BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karimi-Maleh H, Khataee A, Karimi F, Baghayeri M, Fu L, Rouhi J, Karaman C, Karaman O, Boukherroub R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere 2021;:132928. [PMID: 34800513 DOI: 10.1016/j.chemosphere.2021.132928] [Cited by in Crossref: 127] [Cited by in F6Publishing: 141] [Article Influence: 63.5] [Reference Citation Analysis]
Number Citing Articles
1 Abedi R, Bakhsh Raoof J, Mohseni M, Bagheri Hashkavayi A. Sandwich-Type Electrochemical Aptasensor for Highly Sensitive and Selective Detection of Pseudomonas Aeruginosa Bacteria Using a Dual Signal Amplification Strategy. Bioelectrochemistry 2023;150:108332. [PMID: 36493674 DOI: 10.1016/j.bioelechem.2022.108332] [Reference Citation Analysis]
2 Zahedi F, Shabani-nooshabadi M. Porous structure Ni/CuCo2O4 core–shell as a novel type of three-dimensional electrode with facile fabrication and binder-free toward enhanced methanol oxidation and supercapacitor performances. Fuel 2023;335:127083. [DOI: 10.1016/j.fuel.2022.127083] [Reference Citation Analysis]
3 Gargari MR, Mahmoudi E, Majidi MM, Sohrabi H, Majidi MR, Niaei A. Mesoporous perovskite-type La0.8Sr0.2Cu0.7Mn0.3O3/SiO2 nanocomposite-decorated-graphene-oxide nanosheets: Green synthesis and application in the sensitive determination of Morin in kiwi fruit samples. Synthetic Metals 2023;293:117257. [DOI: 10.1016/j.synthmet.2022.117257] [Reference Citation Analysis]
4 Liu Z, Wang R, Xue Q, Chang C, Liu Y, He L. Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. Inorganic Chemistry Communications 2023;148:110321. [DOI: 10.1016/j.inoche.2022.110321] [Reference Citation Analysis]
5 Karimi-maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN, Karaman O. Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 2023;6:29. [DOI: 10.1007/s42114-022-00597-x] [Reference Citation Analysis]
6 Karimi A, Ensafi AA, Rezaei B. Design and fabrication of MOF-derived leaf-like Zn-Co-S nanosheet arrays decorated with Ni-Zn-P ultrathin nanostructure for hybrid supercapacitors. Fuel 2023;334:126536. [DOI: 10.1016/j.fuel.2022.126536] [Reference Citation Analysis]
7 Jinxi W, Aimin W, Ghasemi AK, Lashkenari MS, Pashai E, Karaman C, Niculina DE, Karimi-maleh H. Tailoring of ZnFe2O4-ZrO2-based nanoarchitectures catalyst for supercapacitor electrode material and methanol oxidation reaction. Fuel 2023;334:126685. [DOI: 10.1016/j.fuel.2022.126685] [Reference Citation Analysis]
8 Zhao J, Long Y, He C, Yang H, Zhao S, Luo X, Huo D, Hou C. Simultaneous Electrochemical Detection of Cd2+ and Pb2+ Based on an MOF-Derived Carbon Composite Linked with Multiwalled Carbon Nanotubes. ACS Sustainable Chem Eng 2023. [DOI: 10.1021/acssuschemeng.2c05240] [Reference Citation Analysis]
9 Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe(2)O(4)@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. Appl Nanosci 2023;:1-10. [PMID: 36710715 DOI: 10.1007/s13204-023-02773-x] [Reference Citation Analysis]
10 Buledi JA, Solangi AR, Mallah A, Hassan SS, Ameen S, Karaman C, Karimi-maleh H. A Reusable Nickel Oxide Reduced Graphene Oxide Modified Platinum Electrode for the Detection of Linezolid Drug. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03334] [Reference Citation Analysis]
11 Sun W, Hong Y, Li T, Chu H, Liu J, Feng L, Baghayeri M. Biogenic synthesis of reduced graphene oxide decorated with silver nanoparticles (rGO/Ag NPs) using table olive (olea europaea) for efficient and rapid catalytic reduction of organic pollutants. Chemosphere 2023;310:136759. [DOI: 10.1016/j.chemosphere.2022.136759] [Reference Citation Analysis]
12 Rouhi N, Akhgari A, Orouji N, Nezami A, Rahimzadegan M, Kamali H. Recent progress in the graphene-based biosensing approaches for the detection of Alzheimer's biomarkers. Journal of Pharmaceutical and Biomedical Analysis 2023;222:115084. [DOI: 10.1016/j.jpba.2022.115084] [Reference Citation Analysis]
13 Bouali W, Erk N, Kholafazadehastamal G, Naser M, Tiris G. Low-cost voltammetric sensor based on reduced graphene oxide anchored on platinum nanoparticles for robust determination of Favipiravir in real samples. Diamond and Related Materials 2023;131:109609. [DOI: 10.1016/j.diamond.2022.109609] [Reference Citation Analysis]
14 Dabirian E, Hajipour A, Mehrizi AA, Karaman C, Karimi F, Loke-show P, Karaman O. Nanoparticles application on fuel production from biological resources: A review. Fuel 2023;331:125682. [DOI: 10.1016/j.fuel.2022.125682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Buledi JA, Solangi AR, Mallah A, Shah Z, Sherazi ST, Shah MR, Hyder A, Ali S. Electrochemical monitoring of isoproturon herbicide using NiO/V2O5/rGO/GCE. Food Measure 2022. [DOI: 10.1007/s11694-022-01733-3] [Reference Citation Analysis]
16 Ansari SH, Arvand M. Electrospun ruthenium oxide nanofibers/poly(sulfosalicylic acid) nanocomposite as an highly sensitive electrochemical platform for determination of sunset yellow in food samples. Food Measure 2022. [DOI: 10.1007/s11694-022-01731-5] [Reference Citation Analysis]
17 Liu Y, Chang C, Xue Q, Wang R, Chen L, Liu Z, He L. Highly efficient detection of Pb(II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode. Diamond and Related Materials 2022;130:109477. [DOI: 10.1016/j.diamond.2022.109477] [Reference Citation Analysis]
18 Qu K, Hu X, Li Q. Electrochemical environmental pollutant detection enabled by waste tangerine peel-derived biochar. Diamond and Related Materials 2022. [DOI: 10.1016/j.diamond.2022.109617] [Reference Citation Analysis]
19 Mohammadnavaz A, Beitollahi H, Modiri S. Electro-Catalytic Determination of L-Cysteine Using Multi Walled Carbon Nanotubes-Co3O4 Nanocomposite/Benzoylferrocene/Ionic liquid Modified Carbon Paste Electrode. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.121340] [Reference Citation Analysis]
20 Amirabad TN, Ensafi AA, Rezaei B. Boosting supercapacitor performance by in-situ modification of binder-free electrodes with green synthesized Zn-doped Fe2O3 nanoparticles on 2D-MoS2@rGO nanosheets. Fuel 2022;330:125645. [DOI: 10.1016/j.fuel.2022.125645] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Karimi F, Korkmaz S, Karaman C, Karaman O, Afşin Kariper İ. Engineering of GO/MWCNT/RuO2 ternary aerogel for high-performance supercapacitor. Fuel 2022;329:125398. [DOI: 10.1016/j.fuel.2022.125398] [Reference Citation Analysis]
22 Akin M, Bekmezci M, Bayat R, Coguplugil ZK, Sen F, Karimi F, Karimi-maleh H. Mobile device integrated graphene oxide quantum dots based electrochemical biosensor design for detection of miR-141 as a pancreatic cancer biomarker. Electrochimica Acta 2022;435:141390. [DOI: 10.1016/j.electacta.2022.141390] [Reference Citation Analysis]
23 Kumar P, Khan MQ, Khan RA, Ahmad K, Kim H. Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications. Inorganics 2022;10:219. [DOI: 10.3390/inorganics10120219] [Reference Citation Analysis]
24 Taha A, Albahadly WKY, Ahmed YM, Kareem ZH, Hasan MM, Al Kubaisy MMR, Al-baghdady HFA, Hameed NM, Adhab AH, Abood ES, Ghafel ST. Electrochemical sensors of cardiovascular drug–plavix on hexagonal Ce3+/NiO nanodisks modified screen-printed electrode. J Appl Electrochem 2022. [DOI: 10.1007/s10800-022-01787-7] [Reference Citation Analysis]
25 Tamoradi T, Kiasat AR, Veisi H, Nobakht V, Karmakar B. RSM process optimization of biodiesel production from rapeseed oil and waste corn oil in the presence of green and novel catalyst. Sci Rep 2022;12:19652. [PMID: 36385114 DOI: 10.1038/s41598-022-20538-4] [Reference Citation Analysis]
26 Hu J, Shen Y, Zheng Y, Zhou W, Karimi-maleh H, Liu Q, Fu L. Electrochemical fingerprinting sensor for plant phylogenetic investigation: A case of sclerophyllous oak. Front Plant Sci 2022;13. [DOI: 10.3389/fpls.2022.962301] [Reference Citation Analysis]
27 Ziaie N, Shabani-nooshabadi M. Application of the C–C3N4/Li2CoMn3O8//IL nanocomposite for design a sensitive electrochemical sensor inorder to detection of cetirizine, acetaminophen and phenylephrine in biological and pharmaceuticals samples. Environmental Research 2022. [DOI: 10.1016/j.envres.2022.114667] [Reference Citation Analysis]
28 Ghanbari R, Nazarzadeh Zare E, Paiva-santos AC, Rabiee N. Ti3C2Tx MXene@MOF decorated polyvinylidene fluoride membrane for the remediation of heavy metals ions and desalination. Chemosphere 2022. [DOI: 10.1016/j.chemosphere.2022.137191] [Reference Citation Analysis]
29 Khajir S, Karimzadeh Z, Khoubnasabjafari M, Jouyban-gharamaleki V, Rahimpour E, Jouyban A. A Rayleigh light scattering technique based on β- cyclodextrin modified gold nanoparticles for phenytoin determination in exhaled breath condensate. Journal of Pharmaceutical and Biomedical Analysis 2022. [DOI: 10.1016/j.jpba.2022.115141] [Reference Citation Analysis]
30 Sun D, Xie B, Li J, Huang X, Chen J, Zhang F. A low-cost microbial fuel cell based sensor for in-situ monitoring of dissolved oxygen for over half a year. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114888] [Reference Citation Analysis]
31 El-nowihy GH, El-deab MS. Tailor-designed Pd-Cu-Ni/rGO nanocomposite for efficient glucose electro-oxidation. Journal of Electroanalytical Chemistry 2022;925:116917. [DOI: 10.1016/j.jelechem.2022.116917] [Reference Citation Analysis]
32 Ipte PR, Manna S, Satpati AK. Electrochemical and spectroscopic evaluation of 6-MP and its interaction with carbon dots and dsDNA. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108159] [Reference Citation Analysis]
33 Lei Z, Alwan M, Alamir HTA, Alkaaby HHC, Farhan SS, Awadh SA, Altimari US, Al-baghdady HFA, Kadhim AA, Qasim MT, Adhab AH, Nekuei A. Detection of abemaciclib, an anti-breast cancer agent, using a new electrochemical DNA biosensor. Front Chem 2022;10:980162. [DOI: 10.3389/fchem.2022.980162] [Reference Citation Analysis]
34 Beitollahi H, Dourandish Z, Tajik S, Sharifi F, Jahani PM. Electrochemical Sensor Based on Ni-Co Layered Double Hydroxide Hollow Nanostructures for Ultrasensitive Detection of Sumatriptan and Naproxen. Biosensors (Basel) 2022;12:872. [PMID: 36291009 DOI: 10.3390/bios12100872] [Reference Citation Analysis]
35 Xie G, Li G, Chen D, Meng X, Fan C, Pang B, Zhang Y, Chen Y, Yu L, Dong L. Highly sensitive non-enzymatic glucose sensor based on CoCu@MC derived from CoCu/melamine cyanurate superstructures. Diamond and Related Materials 2022. [DOI: 10.1016/j.diamond.2022.109509] [Reference Citation Analysis]
36 Karimi-maleh H, Afşin Kariper İ, Karaman C, Korkmaz S, Karaman O. Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material. Fuel 2022;325:124843. [DOI: 10.1016/j.fuel.2022.124843] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Poursoltani Zarandi M, Beitollahi H. Design of electrochemical sensor based on N-doped reduced graphene oxide/copper oxide nanocomposite and ionic liquid for the simultaneous determination of 4-aminophenol and acetaminophen. Microchemical Journal 2022;181:107726. [DOI: 10.1016/j.microc.2022.107726] [Reference Citation Analysis]
38 Ma E, Liu C, Bai X, Fan P, Li G, Chen K, Li L, Qu Q. An ultrasensitive electrochemical DNA biosensor based on the highly conductive Nd–Sb-co-doped SnO2@Pt nanocomposite for the rapid detection of HIV-DNA. Journal of Materials Research. [DOI: 10.1557/s43578-022-00731-x] [Reference Citation Analysis]
39 Saad MA, Sakr MAS, Saroka VA, Abdelsalam H. Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study. Chemosphere 2022;:136581. [PMID: 36162514 DOI: 10.1016/j.chemosphere.2022.136581] [Reference Citation Analysis]
40 Alizadeh M, Asrami PN, Altuner EE, Gulbagca F, Tiri RNE, Aygun A, Kaynak İ, Sen F, Cheraghi S. An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode. Chemosphere 2022;:136566. [PMID: 36152837 DOI: 10.1016/j.chemosphere.2022.136566] [Reference Citation Analysis]
41 Erk N, Mehmandoust M, Soylak M. Electrochemical Sensing of Favipiravir with an Innovative Water-Dispersible Molecularly Imprinted Polymer Based on the Bimetallic Metal-Organic Framework: Comparison of Morphological Effects. Biosensors 2022;12:769. [DOI: 10.3390/bios12090769] [Reference Citation Analysis]
42 Wang J, Li K, Gan G. Sr2+ Ion Substitution Enhanced Dielectric Properties of Co(2)Z Ferrites for VHF Antenna Substrate. Metals 2022;12:1541. [DOI: 10.3390/met12091541] [Reference Citation Analysis]
43 Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022;221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Reference Citation Analysis]
44 Riahi R, Taher MA, Beitollahi H. Hydroxylamine electrochemical sensor based on magnesium aluminate spinel nanoparticles modified electrode. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2022.2118587] [Reference Citation Analysis]
45 Kondori T, Tajik S, Akbarzadeh-t N, Beitollahi H, Graiff C. Screen-printed electrode modified with Co-NPs, as an electrochemical sensor for simultaneous determination of doxorubicin and dasatinib. J IRAN CHEM SOC 2022. [DOI: 10.1007/s13738-022-02613-9] [Reference Citation Analysis]
46 Mehmandoust M, Pourhakkak P, Tiris G, Karimi-maleh H, Erk N. A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe2O4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation. Environmental Research 2022;212:113264. [DOI: 10.1016/j.envres.2022.113264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Kariper İA, Korkmaz S, Karaman C, Karaman O. High energy supercapacitors based on functionalized carbon nanotubes: Effect of atomic oxygen doping via various radiation sources. Fuel 2022;324:124497. [DOI: 10.1016/j.fuel.2022.124497] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
48 Kondori T, Tajik S, Akbarzadeh-t N, Beitollahi H, Hosseinzadeh R, Mousazadeh F, Mohammadi SZ, Graiff C. A Novel Carbon Paste Electrode-Modified Electrocatalytic CO–Ce–NPs for Sulfite Detection: A Sonochemical Synthesis. Iran J Sci Technol Trans Sci 2022. [DOI: 10.1007/s40995-022-01345-y] [Reference Citation Analysis]
49 Raeisi-kheirabadi N, Nezamzadeh-ejhieh A, Aghaei H. Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS Omega. [DOI: 10.1021/acsomega.2c03441] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Zarandi MP, Beitollahi H. A voltammetric sensor for the detection of 2-aminophenol in the presence of bisphenol A using a carbon paste electrode modified with N-doped reduced graphene oxide/CuO nanocomposite and ionic liquid. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08725-5] [Reference Citation Analysis]
51 Mathew AT, Saravanakumar MP. Removal of micropollutants through bio-based materials as a transition to circular bioeconomy: Treatment processes involved, perspectives and bottlenecks. Environ Res 2022;214:114150. [PMID: 36007569 DOI: 10.1016/j.envres.2022.114150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Han W, Huang Y, Su M, Liu H, Shen C, Zhou Y, Ou T, Chen D. Highly selective adsorption and lattice process of cesium by cubic cyanide-based functional materials. Environ Res 2022;214:114085. [PMID: 35987376 DOI: 10.1016/j.envres.2022.114085] [Reference Citation Analysis]
53 Shokri F, Yari A, Jalalvand AR. Simultaneous estimation of rates of DNA damage induced by three important chemotherapy drugs by a novel electrochemical biosensor assisted by chemometric multivariate calibration methods. Int J Biol Macromol 2022;219:650-62. [PMID: 35952814 DOI: 10.1016/j.ijbiomac.2022.08.015] [Reference Citation Analysis]
54 Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. Environ Res 2022;214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Reference Citation Analysis]
55 Khatoon A, Syed JA, Buledi JA, Shakeel S, Mallah A, Solangi AR, Sirajuddin, Sherazi STH, Shah MR. Bio-green fabrication of bell pepper mediated silver nanoparticles: an efficient material for electrochemical sensing of arbutin in cosmetics. J IRAN CHEM SOC 2022;19:3659-3672. [DOI: 10.1007/s13738-022-02558-z] [Reference Citation Analysis]
56 Abed MF, Faisal AA. Calcium/iron-layered double hydroxides-sodium alginate for removal of tetracycline antibiotic from aqueous solution. Alexandria Engineering Journal 2022. [DOI: 10.1016/j.aej.2022.07.055] [Reference Citation Analysis]
57 Yola ML. Carbendazim imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite: Application to fruit juice samples. Chemosphere 2022;301:134766. [DOI: 10.1016/j.chemosphere.2022.134766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
58 Foroughi MM, Jahani S. Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchemical Journal 2022;179:107546. [DOI: 10.1016/j.microc.2022.107546] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
59 Ghalkhani M, Abdullah Mirzaie R, Banimostafa A, Sohouli E, Hashemi E. Electrosynthesis of ternary nonprecious Ni, Cu, Fe oxide nanostructure as efficient electrocatalyst for ethanol electro-oxidation: Design strategy and electrochemical performance. International Journal of Hydrogen Energy 2022. [DOI: 10.1016/j.ijhydene.2022.06.309] [Reference Citation Analysis]
60 Pan Y, Yin C, Fernandez C, Fu L, Lin CT. A Systematic Review and Bibliometric Analysis of Flame-Retardant Rigid Polyurethane Foam from 1963 to 2021. Polymers (Basel) 2022;14:3011. [PMID: 35893975 DOI: 10.3390/polym14153011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Zhao Y, Song X, Fu L. An Electrochemical-Based Point-of-Care Testing Methodology for Uric Acid Measurement. Journal of Analytical Methods in Chemistry 2022;2022:1-6. [DOI: 10.1155/2022/8555842] [Reference Citation Analysis]
62 Eadi SB, Yan H, Kumar PS, Rathinam Y, Lee HD. IGZO-decorated ZnO thin films and their application for gas sensing. Environ Res 2022;214:113796. [PMID: 35810811 DOI: 10.1016/j.envres.2022.113796] [Reference Citation Analysis]
63 Ajermoun N, Aghris S, Ettadili F, Alaoui OT, Laghrib F, Farahi A, Lahrich S, Bakasse M, Saqrane S, El Mhammedi MA. Phytotoxic effect of the insecticide imidacloprid in Phaseolus vulgaris L. plant and evaluation of its bioaccumulation and translocation by electrochemical methods. Environ Res 2022;214:113794. [PMID: 35809636 DOI: 10.1016/j.envres.2022.113794] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environ Res 2022;214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Vigneshwar SS, Swetha A, Gopinath KP, Goutham R, Pal R, Arun J, Sundarrajan P, Bhatnagar A, Lan Chi NT, Pugazhendhi A. Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food and Chemical Toxicology 2022;165:113184. [DOI: 10.1016/j.fct.2022.113184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Ebratkhahan M, Zarei M, Akpinar IZ, Önder Metin. One-pot synthesis of graphene hydrogel/M (M: Cu, Co, Ni) nanocomposites as cathodes for electrochemical removal of rifampicin from polluted water. Environmental Research 2022. [DOI: 10.1016/j.envres.2022.113789] [Reference Citation Analysis]
67 Mazinai A, Zare K, Moradi O, Attar H. Sulfonated calixarene modified Poly(methyl methacrylate) nanoparticles:A promising adsorbent for Removal of Vanadium Ions from aqueous media. Chemosphere 2022;299:134459. [DOI: 10.1016/j.chemosphere.2022.134459] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
68 Bahadoran A, Ramakrishna S, Oryani B, Ahmed Al-keridis L, Rashidi Nodeh H, Rezania S. Biodiesel production from waste cooking oil using heterogeneous nanocatalyst-based magnetic polyaniline decorated with cobalt oxide. Fuel 2022;319:123858. [DOI: 10.1016/j.fuel.2022.123858] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
69 Recepoglu YK, Goren AY, Vatanpour V, Yoon Y, Khataee A. Boron carbon nitride nanosheets in water and wastewater treatment: A critical review. Desalination 2022;533:115782. [DOI: 10.1016/j.desal.2022.115782] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Turkyilmaz M, Dönmez M, Ates M. Synthesis of Pincer type carbene and their Ag(I)-NHC complexes, and their Antimicrobial activities. JSCMT 2022;7:53-61. [DOI: 10.47481/jscmt.1117139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ahghari MA, Ahghari MR, Kamalzare M, Maleki A. Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO3 bionanocomposite and study its antibacterial activity. Sci Rep 2022;12:10491. [PMID: 35729281 DOI: 10.1038/s41598-022-14501-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
72 Lv R, Sun R, Du T, Li Y, Chen L, Zhang Y, Qi Y. Cu2+ modified Zr-based metal organic framework-CTAB-graphene for sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022;:113250. [PMID: 35750088 DOI: 10.1016/j.fct.2022.113250] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
73 Chompunut L, Wanaporn T, Anupong W, Narayanan M, Alshiekheid M, Sabour A, Karuppusamy I, Lan Chi NT, Shanmuganathan R. Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties. Food Chem Toxicol 2022;166:113245. [PMID: 35728723 DOI: 10.1016/j.fct.2022.113245] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
74 Ly NH, Kim MK, Lee H, Lee C, Son SJ, Zoh KD, Vasseghian Y, Joo SW. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. J Nanostructure Chem 2022;:1-24. [PMID: 35757049 DOI: 10.1007/s40097-022-00506-0] [Reference Citation Analysis]
75 Garkani Nejad F, Asadi MH, Sheikhshoaie I, Dourandish Z, Zaimbashi R, Beitollahi H. Construction of modified screen-printed graphite electrode for the application in electrochemical detection of sunset yellow in food samples. Food Chem Toxicol 2022;166:113243. [PMID: 35728724 DOI: 10.1016/j.fct.2022.113243] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Qi Y, Sun R, Lv R, Li Y, Du T, Chen L, Zhang Y, Yang W. Polyoxometalates-graphene nanocomposites modified electrode for electro-sensing detection of Sudan I in food. Food Chem Toxicol 2022;166:113222. [PMID: 35690185 DOI: 10.1016/j.fct.2022.113222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Chen H, Liu H, Cui C, Zhang X, Yang W, Zuo Y. Highly sensitive detection of Brucella in milk by cysteamine functionalized nanogold/4-Mercaptobenzoic acid electrochemical biosensor. Food Measure. [DOI: 10.1007/s11694-022-01428-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Alizadeh M, Garkani Nejad F, Dourandish Z, Tajik S, Karimi F, Mohammadzadeh Jahani P, Aghaei Afshar A, Zaimbashi R, Sheikhshoaie I, Beitollahi H. A brief review on the recent achievements in electrochemical detection of folic acid. Food Measure. [DOI: 10.1007/s11694-022-01421-2] [Reference Citation Analysis]
79 Ghanei-motlagh M, Baghayeri M. Application of N,S-dual-doped carbon/sepiolite clay hybrid material for electrochemical detection of mercury(II) in water resources. Materials Chemistry and Physics 2022;285:126127. [DOI: 10.1016/j.matchemphys.2022.126127] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
80 Bagherzadeh SB, Haghighi M, Minaei S. Structural and surface evolution of nanostructured Cu-Zn-Al catalyst designed by hybrid plasma-enhanced microwave-irradiated urea-nitrate-combustion for selective H2-production. Journal of the Taiwan Institute of Chemical Engineers 2022;135:104367. [DOI: 10.1016/j.jtice.2022.104367] [Reference Citation Analysis]
81 Yu M, Liu M, Li Y, Zheng Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. Journal of Analytical Methods in Chemistry 2022;2022:1-8. [DOI: 10.1155/2022/5711384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Zheng Y, Karimi-maleh H, Fu L. Advances in Electrochemical Techniques for the Detection and Analysis of Genetically Modified Organisms: An Analysis Based on Bibliometrics. Chemosensors 2022;10:194. [DOI: 10.3390/chemosensors10050194] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
83 Zhu J, Fu Q, Song L, Liu L, Zheng Z, Xu Y, Zhang Z, Karimi-maleh H. Advances in Peripheral Nerve Injury Repair with the Application of Nanomaterials. Journal of Nanomaterials 2022;2022:1-22. [DOI: 10.1155/2022/7619884] [Reference Citation Analysis]
84 Arvand M, Ilkhani H, Ganjali MR, Pourhabib A. Electrochemical investigation of DNA-metal complex interactions and development of a highly sensitive electrochemical biosensor. Anal Biochem 2022;:114738. [PMID: 35597268 DOI: 10.1016/j.ab.2022.114738] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Guo Y, Feng L. Highly Sensitive Detection of Carcinoembryonic Antigen via an Electrochemical Platform Fabricated by AuNPs/Streptavidin/Reduced Graphene Oxide. Front Chem 2022;10:898924. [DOI: 10.3389/fchem.2022.898924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
86 Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere 2022;302:134826. [PMID: 35525455 DOI: 10.1016/j.chemosphere.2022.134826] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
87 Tajik S, Beitollahi H. Hydrothermal synthesis of CuFe2O4 nanoparticles for highly sensitive electrochemical detection of sunset yellow. Food Chem Toxicol 2022;:113048. [PMID: 35523384 DOI: 10.1016/j.fct.2022.113048] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
88 Mihailova I, Gerbreders V, Krasovska M, Sledevskis E, Mizers V, Bulanovs A, Ogurcovs A. A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures. Beilstein J Nanotechnol 2022;13:424-36. [DOI: 10.3762/bjnano.13.35] [Reference Citation Analysis]
89 Solangi N, Kumar J, Naz G, Soomro RA. The preparation of NiCo2O4 nanoboulders and their application in the electrochemical detection of ofloxacin drug. JCIS Open 2022;6:100054. [DOI: 10.1016/j.jciso.2022.100054] [Reference Citation Analysis]
90 Moradi O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review. Food Chem Toxicol 2022;165:113074. [PMID: 35489466 DOI: 10.1016/j.fct.2022.113074] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
91 Karimi F, Demir E, Aydogdu N, Shojaei M, Taher MA, Asrami PN, Alizadeh M, Ghasemi Y, Cheraghi S. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) Drom Azo Dyestuff class. Food Chem Toxicol 2022;:113075. [PMID: 35487338 DOI: 10.1016/j.fct.2022.113075] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
92 Shahinfard H, Shabani-Nooshabadi M, Reisi-Vanani A, Ansarinejad H. A novel platform based on CoMn2O4-rGO/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode for voltammetric detection of pethidine in the presence morphine and olanzapine. Chemosphere 2022;:134710. [PMID: 35487358 DOI: 10.1016/j.chemosphere.2022.134710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Jahani PM, Nejad FG, Dourandish Z, Zarandi MP, Safizadeh MM, Tajik S, Beitollahi H. A modified carbon paste electrode with N-rGO/CuO nanocomposite and ionic liquid for the efficient and cheap voltammetric sensing of hydroquinone in water specimens. Chemosphere 2022;302:134712. [PMID: 35487364 DOI: 10.1016/j.chemosphere.2022.134712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
94 Zheng Y, Karimi-maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. Sensors 2022;22:3238. [DOI: 10.3390/s22093238] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
95 Moradpour H, Beitollahi H, Nejad FG, Di Bartolomeo A. Glassy Carbon Electrode Modified with N-Doped Reduced Graphene Oxide Sheets as an Effective Electrochemical Sensor for Amaranth Detection. Materials (Basel) 2022;15:3011. [PMID: 35591345 DOI: 10.3390/ma15093011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
96 Memon AF, Ameen S, Qambrani N, Buledi JA, Khand NH, Solangi AR, Taqvi SIH, Karaman C, Karimi F, Afsharmanesh E. An improved electrochemical sensor based on triton X-100 functionalized SnO2 nanoparticles for ultrasensitive determination of cadmium. Chemosphere 2022;:134634. [PMID: 35439494 DOI: 10.1016/j.chemosphere.2022.134634] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
97 Şenocak A, Sanko V, Tümay SO, Orooji Y, Demirbas E, Yoon Y, Khataee A. Ultrasensitive electrochemical sensor for detection of rutin antioxidant by layered Ti3Al0.5Cu0.5C2 MAX phase. Food Chem Toxicol 2022;:113016. [PMID: 35430329 DOI: 10.1016/j.fct.2022.113016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
98 Alaei A, Hosseini M, Nemati F, Karimi-Maleh H. The synthesis of Pt doped WO3 nanosheets and application on colorimetric detection of cysteine by naked eye using response surface methodology for optimization. Environ Res 2022;212:113246. [PMID: 35398080 DOI: 10.1016/j.envres.2022.113246] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Ţuchiu BM, Stefan-van Staden RI, Bădulescu M, van Staden JF. Disposable stochastic sensors for fast analysis of ibuprofen, ketoprofen, and flurbiprofen in their topical pharmaceutical formulations. J Pharm Biomed Anal 2022;215:114758. [PMID: 35421777 DOI: 10.1016/j.jpba.2022.114758] [Reference Citation Analysis]
100 Wang H, Cao T, Zhou Y, Liu L, Zhang X, Tong Z. A facile approach to synthesis methylene blue/reduced graphene oxide nanocomposite and simultaneous determination of dopamine and uric acid. J Appl Electrochem. [DOI: 10.1007/s10800-022-01695-w] [Reference Citation Analysis]
101 Jahani PM, Aflatoonian MR, Rayeni RA, Di Bartolomeo A, Mohammadi SZ. Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.112962] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
102 Sohrabi H, Arbabzadeh O, Falaki M, Majidi MR, Han N, Yoon Y, Khataee A. Electrochemical layered double hydroxide (LDH)-based biosensors for pesticides detection in food and environment samples: A review of status and prospects. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.113010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
103 Chen H, Yeh Y, Yen M. Synthesis of Au or Ag/Cu2O/ aluminum doped zinc oxide nanorods hybrid electrode for high sensitive non-enzymatic glucose sensor: Mechanism investigation of formation and surface plasmon resonance. Materials Chemistry and Physics 2022;282:125924. [DOI: 10.1016/j.matchemphys.2022.125924] [Reference Citation Analysis]
104 Zhao Y, Ma Y, Zhou R, He Y, Wu Y, Yi Y, Zhu G. Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode. Food Measure. [DOI: 10.1007/s11694-022-01366-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Asgari S, Ziarani GM, Badiei A, Setayeshmehr M, Kiani M, Pourjavadi A. Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance. Chemosphere 2022;:134436. [PMID: 35358565 DOI: 10.1016/j.chemosphere.2022.134436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
106 Sebokolodi TI, Sipuka DS, Tsekeli TR, Nkosi D, Arotiba OA. An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode. Food Measure. [DOI: 10.1007/s11694-022-01365-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
107 Banga I, Paul A, France K, Micklich B, Cardwell B, Micklich C, Prasad S. E.Co.Tech-electrochemical handheld breathalyzer COVID sensing technology. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-08321-x] [Reference Citation Analysis]
108 Gheorghe DC, Ilie-Mihai RM, Stefan-van Staden RI, Lungu-Moscalu A, van Staden JKF. Fast screening method for early diagnostic of gastric cancer based on utilization of a chitosan - S-doped graphene - based needle stochastic sensors. J Pharm Biomed Anal 2022;214:114725. [PMID: 35303648 DOI: 10.1016/j.jpba.2022.114725] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
109 Nasehi P, Moghaddam MS, Rezaei-savadkouhi N, Alizadeh M, Yazdani MN, Agheli H. Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid. Food Measure. [DOI: 10.1007/s11694-022-01321-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
110 Zaheiritousi N, Zamani HA, Karimi-maleh H. Fast and Unique Electrochemical Sensor Amplified with MgO/CNTs and Ionic Liquid for Monitoring of Isuprel in Pharmaceutical and Biological Fluid Samples. Top Catal. [DOI: 10.1007/s11244-022-01598-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
111 Nagarajan L, Saravanan P, Kumaraguru K, Joo SW, Vasseghian Y, Rajeshkannan R, Rajasimman M. Synthesis of magnesium nanocomposites decked with multilayer graphene (MG) and its application for the adsorptive removal of pollutant. Chemosphere 2022;:134121. [PMID: 35271899 DOI: 10.1016/j.chemosphere.2022.134121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
112 Chenarani S, Ebrahimi M, Arabali V, Beyramabadi SA. Determination of Lorazepam Using the Electrocatalytic Effect of NiO/SWCNTs Modified Carbon Paste Electrode as a Powerful Sensor. Top Catal. [DOI: 10.1007/s11244-022-01561-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Arab Z, Jafarian S, Karimi-maleh H, Roozbeh Nasiraie L, Ahmadi M. Monitoring of Butylated Hydroxyanisole in Food and Wastewater Samples Using Electroanalytical Two-Fold Amplified Sensor. Sustainability 2022;14:2169. [DOI: 10.3390/su14042169] [Reference Citation Analysis]
114 Li W, Deng X, Wu Z, Zhang L, Jiao J. An Electrochemical Sensor for Quantitation of the Oral Health Care Agent Chlorogenic Acid Based on Bimetallic Nanowires with Functionalized Reduced Graphene Oxide Nanohybrids. ACS Omega 2022;7:4614-23. [PMID: 35155952 DOI: 10.1021/acsomega.1c06612] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Shojaei M, Taher MA. Monitoring of Promazine in Injection and Dextrose Saline Samples Using Electrochemical Tool Based on Amplified Nanostructure Sensor. Top Catal. [DOI: 10.1007/s11244-022-01589-3] [Reference Citation Analysis]
116 Chani MTS, Karimov KS, Asiri AM, Kamal T, Bakhsh EM, Rahman MM. Ultraviolet and Infrared Irradiations Sensing of Gel-Orange Dye Composite-Based Flexible Electrochemical Cells. Gels 2022;8:83. [DOI: 10.3390/gels8020083] [Reference Citation Analysis]
117 Jiang J, Cai Q, Deng M. Construction of Electrochemical Aptamer Sensor Based on Pt-Coordinated Titanium-Based Porphyrin MOF for Thrombin Detection. Front Chem 2021;9:812983. [PMID: 35071191 DOI: 10.3389/fchem.2021.812983] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
118 Selim SE, Meligi GA, Abdelhamid AE, Mabrouk MA, Hussain AI. Novel Composite Films Based on Acrylic Fibers Waste/Nano-chitosan for Congo Red Adsorption. J Polym Environ. [DOI: 10.1007/s10924-022-02378-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
119 Ghalkhani M, Zare N, Karimi F, Karaman C, Alizadeh M, Vasseghian Y. Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 2022;:112830. [PMID: 35077828 DOI: 10.1016/j.fct.2022.112830] [Cited by in Crossref: 58] [Cited by in F6Publishing: 65] [Article Influence: 58.0] [Reference Citation Analysis]
120 Seckin H, Tiri RNE, Meydan I, Aygun A, Gunduz MK, Sen F. An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt-Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications. Environ Res 2022;208:112708. [PMID: 35026187 DOI: 10.1016/j.envres.2022.112708] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
121 Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO2. Chemosphere 2022;293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
122 Shi X, Zheng Y, Fu L. The Application of Electrochemical Oscillation Methods for Identification of Traditional Chinese Medicine Materials. Applied Sciences 2022;12:616. [DOI: 10.3390/app12020616] [Reference Citation Analysis]
123 Shahsavari M, Mortazavi M, Tajik S, Sheikhshoaie I, Beitollahi H. Synthesis and Characterization of GO/ZIF-67 Nanocomposite: Investigation of Catalytic Activity for the Determination of Epinine in the Presence of Dobutamine. Micromachines (Basel) 2022;13:88. [PMID: 35056253 DOI: 10.3390/mi13010088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
124 Khataee S, Dehghan G, Yekta R, Rashtbari S, Maleki S, Khataee A. The protective effect of natural phenolic compound on the functional and structural responses of inhibited catalase by a common azo food dye. Food Chem Toxicol 2021;160:112801. [PMID: 34974130 DOI: 10.1016/j.fct.2021.112801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Hojatpanah MR, Khanmohammadi A, Khoshsafar H, Hajian A, Bagheri H. Construction and application of a novel electrochemical sensor for trace determination of uranium based on ion-imprinted polymers modified glassy carbon electrode. Chemosphere 2021;292:133435. [PMID: 34958794 DOI: 10.1016/j.chemosphere.2021.133435] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
126 Karaman C, Karaman O, Show PL, Karimi-Maleh H, Zare N. Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere 2021;290:133346. [PMID: 34929270 DOI: 10.1016/j.chemosphere.2021.133346] [Cited by in Crossref: 84] [Cited by in F6Publishing: 79] [Article Influence: 42.0] [Reference Citation Analysis]
127 Wang D, Li D, Fu L, Zheng Y, Gu Y, Chen F, Zhao S. Can Electrochemical Sensors Be Used for Identification and Phylogenetic Studies in Lamiaceae? Sensors (Basel) 2021;21:8216. [PMID: 34960306 DOI: 10.3390/s21248216] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
128 Taherian Z, Khataee A, Han N, Orooji Y. Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry 2021. [DOI: 10.1016/j.jiec.2021.12.006] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 19.5] [Reference Citation Analysis]