BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Guo H, Jiang N, Wang H, Shang K, Lu N, Li J, Wu Y. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway. Chemosphere 2019;230:190-200. [PMID: 31103865 DOI: 10.1016/j.chemosphere.2019.05.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 11.7] [Reference Citation Analysis]
Number Citing Articles
1 Guo H, Li Z, Zhang Y, Jiang N, Wang H, Li J. Degradation of chloramphenicol by pulsed discharge plasma with heterogeneous Fenton process using Fe3O4 nanocomposites. Separation and Purification Technology 2020;253:117540. [DOI: 10.1016/j.seppur.2020.117540] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
2 Ma S, Lee S, Kim K, Im J, Jeon H. Purification of organic pollutants in cationic thiazine and azo dye solutions using plasma-based advanced oxidation process via submerged multi-hole dielectric barrier discharge. Separation and Purification Technology 2021;255:117715. [DOI: 10.1016/j.seppur.2020.117715] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Ghenaatgar A, M.a.tehrani R, Khadir A. Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies. Journal of Water Process Engineering 2019;32:100969. [DOI: 10.1016/j.jwpe.2019.100969] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 9.3] [Reference Citation Analysis]
4 Guo H, Li Z, Xiang L, Jiang N, Zhang Y, Wang H, Li J. Efficient removal of antibiotic thiamphenicol by pulsed discharge plasma coupled with complex catalysis using graphene-WO3-Fe3O4 nanocomposites. Journal of Hazardous Materials 2021;403:123673. [DOI: 10.1016/j.jhazmat.2020.123673] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 31.0] [Reference Citation Analysis]
5 Ren H, He F, Liu S, Li T, Zhou R. Enhancing Fenton-like process at neutral pH by Fe(III)-GLDA complexation for the oxidation removal of organic pollutants. J Hazard Mater 2021;416:126077. [PMID: 34492897 DOI: 10.1016/j.jhazmat.2021.126077] [Reference Citation Analysis]
6 Mohd Razali NA, Wan Salleh WN, Aziz F, Jye LW, Yusof N, Ismail AF. Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. Journal of Cleaner Production 2021;309:127438. [DOI: 10.1016/j.jclepro.2021.127438] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
7 Xu J, Li X, Niu J, Chen M, Yue J. Synthesis of direct Z-Scheme Bi3TaO7/CdS composite photocatalysts with enhanced photocatalytic performance for ciprofloxacin degradation under visible light irradiation. Journal of Alloys and Compounds 2020;834:155061. [DOI: 10.1016/j.jallcom.2020.155061] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
8 Zhang G, Chen G, Yang F, Guo Z. Bionic smart recycled paper endowed with amphiphobic, photochromic, and UV rewritable properties. Nanoscale Adv 2020;2:4813-21. [DOI: 10.1039/d0na00627k] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Murugesan P, V. EM, Moses J, Anandharamakrishnan C. Water decontamination using non-thermal plasma: Concepts, applications, and prospects. Journal of Environmental Chemical Engineering 2020;8:104377. [DOI: 10.1016/j.jece.2020.104377] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Li Z, Wang Y, Guo H, Pan S, Puyang C, Su Y, Qiao W, Han J. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route. Separation and Purification Technology 2021;277:119415. [DOI: 10.1016/j.seppur.2021.119415] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
11 Ma Y, Wang Z, Li J, Song B, Liu S. Electrochemical-assisted ultraviolet light coupled peroxodisulfate system to degrade ciprofloxacin in water: Kinetics, mechanism and pathways. Chemosphere 2022;295:133838. [PMID: 35143863 DOI: 10.1016/j.chemosphere.2022.133838] [Reference Citation Analysis]
12 Cheng J, Wang D, Wang B, Ning H, Zhang Y, Li Y, An J, Gao P. Plasma-catalytic degradation of ciprofloxacin in aqueous solution over different MnO2 nanocrystals in a dielectric barrier discharge system. Chemosphere 2020;253:126595. [DOI: 10.1016/j.chemosphere.2020.126595] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 9.5] [Reference Citation Analysis]
13 Yang J, Zhou H, Chen C, Cao W, Jiang C, Wang Y. Design of hollow mesoporous TiO2@BiOBr/Bi4O5Br2 type-II/Z-scheme tandem heterojunctions under confinement effect: Improved space charge separation and enhanced visible-light photocatalytic performance. Journal of Colloid and Interface Science 2022;617:341-52. [DOI: 10.1016/j.jcis.2022.03.026] [Reference Citation Analysis]
14 Shang K, Wang N, Li W, Jiang N, Lu N, Li J, Wu Y. Generation Characteristics of Long-Lived Active Species in a Water Falling Film DBD Reactor. Plasma Chem Plasma Process 2021;41:477-91. [DOI: 10.1007/s11090-020-10124-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Han S, Mao D, Wang H, Guo H. An insightful analysis of dimethyl phthalate degradation by the collaborative process of DBD plasma and Graphene-WO3 nanocomposites. Chemosphere 2021;:132774. [PMID: 34742767 DOI: 10.1016/j.chemosphere.2021.132774] [Reference Citation Analysis]
16 He F, Ren H, Li T, Liu S, Zhou R. Efficient decontamination of ciprofloxacin at neutral pH via visible light assisted Fenton-like process mediated by Fe(III)-GLDA complexation. Chemosphere 2021;289:133199. [PMID: 34883122 DOI: 10.1016/j.chemosphere.2021.133199] [Reference Citation Analysis]
17 Xiao T, Wang Y, Wan J, Ma Y, Yan Z, Huang S, Zeng C. Fe-N-C catalyst with Fe-NX sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalytic mechanism. J Hazard Mater 2022;424:127380. [PMID: 34879571 DOI: 10.1016/j.jhazmat.2021.127380] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Aggelopoulos C, Meropoulis S, Hatzisymeon M, Lada Z, Rassias G. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: Parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chemical Engineering Journal 2020;398:125622. [DOI: 10.1016/j.cej.2020.125622] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 10.5] [Reference Citation Analysis]
19 Guo H, Li Z, Lin S, Li D, Jiang N, Wang H, Han J, Li J. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe3O4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity. Chemosphere 2021;265:129089. [PMID: 33261841 DOI: 10.1016/j.chemosphere.2020.129089] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
20 Tahir MB, Farman S, Rasheed A, Alrobei H, Shahzad K, Ali AM, Muhammad S. Insight role of TiO 2 to improve the photocatalytic performance of WO 3 nanostructures for the efficient degradation of ciprofloxacin. Zeitschrift für Physikalische Chemie 2021;0:000010151520213060. [DOI: 10.1515/zpch-2021-3060] [Reference Citation Analysis]
21 Mao D, Yan X, Wang H, Shen Z, Yi C. Catalysis of rGO-WO3 nanocomposite for aqueous bisphenol A degradation in dielectric barrier discharge plasma oxidation process. Chemosphere 2021;262:128073. [PMID: 33182155 DOI: 10.1016/j.chemosphere.2020.128073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
22 Feng J, Nian P, Peng L, Zhang A, Sun Y. Degradation of aqueous methylparaben by non-thermal plasma combined with ZnFe2O4-rGO nanocomposites: Performance, multi-catalytic mechanism, influencing factors and degradation pathways. Chemosphere 2021;271:129575. [PMID: 33460902 DOI: 10.1016/j.chemosphere.2021.129575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xu R, Li L, Fu X, Yu L, Jin Y, Li L. Catalytic Ozonation of Ciprofloxacin with Cu–Al Layered Double Hydroxides Based on Response Surface Analysis. J Environ Eng 2022;148:04022010. [DOI: 10.1061/(asce)ee.1943-7870.0001988] [Reference Citation Analysis]
24 Xu C, Cai M, Fang Y, Wang X, Chen Y, Dai L. Enhanced performance of binary WO3/N-doped carbon composites for the catalytic oxidation of benzyl alcohol under mild conditions. Molecular Catalysis 2021;510:111690. [DOI: 10.1016/j.mcat.2021.111690] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
25 Cheng J, Xie Y, Wei Y, Xie D, Sun W, Zhang Y, Li M, An J. Degradation of tetracycline hydrochloride in aqueous via combined dielectric barrier discharge plasma and Fe-Mn doped AC. Chemosphere 2021;286:131841. [PMID: 34399261 DOI: 10.1016/j.chemosphere.2021.131841] [Reference Citation Analysis]
26 Wang H, Shen Z, Yan X, Guo H, Mao D, Yi C. Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation. Chemosphere 2021;274:129722. [PMID: 33540320 DOI: 10.1016/j.chemosphere.2021.129722] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
27 Wu H, Fan J, Sun Y, Liu R, Jin J, Li P. Removal of ammonia nitrogen and phenol by pulsed discharge plasma combined with modified zeolite catalyst. J Environ Manage 2021;299:113590. [PMID: 34474256 DOI: 10.1016/j.jenvman.2021.113590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Li Y, Chen L, Tian X, Lin L, Ding R, Yan W, Zhao F. Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Sci Total Environ 2021;784:147049. [PMID: 34088071 DOI: 10.1016/j.scitotenv.2021.147049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Hassan M, Zhu G, Yang Z, Lu Y, Lang Y, Gong L, Shan H. Effect of the C/N Ratio on Biodegradation of Ciprofloxacin and Denitrification from Low C/N Wastewater as Assessed by a Novel 3D-BER System. Sustainability 2020;12:7611. [DOI: 10.3390/su12187611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Xu J, Liu Y, Li X, Chen M. Construction of Z-scheme Bi3TaO7/Zn0.5Cd0.5S composites with high efficiency for levofloxacin degradation under visible light irradiation. Dalton Trans 2021;50:14920-31. [PMID: 34609401 DOI: 10.1039/d1dt02539b] [Reference Citation Analysis]
31 Ren J, Zhen Y, Wang J, Li J. Catalytic degradation of caffeic acid by DBD plasma and Mn doped cobalt oxyhydroxide catalyst. Chemosphere 2021;275:130101. [PMID: 33984910 DOI: 10.1016/j.chemosphere.2021.130101] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Palma D, Papagiannaki D, Lai M, Binetti R, Sleiman M, Minella M, Richard C. PFAS Degradation in Ultrapure and Groundwater Using Non-Thermal Plasma. Molecules 2021;26:924. [PMID: 33572434 DOI: 10.3390/molecules26040924] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Li C, Dong X, Zhu N, Zhang X, Yang S, Sun Z, Liu Y, Zheng S, Dionysiou DD. Rational design of efficient visible-light driven photocatalyst through 0D/2D structural assembly: Natural kaolinite supported monodispersed TiO2 with carbon regulation. Chemical Engineering Journal 2020;396:125311. [DOI: 10.1016/j.cej.2020.125311] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]