predict long-range enhancer regulation based on protein-protein interactions between transcription factors. Nucleic Acids Res 2021;49:10347-68. [PMID: 34570239 DOI: 10.1093/nar/gkab841] [Reference Citation Analysis]
151 Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018;9:1316. [PMID: 29963045 DOI: 10.3389/fimmu.2018.01316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]