BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu Z, Ge M, Guo C. Efficient removal of levofloxacin from different water matrices via simultaneous adsorption and photocatalysis using a magnetic Ag3PO4/rGO/CoFe2O4 catalyst. Chemosphere 2021;268:128834. [PMID: 33168283 DOI: 10.1016/j.chemosphere.2020.128834] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Xing Z, Wang Z, Chen W, Zhang M, Fu X, Gao Y. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO(2)/g-C(3)N(4)@AC combined electrode. J Environ Manage 2023;330:117168. [PMID: 36603258 DOI: 10.1016/j.jenvman.2022.117168] [Reference Citation Analysis]
2 Zhu L, Shen D, Zhang H, Luo KH, Li C. Fabrication of Z-scheme Bi(7)O(9)I(3)/g-C(3)N(4) heterojunction modified by carbon quantum dots for synchronous photocatalytic removal of Cr (Ⅵ) and organic pollutants. J Hazard Mater 2023;446:130663. [PMID: 36608584 DOI: 10.1016/j.jhazmat.2022.130663] [Reference Citation Analysis]
3 Ma Z, Li X, Fan G, Deng L, He Y. Construction of 3D sheet-packed hierarchical MoS2/BiOBr heterostructures with remarkably enhanced photocatalytic performance for tetracycline and levofloxacin degradation.. [DOI: 10.21203/rs.3.rs-2186761/v1] [Reference Citation Analysis]
4 Wang J, Wang J, Wang W, Hu X, Deng Y, Wang H, Wu Y. The generation of carbon/oxygen double defects in FeP/CoP-N-C enhanced by β particles for photic driving degradation of levofloxacin. Separation and Purification Technology 2022;303:122186. [DOI: 10.1016/j.seppur.2022.122186] [Reference Citation Analysis]
5 Adenuga DO, Tichapondwa SM, Chirwa EMN. Influence of wastewater matrix on the visible light degradation of phenol using AgCl/Bi24O31Cl10 photocatalyst. Environ Sci Pollut Res 2022. [DOI: 10.1007/s11356-022-23872-2] [Reference Citation Analysis]
6 Yin Z, Zhang X, Yuan X, Wei W, Xiao Y, Cao S. Constructing TiO2@Bi2O3 multi-heterojunction hollow structure for enhanced visible-light photocatalytic performance. Journal of Cleaner Production 2022;375:134112. [DOI: 10.1016/j.jclepro.2022.134112] [Reference Citation Analysis]
7 Ben Ayed A, Akrout I, Albert Q, Greff S, Simmler C, Armengaud J, Kielbasa M, Turbé-doan A, Chaduli D, Navarro D, Bertrand E, Faulds CB, Chamkha M, Maalej A, Zouari-mechichi H, Sciara G, Mechichi T, Record E. Biotransformation of the Fluoroquinolone, Levofloxacin, by the White-Rot Fungus Coriolopsis gallica. JoF 2022;8:965. [DOI: 10.3390/jof8090965] [Reference Citation Analysis]
8 Song T, Meng X, Wang H, Zhang C, Ge M. Visible-LED-light-driven photocatalytic activation of peroxydisulfate by magnetic ZnFe2O4/Ag nanocomposite for efficient tetracycline degradation. Separation and Purification Technology 2022;297:121474. [DOI: 10.1016/j.seppur.2022.121474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kang Z, Jia X, Zhang Y, Kang X, Ge M, Liu D, Wang C, He Z. A Review on Application of Biochar in the Removal of Pharmaceutical Pollutants through Adsorption and Persulfate-Based AOPs. Sustainability 2022;14:10128. [DOI: 10.3390/su141610128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Liu J, Jiang J, Wang M, Kang J, Zhang J, Liu S, Tang Y, Li S. Peroxymonosulfate activation by cobalt particles embedded into biochar for levofloxacin degradation: Efficiency, stability, and mechanism. Separation and Purification Technology 2022;294:121082. [DOI: 10.1016/j.seppur.2022.121082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Song T, He Q, Meng X, He Z, Ge M. Facile synthesis of magnetic ZnFe2O4/AC composite to activate peroxydisulfate for dye degradation under visible light irradiation. Environ Sci Pollut Res Int 2022. [PMID: 35666419 DOI: 10.1007/s11356-022-21253-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Bashir A, Pandith AH, Qureashi A, Malik LA, Gani M, Perez JM. Catalytic propensity of biochar decorated with core-shell nZVI@Fe3O4: A sustainable photo-Fenton catalysis of methylene blue dye and reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering 2022;10:107401. [DOI: 10.1016/j.jece.2022.107401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Liu J, Feng C, Li Y, Zhang Y, Liang Q, Xu S, Li Z, Wang S. Photocatalytic detoxification of hazardous pymetrozine pesticide over two-dimensional covalent-organic frameworks coupling with Ag3PO4 nanospheres. Separation and Purification Technology 2022;288:120644. [DOI: 10.1016/j.seppur.2022.120644] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
14 Singh A, Mishra BK. Solar light-driven photocatalysis using BaFe2O4/rGO for chlorhexidine digluconate-contaminated water: comparison with artificial UV and visible light-mediated photocatalysis. Environ Sci Pollut Res Int 2022;29:30739-53. [PMID: 34993796 DOI: 10.1007/s11356-021-17689-8] [Reference Citation Analysis]
15 Sharma G, Kumar A, Naushad M, Dhiman P, Thakur B, García-Peñas A, Stadler FJ. Gum Acacia-Crosslinked-Poly(Acrylamide) Hydrogel Supported C3N4/BiOI Heterostructure for Remediation of Noxious Crystal Violet Dye. Materials (Basel) 2022;15:2549. [PMID: 35407881 DOI: 10.3390/ma15072549] [Reference Citation Analysis]
16 Dong S, Zhao Y, Yang J, Li W, Luo W, Li S, Liu X, Guo H, Yu C, Sun J, Feng J, Zhu Y. Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification. Chemical Engineering Journal 2022;431:133824. [DOI: 10.1016/j.cej.2021.133824] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
17 Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe2O4 synergistic catalysis for the efficient removal of levofloxacin. J Hazard Mater 2022;424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
18 Meng X, He Q, Song T, Ge M, He Z, Guo C. Activation of peroxydisulfate by magnetically separable rGO/MnFe2O4 toward oxidation of tetracycline: Efficiency, mechanism and degradation pathways. Separation and Purification Technology 2022;282:120137. [DOI: 10.1016/j.seppur.2021.120137] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
19 Pan Y, Zhang Y, Huang Y, Jia Y, Chen L. Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. Chemical Engineering Journal 2022;428:131257. [DOI: 10.1016/j.cej.2021.131257] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
20 Ganjali F, Kashtiaray A, Zarei-shokat S, Taheri-ledari R, Maleki A. Functionalized hybrid magnetic catalytic systems on micro- and nanoscale utilized in organic synthesis and degradation of dyes. Nanoscale Adv . [DOI: 10.1039/d1na00818h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
21 Wu Z, Yu J, Wang W, Xin C, Yu X, Tang Y. High-performance photodegradation of norfloxacin enabled by AgI@Ag3PO4 nanostructures. Journal of Alloys and Compounds 2022;891:161877. [DOI: 10.1016/j.jallcom.2021.161877] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
22 Saya L, Malik V, Gautam D, Gambhir G, Balendra, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Sci Total Environ 2021;:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
23 Lenzi GG, Lopes MF, Andrade DI, Napoli JS, Parolin A, Fávaro YB, Kounaris Fuziki ME, de Almeida LNB, Josué TG, Dias DT, Tusset AM. Functioned catalysts with magnetic core applied in ibuprofen degradation. Water Sci Technol 2021;84:2158-79. [PMID: 34810303 DOI: 10.2166/wst.2021.409] [Reference Citation Analysis]
24 Zhu P, Lin J, Xie L, Duan M, Chen D, Luo D, Wu Y. Visible Light Response Photocatalytic Performance of Z-Scheme Ag3PO4/GO/UiO-66-NH2 Photocatalysts for the Levofloxacin Hydrochloride. Langmuir 2021;37:13309-21. [PMID: 34743516 DOI: 10.1021/acs.langmuir.1c01901] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
25 Hu M, Zhu P, Liu M, Xu J, Duan M, Lin J. Construction of Ag3PO4/TiO2/C with p-n heterojunction using Shiff base-Ti complex as precursor: Preparation, performance and mechanism. Powder Technology 2021;393:597-609. [DOI: 10.1016/j.powtec.2021.08.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
26 Dhiman P, Rana G, Kumar A, Sharma G, Vo DN, Algarni TS, Naushad M, Alothman ZA. Nanostructured magnetic inverse spinel Ni–Zn ferrite as environmental friendly visible light driven photo-degradation of levofloxacin. Chemical Engineering Research and Design 2021;175:85-101. [DOI: 10.1016/j.cherd.2021.08.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
27 Iwuozor KO, Abdullahi TA, Ogunfowora LA, Emenike EC, Oyekunle IP, Gbadamosi FA, Ighalo JO. Mitigation of levofloxacin from aqueous media by adsorption: a review. Sustain Water Resour Manag 2021;7. [DOI: 10.1007/s40899-021-00579-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
28 Jiang Z, Ma Y, Ke Q, Chu L, Guo C, Guo Y. Hydrothermal deposition of CoFe2O4 nanoparticles on activated carbon fibers promotes atrazine removal via physical adsorption and photo-Fenton degradation. Journal of Environmental Chemical Engineering 2021;9:105940. [DOI: 10.1016/j.jece.2021.105940] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
29 Mahmoud ME, Amira MF, Azab MMHM, Abdelfattah AM. Effective removal of levofloxacin drug and Cr(VI) from water by a composed nanobiosorbent of vanadium pentoxide@chitosan@MOFs. Int J Biol Macromol 2021;188:879-91. [PMID: 34403678 DOI: 10.1016/j.ijbiomac.2021.08.092] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
30 Du C, Nie S, Feng W, Zhang J, Qi M, Liang Y, Wu Y, Feng J, Dong S, Liu H, Sun J. Hydroxyl regulating effect on surface structure of BiOBr photocatalyst toward high-efficiency degradation performance. Chemosphere 2022;287:132246. [PMID: 34543902 DOI: 10.1016/j.chemosphere.2021.132246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]