BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Molnár Á, Papp M, Zoltán Kovács D, Bélteky P, Oláh D, Feigl G, Szőllősi R, Rázga Z, Ördög A, Erdei L, Rónavári A, Kónya Z, Kolbert Z. Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species. Chemosphere 2020;251:126419. [PMID: 32171133 DOI: 10.1016/j.chemosphere.2020.126419] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Pontes MS, Santos JS, Fernandes SY, Oliveira IP, Miguel TBAR, Miguel EC, Arruda GJ, Grillo R, Caires ARL, Santiago EF. Interactions of Nanomaterials with Plant Pigments. Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications 2023. [DOI: 10.1007/978-3-031-20878-2_5] [Reference Citation Analysis]
2 Bodor A, Bellahsen N, Perei K, Hodúr C, Feigl G. Phytotoxicity evaluation of nutrient-fortified pomegranate peel powders prepared from food waste and their feasibility as biofertilizers. Environ Dev Sustain 2022. [DOI: 10.1007/s10668-022-02852-z] [Reference Citation Analysis]
3 Hamzah Saleem M, Usman K, Rizwan M, Al Jabri H, Alsafran M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front Plant Sci 2022;13:1033092. [DOI: 10.3389/fpls.2022.1033092] [Reference Citation Analysis]
4 Mészáros E, Bodor A, Szierer Á, Kovács E, Perei K, Tölgyesi C, Bátori Z, Feigl G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. Journal of Hazardous Materials 2022;436:129255. [DOI: 10.1016/j.jhazmat.2022.129255] [Reference Citation Analysis]
5 Abideen Z, Waqif H, Munir N, El-keblawy A, Hasnain M, Radicetti E, Mancinelli R, Nielsen BL, Haider G. Algal-Mediated Nanoparticles, Phycochar, and Biofertilizers for Mitigating Abiotic Stresses in Plants: A Review. Agronomy 2022;12:1788. [DOI: 10.3390/agronomy12081788] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sun H, Peng Q, Guo J, Zhang H, Bai J, Mao H. Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa. Environ Pollut 2022;:119817. [PMID: 35872284 DOI: 10.1016/j.envpol.2022.119817] [Reference Citation Analysis]
7 Sarkhosh S, Kahrizi D, Darvishi E, Tourang M, Haghighi-mood S, Vahedi P, Ercisli S, Prasad R. Effect of Zinc Oxide Nanoparticles (ZnO-NPs) on Seed Germination Characteristics in Two Brassicaceae Family Species: Camelina sativa and Brassica napus L. Journal of Nanomaterials 2022;2022:1-15. [DOI: 10.1155/2022/1892759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Gelaw TA, Sanan-mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. Physiol Mol Biol Plants. [DOI: 10.1007/s12298-022-01163-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhao H, Qian R, Liang X, Ou Y, Sun C, Lin X. Indium induces nitro-oxidative stress in roots of wheat (Triticum aestivum). J Hazard Mater 2022;428:128260. [PMID: 35038664 DOI: 10.1016/j.jhazmat.2022.128260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC, Su C. Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol 2022;17:347-60. [PMID: 35332293 DOI: 10.1038/s41565-022-01082-8] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 42.0] [Reference Citation Analysis]
11 Kondak S, Molnár Á, Oláh D, Kolbert Z. The Role of Nitric Oxide (NO) in Plant Responses to Disturbed Zinc Homeostasis. Plant Stress 2022. [DOI: 10.1016/j.stress.2022.100068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Heikal YM, El-esawi MA, El-ballat EM, Abdel-aziz HMM. Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects. New Zealand Journal of Crop and Horticultural Science. [DOI: 10.1080/01140671.2021.2016870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Majid A, Arshad H, Khan MAU. Introduction. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-10216-5_1] [Reference Citation Analysis]
14 Etesami H, Fatemi H, Rizwan M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol Environ Saf 2021;225:112769. [PMID: 34509968 DOI: 10.1016/j.ecoenv.2021.112769] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
15 Taherbahrani S, Zoufan P, Zargar B. Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L. Environ Sci Pollut Res Int 2021;28:65644-54. [PMID: 34322811 DOI: 10.1007/s11356-021-15566-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Du Y, Zhang D, Zhou D, Liu L, Wu J, Chen H, Jin D, Yan M. The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil-plant system. AMB Express 2021;11:103. [PMID: 34245386 DOI: 10.1186/s13568-021-01264-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 El-Badri AMA, Batool M, Mohamed IAA, Khatab A, Sherif A, Wang Z, Salah A, Nishawy E, Ayaad M, Kuai J, Wang B, Zhou G. Modulation of salinity impact on early seedling stage via nano-priming application of zinc oxide on rapeseed (Brassica napus L.). Plant Physiol Biochem 2021;166:376-92. [PMID: 34153882 DOI: 10.1016/j.plaphy.2021.05.040] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
18 Kurczyńska E, Godel-jędrychowska K, Sala K, Milewska-hendel A. Nanoparticles—Plant Interaction: What We Know, Where We Are? Applied Sciences 2021;11:5473. [DOI: 10.3390/app11125473] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
19 Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem 2021;160:257-68. [PMID: 33529801 DOI: 10.1016/j.plaphy.2021.01.028] [Cited by in Crossref: 42] [Cited by in F6Publishing: 30] [Article Influence: 21.0] [Reference Citation Analysis]
20 Guru A, Sahoo SK, Saha P, Dwivedi P. Impact of Nanoparticles and Nanoparticle-Coated Biomolecules to Ameliorate Salinity Stress in Plants with Special Reference to Physiological, Biochemical and Molecular Mechanism of Action. Sustainable Agriculture Reviews 53 2021. [DOI: 10.1007/978-3-030-86876-5_8] [Reference Citation Analysis]
21 Verma A, Prasher P, Sharma M, Kumar A, Mudila H. Zinc oxide nanoparticles: Physiological and molecular responses in plants. Zinc-Based Nanostructures for Environmental and Agricultural Applications 2021. [DOI: 10.1016/b978-0-12-822836-4.00007-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Szőllősi R, Molnár Á, Kondak S, Kolbert Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants (Basel) 2020;9:E1745. [PMID: 33321844 DOI: 10.3390/plants9121745] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
23 Janani B, Raju LL, Thomas AM, Alyemeni MN, Dudin GA, Wijaya L, Alsahli AA, Ahmad P, Khan SS. Impact of bovine serum albumin - A protein corona on toxicity of ZnO NPs in environmental model systems of plant, bacteria, algae and crustaceans. Chemosphere 2021;270:128629. [PMID: 33168289 DOI: 10.1016/j.chemosphere.2020.128629] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
24 Ansar S, Tabassum H, Aladwan NSM, Naiman Ali M, Almaarik B, AlMahrouqi S, Abudawood M, Banu N, Alsubki R. Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci Rep 2020;10:18564. [PMID: 33122798 DOI: 10.1038/s41598-020-74371-8] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 13.3] [Reference Citation Analysis]
25 Kolbert Z, Szőllősi R, Feigl G, Kónya Z, Rónavári A, Loake G. Nitric oxide signalling in plant nanobiology: current status and perspectives. Journal of Experimental Botany 2021;72:928-40. [DOI: 10.1093/jxb/eraa470] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
26 Freitas DC, Andrade AM, Costa LF, Azevedo RA, Arruda MAZ. There is plenty of room at the plant science: A review of nanoparticles applied to plant cultures. Ann Appl Biol 2021;178:149-68. [DOI: 10.1111/aab.12640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
27 Molnár Á, Rónavári A, Bélteky P, Szőllősi R, Valyon E, Oláh D, Rázga Z, Ördög A, Kónya Z, Kolbert Z. ZnO nanoparticles induce cell wall remodeling and modify ROS/ RNS signalling in roots of Brassica seedlings. Ecotoxicol Environ Saf 2020;206:111158. [PMID: 32866892 DOI: 10.1016/j.ecoenv.2020.111158] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
28 Feigl G, Czifra Á, Molnár Á, Bodor A, Kovács E, Perei K, Jebet V, Kolbert Z. Reorganization of Protein Tyrosine Nitration Pattern Indicates the Relative Tolerance of Brassica napus (L.) over Helianthus annuus (L.) to Combined Heavy Metal Treatment. Plants (Basel) 2020;9:E902. [PMID: 32708788 DOI: 10.3390/plants9070902] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]