BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jin X, Su R, Li R, Song L, Chen M, Cheng L, Li Z. Amelioration of particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells. Chemosphere 2016;144:459-66. [PMID: 26386771 DOI: 10.1016/j.chemosphere.2015.09.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Marques-da-silva D, Videira P, Lagoa R. Registered human trials addressing environmental and occupational toxicant exposures: scoping review of immunological markers and protective strategies. Environmental Toxicology and Pharmacology 2022. [DOI: 10.1016/j.etap.2022.103886] [Reference Citation Analysis]
2 Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE-/- mice. Ecotoxicology and Environmental Safety 2022;234:113410. [DOI: 10.1016/j.ecoenv.2022.113410] [Reference Citation Analysis]
3 Qin Y, Zhang H, Jiang B, Chen J, Zhang T. Food bioactives lowering risks of chronic diseases induced by fine particulate air pollution: a comprehensive review. Crit Rev Food Sci Nutr 2022;:1-26. [PMID: 35317688 DOI: 10.1080/10408398.2022.2051162] [Reference Citation Analysis]
4 Liu X, Song L. Quercetin protects human liver cells from o,p'-DDT-induced toxicity by suppressing Nrf2 and NADPH oxidase-regulated ROS production. Food Chem Toxicol 2022;:112849. [PMID: 35122929 DOI: 10.1016/j.fct.2022.112849] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Septembre-malaterre A, Boumendjel A, Seteyen AS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus 2022;2:100220. [DOI: 10.1016/j.phyplu.2022.100220] [Reference Citation Analysis]
6 Zhai X, Wang J, Sun J, Xin L. PM2.5 induces inflammatory responses via oxidative stress-mediated mitophagy in human bronchial epithelial cells. Toxicology Research 2022. [DOI: 10.1093/toxres/tfac001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Liang Y, Chu PH, Tian L, Ho KF, Ip MSM, Mak JCW. Targeting mitochondrial permeability transition pore ameliorates PM2.5-induced mitochondrial dysfunction in airway epithelial cells. Environ Pollut 2021;295:118720. [PMID: 34953947 DOI: 10.1016/j.envpol.2021.118720] [Reference Citation Analysis]
8 Xing CH, Wang Y, Liu JC, Pan ZN, Zhang HL, Sun SC, Zhang Y. Melatonin reverses mitochondria dysfunction and oxidative stress-induced apoptosis of Sudan I-exposed mouse oocytes. Ecotoxicol Environ Saf 2021;225:112783. [PMID: 34544023 DOI: 10.1016/j.ecoenv.2021.112783] [Reference Citation Analysis]
9 Kim JM, Kang JY, Park SK, Moon JH, Kim MJ, Lee HL, Jeong HR, Kim JC, Heo HJ. Powdered Green Tea (Matcha) Attenuates the Cognitive Dysfunction via the Regulation of Systemic Inflammation in Chronic PM2.5-Exposed BALB/c Mice. Antioxidants (Basel) 2021;10:1932. [PMID: 34943034 DOI: 10.3390/antiox10121932] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021;26:889-915. [PMID: 34677749 DOI: 10.1007/s12192-021-01241-1] [Reference Citation Analysis]
11 Jin X, Yu H, Zhang Z, Cui T, Wu Q, Liu X, Gao J, Zhao X, Shi J, Qu G, Jiang G. Surface charge-dependent mitochondrial response to similar intracellular nanoparticle contents at sublethal dosages. Part Fibre Toxicol 2021;18:36. [PMID: 34565395 DOI: 10.1186/s12989-021-00429-8] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Jiang J, Zhang G, Yu M, Gu J, Zheng Y, Sun J, Ding S. Quercetin improves the adipose inflammatory response and insulin signaling to reduce "real-world" particulate matter-induced insulin resistance. Environ Sci Pollut Res Int 2021. [PMID: 34365603 DOI: 10.1007/s11356-021-15829-8] [Reference Citation Analysis]
13 Zhang LM, Lv SS, Fu SR, Wang JQ, Liang LY, Li RQ, Zhang F, Ma YX. Procyanidins inhibit fine particulate matter-induced vascular smooth muscle cells apoptosis via the activation of the Nrf2 signaling pathway. Ecotoxicol Environ Saf 2021;223:112586. [PMID: 34364126 DOI: 10.1016/j.ecoenv.2021.112586] [Reference Citation Analysis]
14 Li Y, Batibawa JW, Du Z, Liang S, Duan J, Sun Z. Acute exposure to PM2.5 triggers lung inflammatory response and apoptosis in rat. Ecotoxicol Environ Saf 2021;222:112526. [PMID: 34303042 DOI: 10.1016/j.ecoenv.2021.112526] [Reference Citation Analysis]
15 Jin X, Yu H, Wang B, Sun Z, Zhang Z, Liu QS, Zheng Y, Zhou Q, Jiang G. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol 2021;18:19. [PMID: 33985555 DOI: 10.1186/s12989-021-00411-4] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
16 Liu J, Cheng Y, Lu Y, Xia C, Wang N, Li Y. Bacillus subtilis spores as an adjuvant to enhance the protection efficacy of the SVCV subunit vaccine (SVCV‐M protein) in German mirror carp ( Cyprirnus Carpio Songpa Linnaeus Mirror ). Aquaculture Research 2021;52:4648-60. [DOI: 10.1111/are.15299] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Shan X, Liu L, Li G, Xu K, Liu B, Jiang W. PM2.5 and the typical components cause organelle damage, apoptosis and necrosis: Role of reactive oxygen species. Sci Total Environ 2021;782:146785. [PMID: 33838376 DOI: 10.1016/j.scitotenv.2021.146785] [Reference Citation Analysis]
18 Liu F, Zhu Y, Zhang J, Li Y, Peng Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomised controlled trial.BMJ Open. 2020;10:e039519. [PMID: 32641343 DOI: 10.1136/bmjopen-2020-039519] [Cited by in Crossref: 29] [Cited by in F6Publishing: 51] [Article Influence: 14.5] [Reference Citation Analysis]
19 Li M, Gao C, Du X, Zhao L, Niu X, Wang G, Zhang D. Amelioration of LPS‐induced inflammatory response and oxidative stress by astaxanthin in Channa argus lymphocyte via activating glucocorticoid receptor signalling pathways. Aquac Res 2020;51:2687-97. [DOI: 10.1111/are.14608] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020:S1044-579X(20)30035-3. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Zhang XF, Ding MJ, Cheng C, Zhang Y, Xiang SY, Lu J, Liu ZB. Andrographolide attenuates oxidative stress injury in cigarette smoke extract exposed macrophages through inhibiting SIRT1/ERK signaling. Int Immunopharmacol 2020;81:106230. [PMID: 32032850 DOI: 10.1016/j.intimp.2020.106230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Su R, Jin X, Li H, Huang L, Li Z. The mechanisms of PM2.5 and its main components penetrate into HUVEC cells and effects on cell organelles. Chemosphere 2020;241:125127. [DOI: 10.1016/j.chemosphere.2019.125127] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
23 Kim JY, Lee SY, Jung S, Kim MR, Choi I, Lee J, Sim J, Pan C, Kang K. Protective effect of Lactobacillus casei HY2782 against particulate matter toxicity in human intestinal CCD-18Co cells and Caenorhabditis elegans. Biotechnol Lett 2020;42:519-28. [DOI: 10.1007/s10529-020-02814-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
24 Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2020;25:209-22. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
25 Zielinska MA, Hamulka J. Protective Effect of Breastfeeding on the Adverse Health Effects Induced by Air Pollution: Current Evidence and Possible Mechanisms. Int J Environ Res Public Health 2019;16:E4181. [PMID: 31671856 DOI: 10.3390/ijerph16214181] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
26 Yin Y, Zhang P, Liu J, Wang N, Shang X, Zhang Y, Li Y. Amelioration of Cd-Induced Oxidative Stress, MT Gene Expression, and Immune Damage by Vitamin C in Grass Carp Kidney Cells. Biol Trace Elem Res 2020;194:552-9. [DOI: 10.1007/s12011-019-01808-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
27 Li MY, Guo WQ, Guo GL, Zhu XM, Niu XT, Shan XF, Tian JX, Wang GQ, Zhang DM. Effect of sub-chronic exposure to selenium and Allium mongolicum Regel flavonoids on Channa argus: Bioaccumulation, oxidative stress, immune responses and immune-related signaling molecules. Fish Shellfish Immunol 2019;91:122-9. [PMID: 31055018 DOI: 10.1016/j.fsi.2019.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
28 Izumi Y, Nakashima T, Masuda T, Shioya S, Fukuhara K, Yamaguchi K, Sakamoto S, Horimasu Y, Miyamoto S, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Suplatast tosilate reduces radiation-induced lung injury in mice through suppression of oxidative stress. Free Radic Biol Med 2019;136:52-9. [PMID: 30930296 DOI: 10.1016/j.freeradbiomed.2019.03.024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
29 Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019;24:E1123. [PMID: 30901869 DOI: 10.3390/molecules24061123] [Cited by in Crossref: 152] [Cited by in F6Publishing: 262] [Article Influence: 50.7] [Reference Citation Analysis]
30 Jin X, Xue B, Ahmed RZ, Ding G, Li Z. Fine particles cause the abnormality of cardiac ATP levels via PPARɑ-mediated utilization of fatty acid and glucose using in vivo and in vitro models. Environ Pollut 2019;249:286-94. [PMID: 30897468 DOI: 10.1016/j.envpol.2019.02.083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
31 Jin X, Su H, Ding G, Sun Z, Li Z. Exposure to ambient fine particles causes abnormal energy metabolism and ATP decrease in lung tissues. Chemosphere 2019;224:29-38. [PMID: 30807911 DOI: 10.1016/j.chemosphere.2019.02.116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
32 Zhong Y, Liao J, Hu Y, Wang Y, Sun C, Zhang C, Wang G. PM2.5 Upregulates MicroRNA-146a-3p and Induces M1 Polarization in RAW264.7 Cells by Targeting Sirtuin1. Int J Med Sci 2019;16:384-93. [PMID: 30911272 DOI: 10.7150/ijms.30084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
33 Wang Y, Zhang M, Li Z, Yue J, Xu M, Zhang Y, Yung KKL, Li R. Fine particulate matter induces mitochondrial dysfunction and oxidative stress in human SH-SY5Y cells. Chemosphere 2019;218:577-88. [PMID: 30502696 DOI: 10.1016/j.chemosphere.2018.11.149] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
34 Hill A, Wendt S, Benstoem C, Neubauer C, Meybohm P, Langlois P, Adhikari NK, Heyland DK, Stoppe C. Vitamin C to Improve Organ Dysfunction in Cardiac Surgery Patients-Review and Pragmatic Approach. Nutrients 2018;10:E974. [PMID: 30060468 DOI: 10.3390/nu10080974] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
35 Cho CC, Hsieh WY, Tsai CH, Chen CY, Chang HF, Lin CS. In Vitro and In Vivo Experimental Studies of PM2.5 on Disease Progression. Int J Environ Res Public Health 2018;15:E1380. [PMID: 29966381 DOI: 10.3390/ijerph15071380] [Cited by in Crossref: 47] [Cited by in F6Publishing: 76] [Article Influence: 11.8] [Reference Citation Analysis]
36 Wang BR, Shi JQ, Ge NN, Ou Z, Tian YY, Jiang T, Zhou JS, Xu J, Zhang YD. PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's disease. J Neuroinflammation 2018;15:132. [PMID: 29720213 DOI: 10.1186/s12974-018-1178-5] [Cited by in Crossref: 35] [Cited by in F6Publishing: 49] [Article Influence: 8.8] [Reference Citation Analysis]
37 Fallacara A, Busato L, Pozzoli M, Ghadiri M, Ong HX, Young PM, Manfredini S, Traini D. Combination of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate for the treatment of inflammatory lung diseases: An in vitro study. Eur J Pharm Sci 2018;120:96-106. [PMID: 29723596 DOI: 10.1016/j.ejps.2018.04.042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
38 Wei Y, Cao X, Tang X, Shen L, Lin T, He D, Wu S, Wei G. Urban fine particulate matter (PM2.5) exposure destroys blood–testis barrier (BTB) integrity through excessive ROS-mediated autophagy. Toxicology Mechanisms and Methods 2018;28:302-19. [DOI: 10.1080/15376516.2017.1410743] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
39 Jin X, Su R, Li R, Cheng L, Li Z. Crucial role of pro-inflammatory cytokines from respiratory tract upon PM2.5 exposure in causing the BMSCs differentiation in cells and animals. Oncotarget 2018;9:1745-59. [PMID: 29416728 DOI: 10.18632/oncotarget.23158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
40 Liu X, Jin X, Su R, Li Z. The reproductive toxicology of male SD rats after PM2.5 exposure mediated by the stimulation of endoplasmic reticulum stress. Chemosphere 2017;189:547-55. [PMID: 28961540 DOI: 10.1016/j.chemosphere.2017.09.082] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
41 Wei M, Guo F, Rui D, Wang H, Feng G, Li S, Song G. Alleviation of Arsenic-Induced Pulmonary Oxidative Damage by GSPE as Shown during In vivo and In vitro Experiments. Biol Trace Elem Res 2018;183:80-91. [DOI: 10.1007/s12011-017-1111-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
42 Guo Z, Hong Z, Dong W, Deng C, Zhao R, Xu J, Zhuang G, Zhang R. PM2.5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. Int J Environ Res Public Health 2017;14:E134. [PMID: 28146064 DOI: 10.3390/ijerph14020134] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
43 Su R, Jin X, Zhang W, Li Z, Liu X, Ren J. Particulate matter exposure induces the autophagy of macrophages via oxidative stress-mediated PI3K/AKT/mTOR pathway. Chemosphere 2017;167:444-53. [DOI: 10.1016/j.chemosphere.2016.10.024] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 12.4] [Reference Citation Analysis]